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Abstract. Three-dimensional (3-D) geological structural
modeling aims to determine geological information in a 3-
D space using structural data (foliations and interfaces) and
topological rules as inputs. This is necessary in any project
in which the properties of the subsurface matters; they ex-
press our understanding of geometries in depth. For that rea-
son, 3-D geological models have a wide range of practical
applications including but not restricted to civil engineering,
the oil and gas industry, the mining industry, and water man-
agement. These models, however, are fraught with uncertain-
ties originating from the inherent flaws of the modeling en-
gines (working hypotheses, interpolator’s parameterization)
and the inherent lack of knowledge in areas where there are
no observations combined with input uncertainty (observa-
tional, conceptual and technical errors). Because 3-D geolog-
ical models are often used for impactful decision-making it is
critical that all 3-D geological models provide accurate esti-
mates of uncertainty. This paper’s focus is set on the effect of
structural input data measurement uncertainty propagation in
implicit 3-D geological modeling. This aim is achieved using
Monte Carlo simulation for uncertainty estimation (MCUE),
a stochastic method which samples from predefined distur-
bance probability distributions that represent the uncertainty
of the original input data set. MCUE is used to produce hun-
dreds to thousands of altered unique data sets. The altered
data sets are used as inputs to produce a range of plausi-
ble 3-D models. The plausible models are then combined
into a single probabilistic model as a means to propagate
uncertainty from the input data to the final model. In this
paper, several improved methods for MCUE are proposed.

The methods pertain to distribution selection for input un-
certainty, sample analysis and statistical consistency of the
sampled distribution. Pole vector sampling is proposed as a
more rigorous alternative than dip vector sampling for planar
features and the use of a Bayesian approach to disturbance
distribution parameterization is suggested. The influence of
incorrect disturbance distributions is discussed and proposi-
tions are made and evaluated on synthetic and realistic cases
to address the sighted issues. The distribution of the errors
of the observed data (i.e., scedasticity) is shown to affect the
quality of prior distributions for MCUE. Results demonstrate
that the proposed workflows improve the reliability of uncer-
tainty estimation and diminish the occurrence of artifacts.

1 Introduction

Three-dimensional (3-D) geological models are important
tools for decision-making in geoscience as they represent the
current state of our knowledge regarding the architecture of
the subsurface. As such they are used in various domains of
application such as mining (Cammack, 2016; Dominy et al.,
2002), oil and gas (Nordahl and Ringrose, 2008), infrastruc-
ture engineering (Aldiss et al., 2012), water supply manage-
ment (Prada et al., 2016), geothermal power plants (Moeck,
2014), waste disposal (Ennis-King and Paterson, 2002), nat-
ural hazard management (Delgado Marchal et al., 2015), hy-
drogeology (Jairo, 2013) and archaeology (Vos et al., 2015).
By definition, all models contain uncertainty, being simpli-
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fications of the natural world (Bardossy and Fodor, 2001)
linked to errors about their inputs (data and working hypothe-
ses), processing (model building) and output formatting (dis-
cretization, simplification). Reason dictates that these models
should incorporate an estimate of their uncertainty as an aid
to risk-aware decision-making.

Monte Carlo simulation for uncertainty propagation
(MCUE) has been a widely used uncertainty propagation
method in implicit 3-D geological modeling during the last
decade (Wellmann and Regenauer-Lieb, 2012; Lindsay et al.,
2012; Jessell et al., 2014a; de la Varga and Wellmann, 2016).
A similar approach was introduced to geoscience with the
generalized likelihood uncertainty estimation (GLUE; Beven
and Binley, 1992), which is a non-predictive (Camacho et
al., 2015) implementation of Bayesian Monte Carlo (BMC).
MCUE (Fig. 1) simulates input data uncertainty propaga-
tion by producing many plausible models through pertur-
bation of the initial input data; the output models are then
merged and/or compared to estimate uncertainty. This can be
achieved by replacing each original data input with a prob-
ability distribution function (PDF) thought to best represent
its uncertainty called a disturbance distribution. Essentially,
a disturbance distribution quantifies the degree of confidence
that one has in the input data used for the modeling such as
the location of a stratigraphic horizon or the dip of a fault. In
the context of MCUE, uncertainty in the input data mainly
arises from a number of sources of uncertainty, including but
not restricted to device basic measurement error, operator
error, local variability, simplification radius, miscalibration,
rounding errors, (re)projection issues and external perturba-
tions. In the case of a standard geological compass used to
acquire a foliation on an outcrop,

— device basic measurement error refers to error in lab and
under perfect conditions (this information is typically
provided by the manufacturer).

— operator error refers to human-related issues that affect
the process of the measurement such as trembling or
misinterpreting features (mistaking joints or crenulation
for horizons for example).

— local variability refers to the difficulty of picking up the
trend of the stratigraphy appropriately because of sig-
nificant variability at the scale of the outcrop (usually
due to cleavage or crenulation).

— simplification radius refers to the uncertainty that is in-
troduced when several measurements made in the same
area are combined into a single one.

— external perturbations refer to artificial or natural phe-
nomena that have a detrimental effect on precision and
accuracy such as holding high-magnetic-mass items
close to the compass (smartphone, car, metallic struc-
tures) when making a measurement or the magnetiza-
tion of the outcrop itself.
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Figure 1. Monte Carlo uncertainty propagation procedure work-
flow.

All these sources of uncertainty may be abstracted to in-
dividual random variables, which are all added to form a
more general uncertainty variable that disturbance distribu-
tions are expected to represent. The disturbance distributions
are then sampled to generate many plausible alternate mod-
els in a process called perturbation. Plausible models form a
suite of 3-D geological models that are consistent with the
original data set. That is, the degree of uncertainty associated
with the original data set allows these models to be plausi-
ble. In layman’s terms, the perturbation step is designed to
simulate the effect of uncertainty by testing “what-if” sce-
narios. The variability in the plausible model suite is then
used as a proxy for model uncertainty. Several metrics have
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been used to express the model uncertainty in MCUE, includ-
ing information entropy (Shannon, 1948; Wellmann, 2013;
Wellmann and Regenauer-Lieb, 2012), stratigraphic variabil-
ity (Lindsay et al., 2012) and kriging error. The case for re-
liable uncertainty estimation in 3-D geological modeling has
been made repeatedly and this paper aims to further improve
several points of MCUE methods at the preprocessing steps
(Fig. 1). More specifically, we aim to improve (i) the selec-
tion of the PDFs used to represent uncertainties related to
the original data inputs and (ii) the parameterization of said
PDFs. Section 2 reviews the fundamentals of MCUE meth-
ods while Sect. 3 addresses PDF selection and parameteriza-
tion. Lastly, Sect. 4 expands further into the details of distur-
bance distribution sampling.

2 MCUE method

Recently developed MCUE-based techniques for uncertainty
estimation in 3-D geological modeling require the user to de-
fine the disturbance distribution for each input datum, based
on some form of prior knowledge. That is necessary because
MCUE is a one-step analysis as opposed to a sequential one:
all inputs are perturbed once and simultaneously to generate
one of the possible models that will be merged or compared
with the others. MCUE is vulnerable to erroneous assump-
tions about the disturbance distribution in terms of structure
(what is the optimal type of disturbance distribution) and
magnitude (the dispersion parameters) of the uncertainty of
the input data. However, it is possible to post-process the re-
sults of an MCUE simulation to compare them to other forms
of prior knowledge and update accordingly (Wellmann et al.,
2014a).

The MCUE approach is usually applied to geometric mod-
eling engines (Wellmann and Regenauer-Lieb, 2012; Lind-
say et al., 2013; Jessell et al., 2010, 2014a), although it can
be applied to dynamic or kinematic modeling engines (Wang
et al., 2016; Wellmann et al., 2016). This choice is motivated
by critical differences between the three approaches, at both
the conceptual and practical level (Aug, 2004). More specif-
ically, explicit geometric engines require full expert knowl-
edge while implicit ones are based on observed field data,
variographic analysis and topological constraints (Jessell et
al., 2014a). Geometric modeling engines interpolate features
from sparse structural data and topological assumptions (Aug
et al., 2005; Jessell et al., 2014a); they require prior knowl-
edge of topology and are computationally affordable (La-
jaunie et al., 1997; Calcagno et al., 2008). Dynamic model-
ing engines require knowledge of initial geometry, physical
properties and boundary conditions; the modeling process is
computationally expensive. Kinematic modeling engines re-
quire knowledge of initial geometry and kinematic history
(Jessell, 1981); the modeling process is computationally in-
expensive. The implicit geometric approach is preferred for
MCUE because knowledge of initial conditions is nearly im-

www.solid-earth.net/9/385/2018/

possible to achieve, and perfect knowledge of current condi-
tions defeats the purpose of estimating any uncertainty.

Implicit geometric modeling engines use mainly three
types of inputs: interfaces (3-D points), foliations (3-D vec-
tors) and topological relationships between geological units
and faults (stratigraphic column and fault age relationships).
Drill holes and other structural inputs such as fold axes and
fold axial planes can also be used (Maxelon and Mancktelow,
2005). Each data input is assigned to a geological unit and the
model is then built according to predefined topological rules.
The implicit geometric 3-D modeling package GeoModeller
distributed by Intrepid Geophysics was used as a test plat-
form for this study. The use of this specific software is moti-
vated by its open use of co-kriging (Appendix C), which is a
robust (Matheron, 1970; Isaaks and Srivastava, 1989; Lajau-
nie, 1990) geostatistical interpolator to generate the models
(Calcagno et al., 2008; FitzGerald et al., 2009). In addition,
GeoModeller allows uncertainty to be safely propagated pro-
vided that the variogram is correct (Chiles et al., 2004; Aug,
2004) as the co-kriging interpolator then quantifies the its
intrinsic uncertainty. Nevertheless, MCUE is not inherently
limited by the choice of the interpolator and, therefore, may
be used with any implicit modeling engine. In the next sec-
tion, a series of improvements are proposed to address the
disturbance distribution problem.

3 Distribution types and their parameters

Often, the disturbance distribution used to estimate input un-
certainty is the same (same type and same parameterization)
for all observations of the same nature (Wellmann et al.,
2010; Wellmann and Regenauer-Lieb, 2012; Lindsay et al.,
2012, 2013). Disturbance distribution parameters are defined
arbitrarily (Lindsay et al., 2012; Wellmann and Regenauer-
Lieb, 2012) in most cases. Additionally, uniform distribu-
tions have been regularly used as disturbance distribution and
expressed as a plus minus range over the location of inter-
faces (Wellmann et al., 2010; Wellmann, 2013) or the dip
and dip direction (Lindsay et al., 2012, 2013; Jessell et al.,
2014a). Here, propositions are made about the type of dis-
turbance distributions that should be used for MCUE, how to
parameterize them and associated possible pitfalls.

3.1 Standard distributions for MCUE

The structural data collected to build the model are impacted
by many random sources of uncertainty (Fig. 1) such as mea-
surement, sampling and observation errors (Bardossy and
Fodor, 2001; Nearing et al., 2016). Additionally, the uncer-
tainty tied to each measurement is considered to be indepen-
dent of the others. However, that is not to say that there is no
dependence over the measured values themselves. For exam-
ple, dip measurements along a fault line are expected to be
spatially correlated though each measurement is an indepen-
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dent trial in terms of its measurement error. Consequently,
MCUE may sample from disturbance distributions indepen-
dently from one another. Under these conditions, the cen-
tral limit theorem (CLT) holds true for these data (Sivia and
Skilling, 2006; Gnedenko and Kolmogorov, 1954) if the vari-
ance of each source of uncertainty is always defined. Uncer-
tainty would then be better represented by disturbance distri-
butions that are consistent with the CLT, namely the normal
distribution for locations (Cartesian scalar data) and the von
Mises—Fisher (vMF) distribution for orientations (spherical
vector data; Davis, 2003). However, MCUE does not a priori
forbid the use of any kind of distribution. The normal distri-
bution is the canonical CLT distribution (i.e., the distribution
towards which the sum of random variables tends) defined as

ef(x*s)z/Za2
o2 '

where ¢ and o are the arithmetic mean and standard devia-
tion, respectively. Note that the normal distribution is con-
jugate to itself or to Student’s ¢ distribution depending on
which parameters are known a priori. That is, a normal prior
distribution gives a normal or Student posterior distribution
in the Bayesian framework given that the likelihood function
is normal itself.

The vMF distribution (Fig. 2) is the CLT distribution for
spherical data; it is the hyperspherical counterpart to the
normal distribution (Fisher et al., 1987) and is used under
the same general assumptions for unit vectors on the p-
dimensional unit hypersphere S(?~1!. The most important
property of the vMF distribution is the axial symmetry of the
data around the mean direction. The vMF distribution is also
the maximum entropy distribution for spherical data and is
conjugate to itself given that the likelihood function is vVMF
distributed (Mardia and El-Atoum, 1976). These properties
make the vMF distribution suitable for uncertainty analysis
of spherical data (Hornik and Griin, 2013). Sampling from
the vMF distribution is described in Appendix A. The gen-
eral probability density of the vMF distribution for S7~! is
expressed as follows

N (x]e,0) = ey

VYME (x]y. 1) = Cp () ¢ *, & > O and ||y || = 1, (©))

where y T is the transposed mean direction vector and « is the
concentration. || || denotes the Euclidean norm. « is analo-
gous to the inverse of o for the normal distribution. High
k values denote distributions with low variance (Fig. 2), ul-
timately leading to a p-dimensional hyperspherical Dirac
distribution and k = 0 means complete randomness (equiva-
lent to a p-dimensional hyperspherical uniform distribution).
Bear in mind that x impacts the shape of the vMF distribu-
tion exponentially (Fig. 2). Therefore, confidence intervals

"Here §P~! denotes the surface of the p-dimensional hyper-
sphere.
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Figure 2. Von Mises—Fisher probability distribution function on S1
(p =2) for various concentrations .

are not linearly correlated to «. For example, the 95% half
aperture confidence interval for k = 1 is 150°, x = 10 is 37°
and k = 100is 11°. Cp, («) is a normalization constant given
by

kP21

C = ,
P Q)P Iy pja—1 (1)

3)

where I, (k) is the modified Bessel function of the first kind
at order v, and p the dimensionality of S (p = 3for §).

3.2 Disturbance distribution parameterization

Regardless of which type of disturbance distribution is cho-
sen, it is inappropriate to use the same distribution with the
exact same parameters for each measurement in many cases,
including but not restricted to cases in which some data in-
puts are actually a statistic — such as the mean — that is de-
rived from a sample instead of an actual individual occur-
rence (Moffat, 1988); cases in which inputs (at the same
location) are samples themselves (Kolmogorov, 1950); and
cases in which the magnitude of the uncertainty of measure-
ments may be impacted by the value of the measurement
itself (Moffat, 1982). Statistics derived from samples (e.g.,
mean, median) or the actual sample are expected to lead to
less dispersed disturbance distributions compared to single
observations (Patel and Read, 1996; Bewoor and Kulkarni,
2009; Bucher, 2012; Sivia and Skilling, 2006; Davis, 2003).
Therefore, making multiple measurements at each location
of interest is recommended and field operators should not
group, dismiss or otherwise alter these kinds of data. For ex-
ample, a 15 m long limestone outcrop is expected to yield nu-
merous structural measurements that should be fed to MCUE
so that disturbance distributions are parameterized more pre-
cisely. However, because structural data inputs are sparse and
often scarce, a Bayesian approach to disturbance distribution
parameterization is proposed. More specifically, a prior dis-
turbance distribution is updated by measurements over a CLT
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compatible likelihood function to generate a predictive pos-
terior disturbance distribution. The following demonstration
applies to both the normal and the vMF distributions.

The uncertainty about an input structural datum (location
or orientation) can be described by a distribution G

G = p (x|lhtrue, Pirue) 5 4

where (e and Yyye are the true mean and dispersion of the
population, respectively. Measured data at a single location
are a n-sized sample X = {x1, ..., x,} of G. The disturbance
distribution that should be used for MCUE must take into
account prior knowledge about ¥, and the observed data
X. This is achieved through a simple application of Bayes’
theorem:

p(r|X, %) = p(X|u,?) p(u,?), (5

where w1 and ¥ are the expression of prior knowledge about
Uirue and Dyye, respectively. The dispersion Py is expected
to be a deterministic function estimated via rigorous metro-
logical studies, the methodology of which is beyond the
scope of this paper. Thus, Eq. (5) simplifies to

p(r|X) = p(Xin)pu). (6)

The prior distribution function p () expresses prior belief
about . In this case, p (u) is defined as Jeffreys improper
prior (Sivia and Skilling, 2006) for locations to express a
complete lack of knowledge about p (w):

Ploc (1) = const, @)

and, for the same reason, as a uniform spherical distribution
for orientations:

1
Pori (1) = 71— ®)

The likelihood distribution p(X|u®) expresses the probability
of observing X given p and is obtained under the assumption
of independence by computing the joint density function for
X:

p(Xlwy =]]p il )

i=1

The posterior predictive distribution p ()2|X ) expresses the
theoretical distribution of a new observation given X regard-
less of w; it is the target disturbance distribution to be sam-
pled for MCUE and is given by

p (%1X) =/p(M|X)p()?|X,M) du, (10)
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where X is the element to be sampled. To illustrate the ratio-
nale for the usage of Eq. (10), one may consider the following
example.

When a single measurement is made at a specific loca-
tion, the sample size is 1 (X = {x1}) and the observed av-
erage is equivalent to the measurement itself (1 = x1). As-
suming that the dispersion function is deterministic then
Urue 18 known. Obviously, the posterior distribution will be
p(nw=x1|X =x1) = p(x|x1, Pyye). One might think that
p(u=x1|X = x1) is the target disturbance distribution that
should be used for the perturbation step. However, doing
so would lead to systematic underestimation of the effect
of ¥yue because p (u|X) only quantifies the knowledge of
w in regard to x1. Indeed p (r]|X) tells about all the pos-
sible G values that x; might be sampled from; it is a dis-
tribution of the average and, ultimately, how far u is from
Uirue 18 (and will remain) unknown (Fig. 3). That is, sam-
pling directly from p (u|X) ignores the fact that Au =

(n— ,um,e)2 is unknown. Such a procedure would intro-
duce an undesired unknown bias to the perturbation step.
To account for this, p (u|X) is compounded to itself to ob-
tain p (x|p (u|X), Vque), Which is equivalent to (10) and
practically amounts to a double sampling of p (1| X). Con-
sequently, regardless of the quality of the prior knowledge
about Yy, sampling from the posterior predictive distribu-
tion is better than sampling from the posterior distribution.

For a normal distribution, the posterior predictive distribu-
tion pn is

2, o
po.o"+ ), (1)

px (31%) ~N(x

where (1o and o are the sample mean and prior standard de-
viation, respectively. Note that w¢ is data contribution only
while o is prior reliable knowledge obtained via metrologi-
cal analysis. For the vMF distribution the posterior predictive
distribution is given by

Solid Earth, 9, 385-402, 2018
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PwiE (1X) ~ YMF (x[vMF (129, 6 R) , )

KR (12)
Mo, A

where 119 and k and are the mean direction vector of the sam-
ple and prior concentration (Appendix B) of the observed
sample. Note that Eqgs. 11 and 12 can be applied to data
recorded as a mean value provided that the size of the sample
is known.

In Eq. (12) po is given by

~ vMF (x

o = (sing cosé, sing sinf, cos¢) , (13)
where
sing = Z?:] sing;; sinf = er_l:l sin6;;

cosf = Z?:l cosb;, (14)

where ¢ is the colatitude, 6 is the longitude and R is the
resultant length of the observed sample.
In Eq. (12) R is given by

1

R= [(sin¢cos9)2 + (singsind)? + (cos¢)2]7 . (15)

From Egs. (11) and (12) it appears that sampling from prior
distributions directly will lead to systematic underestimation
of dispersion because o?> “72 and « < 1’:_—'3?. In turn, this
bias will narrow the range of models explored by MCUE
and will make the final results look less uncertain than they
should be. This is highly important because disturbance dis-
tribution sampling in MCUE is a one-step process and incor-
rect disturbance distributions are not to be updated or refined
at any point. Therefore, accurate parameterization of a dis-
turbance distribution at the beginning of the process is cru-
cial to ensure accurate sampling. Bayesian schemes exist to
validate models based on some external observations or as-
sumptions (Fig. 1) that are used to build likelihood functions
(de la Varga and Wellmann, 2016). However, these schemes
are known to not yield good results when incorrect informa-
tive priors are used (Freni and Mannina, 2010; Morita et al.,
2010). Incorrect informative priors have low dispersion (high
precision, “self-confident”) and high bias (low accuracy, “off
target”). This results in an inability of standard Bayesian
schemes to update these priors regardless of the strength of
the evidence. For example, a posterior distribution extracted
from a single foliation measured on an outcrop cannot be
used as a disturbance distribution. Indeed, it is too narrow
and may be heavily biased (Fig. 3). To avoid this detrimen-
tal effect, one should instead sample from the posterior pre-
dictive distributions (Eqs. 11, 12) for more accurate results
about uncertainty.
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3.3 Measurement scedasticity

Scedasticity is defined as the distribution of the error about
measured or estimated elements of a random variable of in-
terest (Levenbach, 1973). It expresses the relationship be-
tween the measured values and their uncertainty. In the case
in which uncertainty is constant across the variable space
the variable is homoscedastic (Fig. 4a); such behavior is
commonly assumed in gravity surveys (Middlemiss et al.,
2016). When uncertainty is not constant throughout the vari-
able space, the variable is called heteroscedastic (Fig. 4b,
¢). Note that heteroscedastic cases include both structured
(Fig. 4b) and unstructured (Fig. 4c) relationships between
the measured values and their respective errors. Structured
heteroscedastic variables show a clear relationship (e.g., cor-
relation, cyclicality) between the variable and its uncertainty
while unstructured ones do not. Structured heteroscedastic
behavior is observed electrical resistivity tomography (Per-
rone et al., 2014), magnetotellurics (Thiel et al., 2016; Rawat
et al., 2014), airborne gravity and magnetics (Kamm et al.,
2015), and controlled-source electromagnetic (Myer et al.,
2011) surveys. It is usually possible to transform a struc-
tured heteroscedastic variable to a space where it becomes
homoscedastic (commonly the log space), perform analysis
and transform back to the original space. Unstructured het-
eroscedastic behavior is common in seismic surveys and im-
pacts inversions (Kragh and Christie, 2002; Quirein et al.,
2000; Eiken et al., 2005). The heteroscedastic case essen-
tially allows for any level of correlation between the mea-
sured values and their uncertainty or error to be possible
(Fig. 5).

The failure to account for scedasticity often implies the as-
sumption of homoscedasticity as this assumption allows for
a wider range of statistical methods to be applied. With het-
eroscedastic data, the results of methods that depend on the
assumption of homoscedasticity, such as least-squares meth-
ods (Fig. 4), give results of much decreased quality (Eubank
and Thomas, 1993) and this may lead to the validation of in-
correct hypotheses. Scedasticity analysis from raw data with-
out prior knowledge is challenging (Zheng et al., 2012) and
this topic of research is still being investigated (Dosne et al.,
2016). If there is no option for an appropriate transform, it
is advisable to perform an empirical analysis of scedasticity
beforehand. This is usually achieved through experimental
assessment of uncertainty under various conditions (metro-
logical study) of measurement and over the entire range of
measured values (Allmendinger et al., 2017; Cawood et al.,
2017; Novakova and Pavlis, 2017). The results of such anal-
ysis can then be used to define the prior dispersion (¥ in 5)
more accurately as a function of the measurement instead of
a constant.

Each data input is expected to carry its own parameteriza-
tion for disturbance distribution depending on the nature of
the input (single measurement, sample, central statistic). Ad-
ditionally, the parameters of the disturbance distributions are
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Figure 4. Synthetic examples of different levels of scedastic-
ity of measurements of the same variable. (a) Homoscedastic
case, (b) structured heteroscedastic case and (c) unstructured het-
eroscedastic case. Note how the least-square polynomial residual
score (RZ) is heavily impacted by scedasticity.

better defined when scedasticity is accounted for. It is worth
mentioning that both the normal distribution and the von
Mises—Fisher distribution have a complete range of analyti-
cal or approximated solutions for both posterior and posterior
predictive distributions (Rodrigues et al., 2000; Bagchi and
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Figure 5. Distribution of errors for the cases described in Fig. 3.
Homoscedastic case shows constant uncertainty and no relationship
of uncertainty to the data. The structured heteroscedastic case has a
linear relationship of uncertainty to the data. The unstructured het-
eroscedastic case demonstrates no obvious relationship of uncer-
tainty to the data and is not constant.

Guttman, 1988; Bagchi, 1987). In the next section, distur-
bance distribution sampling for spherical data (orientations)
is discussed.

4 Sampling of orientation data for planar features

In the geoscience, the orientation of planar features such as
faults and bedding is described by foliations. These folia-
tions can be recorded in the form of dip vectors using the
dip and dip-direction system. This system is equivalent to a
reversed right-hand rule spherical coordinates system. The
following covers sampling strategies for such spherical data
and demonstrates their impact on MCUE results.

4.1 Artificial heteroscedasticity

Recent research using MCUE (Lindsay et al., 2012, 2013;
Wellmann and Regenauer-Lieb, 2012; de la Varga and Well-
mann, 2016) uses dip and dip-direction values independently
(as two scalars) from one another. The dip and dip-direction
system is a practical standard for field operators to record and
make sense of orientation data. However, it is highly inap-
propriate for statistics. Geoscientists generally perform sta-
tistical analysis on stereographic projections of the dip vec-
tors to the planes. Because stereographic projection involves
the transform of dip vectors to pole vectors (normal vector
to the plane), it gives a sound representation of the under-
lying prior uncertainty distribution. The pole transform step
is essential to avoid variance distortion (Fisher et al., 1987)
as shown in Fig. 5. The distortion will increase as the dip
of the plane diverges from 7 and is maximal for degenerate
cases of the dip-direction system such as horizontal and ver-
tical planes (Fig. 6). In the case of an uncertain horizontal
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Figure 6. Distortion of the maximum likelihood estimation (MLE)
of concentration or spherical variance of 100 spherical unit vector
samples of a size of 1000 individuals drawn from a von Mises—
Fisher distribution with k =100. A pole-based estimate is always
consistent with the data while dip-based ones either over- or under-
estimate it.

plane, dip vectors distribute themselves directly below and
about the equator of $2, following a girdle-like distribution
(Fig. 7a, b). Consequently, the resultant length is null and the
spherical variance SS2 (Eq. 16) equals unity as the barycenter
of all dip vectors is located at the center of S2.

2=1- R (16)
n
Naive interpretation of SS2 may lead one to misinterpret un-
certainty to be infinite (S? = 1) and the plane’s orientation to
be uniformly random where it might be very well constrained
in reality. That is so because SS2 is a scalar quantity used
to represent dispersion for samples of spherical unit vectors.
Therefore, it is expected that SS2 is ambiguous in some cases.
The opposite effect occurs for (sub)vertical planes where SS2
will appear to be lower than expected. In Fig. 7, the effect
of dip vector sampling and pole vector sampling is demon-
strated for theoretical cases. Here, the blue clusters are the
direct result of pole vector sampling and always describe the
plane’s behavior accurately in terms of pole vectors. They
have constant point density and are isotropic; parameteriza-
tion is easy and reliable for distributions such as von Mises—
Fisher (Fig. 7b, d, f) or bounded uniform (Fig. 7a, c, e).
Green clusters are the result of pole vector sampling (blue)
converted back to dip vector and they describe the plane’s
behavior accurately in terms of dip vectors. These clusters
have varying shapes and may not be modeled satisfactorily
by any existing spherical distribution for all possible cases.
Red clusters are the direct result of dip vector sampling and
fail to describe the behavior of the plane accurately. There-
fore, accurate sampling based on dip vectors (green) is nearly
impossible to achieve without increasing the number of pa-
rameters of the distributions to take into account the afore-
mentioned effects (i.e., adding a set of functions to compen-
sate for scedasticity errors as well as boundary effects). For
example, in a scenario in which dip vectors are used directly
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to estimate a sample’s spherical variance or sample over a
disturbance distribution, one may attempt to define separate
values for dispersion of dip and dip direction (Lindsay et al.,
2012) in order to compensate for scedastic incoherence. A
horizontal plane’s uncertainty is then obtained by setting cir-
cular variance as null over the dip direction and as any real
positive value over the dip. In addition, some form of bound-
ary control or polarity correction of the dip is necessary to
remove incorrect occurrences. Conversely, poles to planes
carry information about polarity implicitly (e.g., the Carte-
sian pole of a horizontal plane is [0, 0, 1] while its reversed
counterpart is [0, O, —1]). Note that this method still does
not solve the scedasticity issue entirely, especially for high
uncertainty values about the dip and vertical dips. Similarly,
if dip vectors are used directly, near-vertical planes display
uniform random behavior of dip direction (Fig. 7e, f) instead
of the expected “bow tie” pattern. This pattern is impossible
to model accurately using CLT spherical distributions as they
are unimodal and symmetric.

The use of distributions in MCUE makes it very sensi-
tive to scedasticity over inputs. The uncertainty of a dip vec-
tor which is quantified by any dispersion parameter similar
to SS2 will show non-systematic heteroscedasticity because
of variance distortion. A plane dipping at any angle would
show increased heteroscedasticity of its uncertainty as the
dispersion parameter used to parameterize the underlying
distribution increases. Note that uncertain planes show in-
creased heteroscedasticity as their dip diverges from a 45°
dip (Fig. 7c, d). Boundary effects also play a role for hor-
izontal and vertical limit cases (Figs. 6, 7) as standard dip
angles are constrained to 0 — 7. That of course considerably
lowers the quality of any subsequent procedure that relies on
accurate propagation of uncertainty as these planes are ex-
pected to have the lowest uncertainty in terms of dip direc-
tion. These impracticalities make it generally better to work
on pole vectors rather than dip vectors. Pole vectors mostly
eliminate the need for variance correction and allow coher-
ent sampling over a plane’s orientation (Fisher et al., 1987).
The pole vector transform is widely used in structural geol-
ogy (Phillips, 1960; Wallace, 1951; Lisle and Leyshon, 2004)
through stereographic projection. Therefore, data collected
as dip vectors using the dip and dip-direction system (green
clusters, Fig. 7) must be transformed to poles (blue clusters,
Fig. 7) for accurate estimation of spherical variance. Distur-
bance distributions should then be defined and sampled based
on the pole vectors (mean of blue clusters, Fig. 7), as de-
scribed in Sect. 3.2, instead of the mean dip vector (mean
of green clusters, Fig. 7) to avoid distortion (red clusters,
Fig. 7). The sample can then be converted back to dip vectors
if required.
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Figure 7. Effect of sampling over dip vectors or pole vectors on
bounded uniform spherical distribution at a range = 10° (a, c, e) and
von Mises—Fisher distribution at x =100.0 (b, d, f) for uncertain
horizontal planes (a, b), 45° dip planes (c, d) and vertical planes (e,
f). Correct (pole perturbed) dip vectors are green, incorrect (dip
perturbed) dip vectors are red and blue vectors are the poles. See
Sect. 4.1 for details.

4.2 Impact of pole vector sampling versus dip vector
sampling

The impact of pole versus dip vector sampling on the results
of MCUE is evaluated on a simple synthetic model and on
a realistic synthetic model. The simple model is a standard
symmetric graben with four horizontal units; it has been cho-
sen for its simplicity and is commonly used as a test case
(Wellmann et al., 2014b; de la Varga and Wellmann, 2016;
Chiles et al., 2004) in MCUE for proof of concepts. The real-
istic model is a modification of a real demonstration case that
is part of the GeoModeller package based on a location near

www.solid-earth.net/9/385/2018/

Mansfield, Victoria, Australia. It features a Carboniferous
sedimentary basin oriented NW-SE that is in a faulted con-
tact (Mansfield Fault) on its SW edge to a Silurian—Devonian
set of older, folded basins. Outcropping units are almost all
of the siliceous detritic type ranging from mildly deformed
sandstones to siltstones and shales; the basement is made
of Ordovician—Cambrian serpentinized sandstone. The orig-
inal data for the Mansfield model were not altered in any
way, instead data based on the Mansfield geological map
(Cayley et al., 2006) geophysical map (Haydon et al., 2006)
and airborne geophysical survey (Wynne and Bacchin, 2009;
Richardson, 2003) were added to refine it.

The graben model is built using orientations and inter-
faces only, with three interfaces and three foliations per unit
and one interface and one foliation per fault (Figs. 8, 9c).
The Mansfield model is built with 281 interface points and
176 foliations over six units and three faults (Figs. 10, 11c).
For both models, perturbation is performed as described in
Sect. 3. For the graben model, units’ interfaces are isotrop-
ically perturbed over a normal distribution with the mean
centered on the original data point and a standard deviation
of 25 m. The orientations of the faults are perturbed over a
von Mises—Fisher distribution with the original data as the
mean vector and concentration of 100 (p95 ~ +10°) fol-
lowing the recommended pole vector procedure described in
Sect. 4.1 (Figs. 9a, 11a) or the dip vector one (Figs. 9b, 11b).
For the Mansfield model, all interfaces and orientations (both
for units and faults) are perturbed using the parameterization
given for the graben model. The perturbation parameters for
orientations were chosen to be compatible with metrological
data. That is, values for the dispersion of the spherical distur-
bance distributions used for the foliations were estimated on
the basis of the variability in plane measurements observed
by other authors (Nelson et al., 1987; Stigsson, 2016; All-
mendiger et al., 2017; Cawood et al., 2017; Novakova and
Pavlis, 2017) in a variety of settings and for different types
of devices. Perturbation parameters for interfaces were de-
signed to meet observed GPS uncertainty (Jennings et al.,
2010) and observed experimental interface variability in pre-
vious authors’ works (Courrioux et al., 2015; Lark et al.,
2014, 2013). More specifically it was assumed that the ob-
served end variability in the interfaces’ locations in their
models can be transposed to the presented cases. This is of
course an approximation in the absence of specific metrolog-
ical studies.

The influence of dip vector (Figs. 9b, 11b) versus pole vec-
tor (Figs. 9a, 11a) sampling of orientations is very notice-
able over the output information entropy uncertainty models.
Information entropy is a concept derived from Boltzmann
equations (Shannon, 1948) that is used to measure chaos in
categorical systems. Because of this, it is possible to use in-
formation entropy as an index of uncertainty in categorical
systems. Dip vector sampling appears to add a layer of ar-
tificial “noise” on top of the uncertainty models. The noise
prevents expected structures of the starting model (Figs. 9c,
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Figure 8. Structural data for the graben model and modeled surfaces
for units and faults. Spheres represent interfaces and cones represent
pole vectors.

11c) to be easily distinguishable. In cases in which the ori-
entation data are more vulnerable to improper sampling error
(away from 45° dips) important structures such as the near-
vertical faults in the graben model (Fig. 9) or the circled areas
in Fig. 11 may completely disappear. It also appears that ar-
eas where low uncertainty would be expected (orange unit
in Fig. 11) are the loci of excess uncertainty. These observa-
tions support the assertion that pole vector sampling should
be favored to improve uncertainty propagation in MCUE.

5 Discussion

Generally, CLT distributions are valid choices as prior uncer-
tainty distributions (and disturbance distributions) because
they describe the behavior of uncertainty well. However,
there may be scenarios in which alternatives can offer a bet-
ter solution. More specifically, the uniform or the Laplace
distribution may better describe location uncertainty than the
normal distribution. The uniform distribution indicates a lack
of constraints as to the prior uncertainty distribution; it is a
valid choice when there is little knowledge about data dis-
persion. The Laplace distribution is suitable if the measured
data abide by the first law of errors instead of the second
(Wilson, 1923). For example, to model the uncertainty on the
thickness of a geological unit along a drill core, one might
observe that the uncertainty of the location of the top and
bottom interfaces of the unit is best represented by an expo-
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nential distribution. In this instance, the Laplace distribution
would be a suitable option to model the thickness’ uncer-
tainty. Under similar circumstances, a spherical exponential
distribution could be swapped with the vMF distribution. The
Kent? distribution is also a good candidate to describe orien-
tation uncertainty when the pole vectors of measured orien-
tations appear to be anisotropically distributed on $? (Kent
and Hamelryck, 2005).

In this paper, it is explicitly assumed that the dispersion
of prior uncertainty distributions is a deterministic function.
Note that this does not necessarily make this function a con-
stant and it might depend on the observed data. The disper-
sion function of field measurements (using a compass) of
structural data would be expected to be nearly constant. Con-
versely, the dispersion function of interpreted measurements
(using geophysics) would be expected to be dependent on the
sensitivity of the intermediary method. Additionally, disper-
sion functions may be probabilistic as well as deterministic
(Bucher, 2012). Determinism is a strong assumption when
no metrological study was conducted beforehand to assess its
plausibility. Such metrological studies involve experimental
testing of devices and procedures in order to estimate pre-
cision, accuracy, bias, scedasticity or drift about measured
data. These estimates can then be compiled into a dispersion
function that can be used as an input parameter for other pur-
poses, including prior uncertainty distributions for MCUE.
Probabilistic dispersion functions apply non-negligible un-
certainty to the dispersion function for prior uncertainty dis-
tributions. Uncertainty about dispersion makes the proposed
workflow for disturbance distribution parameterization inad-
equate. Indeed, Eq. (5) may not be simplified into Eq. (6)
anymore and the following statements (Egs. 7 to 14) would
then ignore the probabilistic nature of the dispersion func-
tion. Both the normal and the vMF distributions have ana-
lytical solutions or good approximations for such cases; the
authors recommend the readers refer to relevant works (Gel-
man et al., 2014; Bagchi and Guttman, 1988) if required.
Note that there is significant metrological work about bore-
hole data (Nelson et al., 1987; Stigsson, 2016) as opposed to
usual structural data such as foliations, fold planes, fold axes
or interfaces.

Although the authors make the case for scedasticity anal-
ysis in MCUE, it is left open in this paper. Scedasticity is
essentially an untouched subject in geological 3-D modeling
and it was pointed out to make the geological 3-D modeling
community aware of this fact and its potentially nefarious in-
fluence on MCUE outputs. However, standard metrological
studies can determine scedasticity and include it in a disper-
sion function to be a parameter of the prior uncertainty dis-
tributions (Bewoor and Kulkarni, 2009; Bucher, 2012).

2The Kent distribution is the spherical analogue to a bivariate
normal distribution; it takes an additional concentration parameter
along with a covariance matrix. Together, these two parameters al-
low for any level of elliptic anisotropy on s2.
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Figure 10. Structural data for the Mansfield model and modeled surfaces for units and faults. Spheres are interfaces and cones are orientations.

The evidence brought at the theoretical and practical lev-
els allows us to strongly advocate for the use of pole vec-
tors over dip vectors. In fact, dip vector sampling shows poor
performance away from 45° dip planes, induces artificial
heteroscedasticity and requires specific polarity indicators.
This especially applies to MCUE methods in which Bayesian
post-analysis is performed for the probabilistic model that re-
sults from basic propagation of uncertainty (de la Varga and

www.solid-earth.net/9/385/2018/

Wellmann, 2016). In this respect, dip vector sampling leads
to incorrect highly informative prior distributions, which is
catastrophic for any Bayesian methods (Morita et al., 2010).
Nonetheless, it is worth mentioning that the arguments in
Sect. 4.1 only apply to dip vectors of a plane and should
not be extended to actual vector structural data such as fold
axes or lineations. This is because these data represent linear
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features (lineations, fold axes, other planar features intersec-
tions) for which the concept of a pole does not apply.

Good prior knowledge about input uncertainty is critical
to the propagation of uncertainty in general. This, in turn,
makes metrological work mandatory to any form of model-
ing that relies on actual measured data. Note that it is ac-
ceptable to use preexisting metrological studies to define the
priors (Allmendinger et al., 2017; Cawood et al., 2017; No-
vakova and Pavlis, 2017) provided that the measurement de-
vice and procedure used are similar to those of the studies.
To gather multiple observations per site is strongly recom-
mended as this practice sharply increases the quality of the
disturbance distributions. From a practical point of view this
would require field operators to perform several measure-
ments on the same outcrop. If that is not possible one may
group measurements of clustered outcrops together provided
that the scale of the modeled area compared to that of the
cluster allows it. The authors recommend not grouping clus-
ters that are spread out more than 3 orders of magnitude be-
low the model size (e.g., for a 10 kmx 10 km model, clusters
of radius higher than 5m shall not be grouped). Note that
more refined structural data upscaling methods have been
recently proposed to address this specific issue (Carmichael
and Ailleres, 2016). However, there is another major source
of uncertainty that stems from the necessarily imperfect mod-
eling engine itself. Implicit geometric modeling engines (in
this case, GeoModeller) use interpolation to draw the contact
surfaces of geological units. Therefore, the parameterization
of the interpolator may impact results. The co-kriging inter-
polator (Appendix C) used in this paper relies on (uncertain)
variographic analysis (Appendix C, Eq. C2) and is natively
able to express its own uncertainty (Appendix C, Eq. 29).
Therefore, these sources of uncertainty are expected to be
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propagated along the input uncertainty as a hyperparameter
in Eq. (5).

6 Conclusions

Propagation of uncertainty is the process through which dif-
ferent kinds and sources of uncertainties about the same phe-
nomenon are combined into a single final estimate. MCUE
methods seek to achieve propagation of uncertainty using
Monte Carlo-based systems in which input uncertainty is
simulated through the sampling of probability distributions
called a disturbance distribution. Disturbance distributions
are the distributions that normally best represent the uncer-
tainty about the input data in the context of uncertainty prop-
agation in geological 3-D modeling.

This paper discusses the importance of disturbance distri-
bution selection and proposes a simple procedure for better
disturbance distribution parameterization and a pole-vector-
based sampling routine for spherical data (orientations) used
to represent the geometry of planar features. Pole-vector-
based sampling for spherical data and Bayesian disturbance
distribution parameterization are proved — either through
demonstration or through experiment — to be valid and prac-
tical choices for MCUE applied to implicit 3-D geological
modeling. Namely, the normal and the vMF distributions are
shown to be the best candidates for disturbance distributions
for location and orientation, respectively. A Bayesian ap-
proach to disturbance distribution parameterization is shown
to avoid underestimation of input data dispersion, which is
important as such underestimation artificially decreases the
output uncertainty of the 3-D geological models. Such un-
derestimation may give a false sense of confidence and lead
to poor decision-making. Pole vector sampling is evidenced
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to be the best alternative because it is guaranteed not to dis-
tort the disturbance distribution shape or generate artifacts in
the output uncertainty models the way dip vector sampling
does.

The proposed framework and methods are compatible with
previous MCUE work on 3-D geological modeling and can
be easily added to existing implementations to improve their
accuracy. As MCUE is applicable to all fields in which 3-D
geological models are needed, so is the proposed framework.
The primary domains of application are the mining and oil
and gas industries at the exploration, development and pro-
duction steps. In addition, numerous secondary domains of
potential application are available to this work, such as civil
engineering and fundamental research.

Code and data availability. Both the Mansfield and graben Ge-
oModeller models (including the perturbed data sets and series
of plausible models) showcased in the present study are avail-
able online openly at https://doi.org/10.5281/zenodo.848225
(Pakyuz-Charrier and Intrepid Geophysics, 2017) and
https://doi.org/10.5281/zenodo.854730 (Pakyuz-Charrier, 2017),
respectively. Instructions on how to use the GeoModeller API can
be found at http://www.intrepid-geophysics.com/ig/index.php?
page=geomodeller-api (Intrepid Geophysics, 2018).
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Appendix A: Von Mises—Fisher pseudo-random number
generation

Von Mises—Fisher sampling on the usual sphere is not new
(Wood, 1994) and this appendix serves as a reminder for the
reader. To generate a von Mises—Fisher distributed pseudo-
random spherical 3-D unit vector Xsphe on S? for a given
mean direction u and concentration k, define

Xsphez[(z’s@» r]. (A1)

For u =[O0, (.), 1] the pseudo-random vector is given by

Xsphe = [arcosW, V, 1]. (A2)
V is given by

V ~ U0, 27). (A3)

U (a, b) is the usual continuous uniform distribution. W is
given by

(e (1-570)
W=14+—{Iné+In{1——-¢ , (A4)
K §

where

§~UO,1). (AS)

Note that in Eq. A4, W is undefined for £ = 0 and it should
be set to W = —1 in this case. Xgphe should then be rotated
to be consistent with the chosen .

Appendix B: Parameter estimates for von Mises—Fisher

The maximum likelihood estimation /i of u for a given sam-
ple of n unit vectors on S is the mean direction vector

R

l=—-: Bl
=R @

A simple approximation of the concentration parameter « is
estimated by (Banerjee et al., 2005)

E(p_ﬁz)
p= (B2)
1—R
where
— R
R=—. (B3)
n

More refined techniques are available to compute this last es-
timation (Sra, 2011) though they do not produce significantly
better results for low-dimensionality cases (p < 5) with high
values of k. Thus, it is recommended to use the above.
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Appendix C: Co-kriging algorithm in GeoModeller

The co-kriging algorithm used in GeoModeller interpolates
a 3-D vector field and converts it into a potential (scalar)
field (Calcagno et al., 2008; Guillen et al., 2008) that is then
contoured to draw interface surfaces. The space between sur-
faces is defined as belonging to a specific unit based on topo-
logical rules. The topological rules are set by (i) the strati-
graphic column for units versus unit topological rules, (ii) the
fault network matrix for faults versus fault topological rules
and (iii) the fault affectation matrix for faults versus unit
topological rules.
The potential field co-kriging interpolator is

M
T*(p) = T* (po) = D _ ttee (T (pa) = T (pa))
a=1

=Sl () @
ﬁ:1Vﬂa”ﬂ rel

where T* (p) —T™* (po) is the potential difference at the point
p given an arbitrary constant origin point pg. The weights
Mo and vg are the unknowns. M is the number of interfaces
and N is 3x the number of foliations. For practical purposes,
the modeled random function 7 is considered to be affected
by a polynomial drift that is deduced from the foliation data
(Chiles and Delfiner, 2009). The theoretical semi-variogram
is obtained through variographic analysis; it is then used to
solve Eq. (C1) and is usually of the cubic (Eq. C2) type
(Calcagno et al., 2008).

d\* 35(d\° 7(d\° 3(d\’
)= C(7(a) -5(0) +3() 30 ) 2
where d and a are the lag distance and the range, respec-
tively. The theoretical semi-variogram is fit to an empirical
semi-variogram (Matheron, 1970). In practical cases, the em-
pirical to theoretical semi-variogram fit is never perfect and
is mostly parametric. The probability that the potential value

estimated at a point x is comprised between ¢ and ¢’ (Aug,
2004; Chiles et al., 2004) is given by

/
P(rsT*(p)—T*(po)d):N(t t), (€3)
ock (X)
where ock (x) is the co-kriging standard deviation and N is
the normal cumulative distribution function. Equation (C3)
can be used as an uncertainty estimator for the interpolator
(Eq. C1) if and only if both ¢ and ¢’ can be defined ade-
quately as equivalent to the top and bottom of a formation. If
it happens to be the case these probabilities can be combined
to the final uncertainty model at the merging step (Fig. 1).
However, such definition is not always possible. Note that
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kriging can be redefined in the Bayesian framework (Aug,
2004; Omre, 1987) where its assumptions of normality are
considered prior knowledge and therefore may be challenged
or modified (Pilz and Spock, 2008).
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