

Supplement of

Controls on fault zone structure and brittle fracturing in the foliated hanging wall of the Alpine Fault

Jack N. Williams et al.

Correspondence to: Jack Williams (williamsj132@cardiff.ac.uk)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.

Supplementary Material

2 Figure S1

Figure S1: Cross sections showing varying intensity and style of damage with distance from the Alpine Fault principal slip zones (PSZ) for: (a)
Gaunt Creek, (b) Stony Creek, (c) Hare Mare Creek and (d) Havelock Creek. Alpine Fault location as mapped during the University of Otago's
Department of Geology fault zone mapping program (http://www.otago.ac.nz/geology/research/structural-geology/alpine-fault/af-maps.html).
Each cross section also presents: (1) the corrected density of fractures at all stations as a function of the orthogonal distance from the fault, (2)

- 11 fracture orientations at each station, and (3) a map of the stations with respect to the fault and cross section. Location of these sites shown in
- 12 Figure 1b and Table S2. Fault rock lithologies previously described by Toy, (2008). SH-6 in (c), State Highway 6. *Density of fractures
- 13 calculated from two perpendicular transects at Gaunt Creek stations 1 and 2.

Figure S2

- Figure S2: Exposure used for (a) Stony Creek 2 and (b) Havelock Creek 1 transects (Figure S1). This illustrates the sub-vertical nature of the
 outcrops used in this study, with the highest quality exposure at its base. Hence a linear transect provides the best method for quantitatively
 assessing fracture density. Field of view: (a) 10 m, (b) 6 m.

22 Figure S3

24 Figure S3: Cross section through the Amethyst Tunnel and its four exploratory boreholes (B1-4), Hari Hari, Westland, New Zealand. See Figure

25 1b for location. Modified from Geotech Consulting Limited (2006), to show where intervals of drill-core that were CT scanned are located.

26 Figure S4

28 Figure S4: Fracture density variations measured within CT scans of AHP drill-core from 29 BH2, depth interval 146.8-157.9 m. (a) Fracture density calculated using a moving average 30 (uncorrected for orientation bias) and weighted moving average (corrected), for intervals of 2 31 cm with 1 m moving window. Full description and justification of this technique for 32 measuring fracture density is presented in Williams et al., (2016). Since it is not possible to 33 reliably differentiate between natural and induced fractures in this core, the fracture densities 34 should be regarded as a maximum estimate. Core-axial parallel CT scans of representative 35 core sections with (b) low, and (c) high fracture density that surrounds a minor fault are also 36 given. (b) Core section (borehole-core run-core section-depth interval) BH2-74-3-153.5-37 154,1 (c) BH2-75-2-155.8-156.2.

Core Section	Depth of	Counterclockwise	Rotation	Quality of
	matched	rotation to match	applied (°)	match
	structure (m)	BHTV (°)		
29-1	94.75	313	310	Good
	94.90	307		
31-1	96.70	319	319	Poor
31-2	97.35	16	20	Good
	97.45	24		
32-1	98.51	124	124	Poor
33-2	99.45	164	170	Good
	99.50	186		
	100.00	158		
34-1	100.90	349	330	Good
	101.30	333		
	101.35	326		
34-2	101.65	199	199	Poor
35-1	102.15	294	287	Moderate
	102.20	281		
35-2	102.85	307	307	Good
	103.15	306		
36-1	103.65	93	85	Good
	103.75	77		
	104.30	94		
36-2	104.40	204	211	Moderate
	104.85	217		

38 Table S1

Core Section	Depth of	Counterclockwise	Rotation	Quality of	
	matched	rotation to match	applied (°)	match	
	structure (m)	BHTV (°)			
37-1	105.6	246	245	Good	
	105.95	244			
37-2	106.16	198	202	Moderate	
	106.30	219			
	106.55	189			
38-1	107.25	3	11	Moderate	
	107.30	27			
	107.34	5			
39-1	107.65	114	110	Good	
	107.70	111			
	108.15	106			
39-3/40-1	108.70	116	109	Moderate	
	108.80	102			
41-1	110.05	155	148	Good	
	110.10	144			
	110.25	145			
41-2	110.60	101	106	Moderate	
	110.70	111			
43-1	111.65	229	223	Moderate	
	111.85	235			
	112.15	205			
45-1	113.00	112	96	Moderate	
	113.20	89			
	113.65	87			

Core Section	Depth of	Counterclockwise	Rotation	Quality of	
	matched	rotation to match	applied (°)	match	
	structure (m)	BHTV (°)			
46-1	114.00	17	21	Good	
	114.10	25			
48-1	114.70	10	8	Good	
	114.95	5			
	115.00	8			
49-1	115.70	108	110	Good	
	116.25	112			
52-1	118.65	132	135	Good	
	118.95	134			
	119.05	140			
53-1	120.70	338	338	Poor	
53-2	121.40	267	267	Poor	
54-1	122.15	47	40	Moderate	
	122.30	45			
	122.40	28			
54-2	122.85	279	280	Good	
	122.90	281			
55-1	123.40	325	317	Moderate	
	123.75	309			
56-1	124.95	340	333	Moderate	
	125.35	327			
56-2	126.00	313	328	Good	
	126.10	325			
	126.20	331			

- 39 Table S1: Summary of rotations applied to DFDP-1B core sections to rotate drill-core back
- 40 into a geographic reference frame. Numbers in **bold** indicate matching between prominent
- 41 structures in the drill-core and so the rotation applied is weighted towards them. Quality of
- 42 matching refers to classification scheme outlined Appendix A.
- 43

Transect	Latitude	Longitude	Orthogonal distance	Lithology	Length of	Orientation of scanline	Total fracture	Corrected total	Gouge filled	Corrected gouge filled
			from		Scanline		density	fracture	fracture	fracture
			Alpine		(m)		(#/m)	density	density	density
			Fault (m)					(weighted	(#/m)	(weighted
								#/m)		#/m)
Gaunt Creek-1	43° 18' 59.49" S	170° 19' 20.54" E	27	Protocataclasite- ultramylonite transition	2.4	*	7.1		7.1	
Gaunt	43° 18'	170° 19'	90	Q-Fs	1.7	*	6.5		6.5	
Creek 2	59.56" S	19.20" E		ultramylonites						
				with <50%						
				metabasics						

Gaunt	43° 19'	170° 19'	118	Q-Fs	1	00/034	5.0	16.0	2.0	7.3
Creek 3	01.11" S	21.71" E		ultramylonites						
				with <50%						
				metabasics						
Gaunt	43° 19'	170° 19'	147	Q-Fs mylonites	2.2	22/023	2.3	4.6	0	0
Creek 4	02.46" S	21.56" E		with <50%						
				metabasics						
Stony	43° 22'	170° 12'	7	Q-Fs	2	Vertical	5.2	11	4.0	9.1
Creek 1	12.77" S	42.99" E		ultramylonite						
Stony	43° 22'	170° 12'	73	Q-Fs mylonite	9.4	00/301	4.4	5.6	1.5	2.1
Creek 2	17.68" S	43.83" E								
Stony	43° 22'	170° 12'	103	Q-Fs mylonite	2.4	Vertical	4.6	5.6	0	0
Creek 3	18.49" S	45.12" E								

Stony	43° 22'	170° 12'	251	Micaceous	1.6	Vertical	22	28.4	0	0
Creek 4	22.62" S	52.09" E		mylonite						
			101	. <i></i>		00/14/	2.6		0.0	5.0
Hare	43° 26'	170° 04'	101	Micaceous	6.4	00/146,	3.6	6.6	0.8	5.3
Mare	35.24" S	38.72" E		ultramylonite		00/52				
Creek 1										
Hare	43° 26'	170° 04'	151	Micaceous	7.7	20/339	2.5	5.0	1.4	2.6
Mare	35.67" S	43.91" E		mylonite						
Creek 2										
Hare	43° 26'	170° 04'	250	Q-Fs mylonite	2	Vertical	10.7	11.1	0.5	0.8
Mare	38.02" S	44.64" E								
Creek 3										
Havelock	43° 32'	169° 49	24	Q-Fs	5.8	00/020	2.8	4.5	1.7	3.0
Creek 1	17.63" S	15.98" E		ultramylonites						

				with <50% metabasics						
Havelock	43° 32'	169° 52'	48	Q-Fs and	2.1	Vertical	14.2	19.3	3.8	8.9
Creek 2	18.84" S	16.42" E		micaceous						
				ultramylonites						
				with <50%						
				metabasics						
Havelock	43° 32'	169° 52'	154	Q-Fs mylonite	3.7	00/005	2.7	6.1	0.3	1.6
Creek 3	24.89" S	20.82" E		with <50%						
				metabasics						
Havelock	43° 32'	169° 52'	160	Q-Fs mylonite	1.95	Vertical	4.6	5	0.5	0.5
Creek 4	24.74" S	21.41" E		with <50%						
				metabasics						

 Bullock
 43° 30'
 169° 56'
 517
 Q-Fs mylonite
 17
 00/008
 1.65
 3.7
 0.3
 0.9

 Creek
 42.33" S
 41.85" E
 41.85" E
 517
 517
 517
 517
 517
 517
 517
 517
 517
 517
 517
 517
 517
 517
 517
 517
 517
 517
 517
 517
 517
 517
 517
 517
 517
 517
 517
 517
 517
 517
 517
 517
 517
 517
 517
 517
 517
 517
 517
 517
 517
 517
 517
 517
 517
 517
 517
 517
 517
 517
 517
 517
 517
 517
 517
 517
 517
 517
 517
 517
 517
 517
 517
 517
 517
 517
 517
 517
 517
 517
 517
 517
 517
 517
 517
 517
 517
 517
 517

45 Table S2: Compilation of results from scanline fracture analysis around the Alpine Fault. Fracture densities are given to 1 decimal place. Q-Fs,

- 46 quartzofeldspathic. *At Gaunt Creek stations 1 and 2, a horizontal and vertical scanline was used to collect fracture information at each station.
- 47 Orientation were not collected so no 'corrected' fracture density was calculated. Orthogonal distance from the fault calculated assuming a fault
- 48 dip of 30° (Norris and Cooper 1995). See Table S3 for comparison to estimates made assuming a fault dip of 45°.

49 Table S3	
-------------	--

Station	Distance from Alpine Fault	Distance from Alpine Fault
	dipping at 30° (m)	dipping at 45° (m)
Gaunt Creek 1	27	33
Gaunt Creek 2	92	99
Gaunt Creek 3	118	126
Gaunt Creek 4	147	161
Stony Creek 1	7	7
Stony Creek 2	73	95
Stony Creek 3	103	131
Stony Creek 4	251	311
Hare Mare Creek 1	101	106
Hare Mare Creek 2	151	170
Hare Mare Creek 3	250	269
Havelock Creek 1	24	34
Havelock Creek 2	48	62
Havelock Creek 3	154	205
Havelock Creek 4	160	213
Bullock Creek	517	721

50 Table S3: Range of estimates of orthogonal distances between field stations and the Alpine

51 Fault, assuming it dips either 30 to 45°. Based on the observations of Norris and Cooper,

52 (1995), our preferred estimates are for the Alpine Fault dipping at 30°. Those stations

53 considered to be part of the inner damage zone (i.e. >1 gouge-filled fractures per metre, as

- 54 defined section 5.2) are in bold.
- 55