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Supplementary	material	

Figure S1 – Microphotographs and orientation histograms of (a) alignments of tiny fluid inclusions and (b) kinks 
(white line) in biotites in the NOJ220 sample. The yellow continuous line represents the trace of shortened (001) 
cleavage and the dashed line the final length of this cleavage allowing the strain measurement.  



 

 

Figure S2 – Plane polarized microphotograph (a) and SEM-cathodoluminescence image (b) of the quartz studied by 
EBSD (Figure 4). The SEM-cathodoluminescence image was acquired on the Electron Probe X-ray Microanalyzer 
(EMPA) JEOL JX-8230 equiped with panchromatic cathodoluminescence system (ISTerre, Grenoble), with 15 kV 
acceleration voltage, 10 nA probe current, 1 µm step size and 50 ms dwell time. Whereas the plane polarized 
micrograph integrates several tens µm in depth, cathodoluminescence image provides informations on the very near 
surface of the polished thin section. Therefore, microsructures visible on a may be not visible in b. The alignments of 
tiny fluid inclusions (black arrows) have a dark blue signature similar to quartz located near laumontite-filled 
microfractures suggesting both microstructures were healed by the same fluid. Note that some straight and thin 
microfractures (roughly E-W on the SEM cathodoluminescence image) have also the same dark blue signature but 
are not visible on the microphotograph in a) probably because they did not trapped fluid inclusions.   

  



 
Figure S3 - Plane polarized microphotograph (a) and SEM-cathodoluminescence image (b) of the quartz studied by 
EBSD (Figure 7 and 8). The SEM-cathodoluminescence image was acquired on the Electron Probe X-ray 
Microanalyzer (EMPA) JEOL JX-8230 equiped with panchromatic cathodoluminescence system (ISTerre, Grenoble), 
with 15 kV acceleration voltage, 20 nA probe current, 1 µm step size and 50 ms dwell time. Whereas the plane 
polarized micrograph integrates several tens µm in depth, cathodoluminescence image provides informations on the 
very near surface of the polished thin section. Therefore, microsructures visible on a may be not visible in b.  The 
alignments of tiny fluid inclusions (yellow arrows on a, black arrows in b) have a dark blue signature similar to 
quartz located near laumontite-filled microfractures suggesting both microstructures were healed by the same fluid. 

  



 
Figure S4 – Misorientation domains in the area studied in detail (Figure 10). The vertical or horizontal limits between 
pixels showing a misorientation greater than 0.15° (a), 0.3° (b), 0.5° (c) and 1° (d) are coloured in red.  



 
Figure S5 – X-ray Laue microdiffraction : maps of the six components of the deviatoric strain tensor, in the sample 
reference frame. Black points were filtered out based on the criteria described in Figure A2d. 

 

  



Section S1: Mathematical transformations applied to the EBSD data in order to pass the orientation 
matrices and map points positions into the LaueTools sample reference frame 

These transformations were used to generate figures 9 and 11b. 

The x,y map positions in the LT "map" sample reference frame (given in figure 2a) were calculated using : 

x_map_LT = x_map_EBSD  

ymap_LT = -ymap_EBSD 

A first orientation matrix t_g_matrix was calculated from the Bunge Euler angles (e.g. Bunge, 1982) of the 

Oxford Instruments *.ctf file (components: 0 = Euler1, 1 = Euler2, 2 = Euler3),  using the formula given by R. 

Quey at page 10 in the Orilib Manual 

https://sourceforge.net/projects/orilib/files/orilib/manual%201.1.1%20%28for%20orilib%201.1%29/orilib-man-

1.1.1.pdf/download 

phi1 = Euler3_rad[0] 

PHI = Euler3_rad[1] 

phi2 = Euler3_rad[2] 

g11 = cos(phi1)*cos(phi2) - sin(phi1)*sin(phi2)*cos(PHI) 

g12 = sin(phi1)*cos(phi2) + cos(phi1)*sin(phi2)*cos(PHI) 

g13 = sin(phi2)*sin(PHI) 

g21 = -cos(phi1)*sin(phi2) - sin(phi1)*cos(phi2)*cos(PHI) 

g22 = -sin(phi1)*sin(phi2) + cos(phi1)*cos(phi2)*cos(PHI) 

g23 = cos(phi2)*sin(PHI) 

g31 = sin(phi1)*sin(PHI) 

g32 = -cos(phi1)*sin(PHI) 

g33 = cos(PHI) 

g_matrix = array([[g11,g12,g13],[g21,g22,g23],[g31,g32,g33]]) 

t_g_matrix = g_matrix.transpose() 

Transformations were then applied to t_g_matrix using the criterion that for site 2, the final EBSD matrix should 

approximately match the microLaue matrix, following the three steps described below. 

A first cartesian reciprocal unit cell (vectors a0*, b0*, c0*) was created assuming that t_g_matrix gives the 

coordinates of -a0*, -b0*, c0*  as columns on the x, y, z axes of the "orientation" EBSD sample reference frame 

(using the Matlab notation where mat[:,0] is the first column of the 3x3 mat matrix). 

Ustarsample[:,0] = - t_g_matrix[:,0] 

Ustarsample[:,1] = - t_g_matrix[:,1] 

Ustarsample[:,2] = t_g_matrix[:,2] 

Then a hexagonal reciprocal unit cell (vectors a*,b*,c*) (for describing the trigonal quartz unit cell) 

matstarsample3x3 was built using : 

matstarsample3x3 = dot(Ustarsample, Bstar) 

where the reciprocal metric tensor Bstar describes the distorted shape of the reciprocal unit cell. 

Bstar =  

[[2.35029623e-01   1.17514812e-01  -2.97580061e-17] 

[0.00000000e+00   2.03541624e-01  -1.13309289e-17] 

[0.00000000e+00   0.00000000e+00   1.85048113e-01]] 

This means that a0* is along a* (direction + sense), i.e. a* is the preferred direction for the orthonormalization 

process when building the reciprocal cartesian crystal frame from the reciprocal hexagonal unit cell. 



A 180 degrees rotation of the matrix around the z-axis was then applied in order to obtain the coordinates of the 

reciprocal crystal vectors in the "orientation" microLaue sample reference frame described in figure 2a (rotated 

by 180 degrees around z with respect to the "orientation" EBSD sample reference frame). 

matrot =  

[[-1.  -0.  0.] 

[0.  -1.  0.] 

[0.  0.  1.]] 

matstarsample3x3_rotated = dot(matrot, matstarsample3x3) 

At this stage, due to the arbitrary way of naming the a*, b*, c* reciprocal vectors when indexing, the matrix 

matstarsample3x3_rotated recalculated from EBSD may still differ from the microLaue matrix by a rotation of 

120 degrees around c and/or an inversion of c.  

An "Euler angles minimization" process was therefore applied to get a single matrix for each crystallite. 

From a given set of (a*, b*, c*) vectors, 6 equivalent matrices (a*_new, b*_new, c*_new) can be built : 

(a*, b*, c*), (-a*+b*, -a*, c*), (-b*, a*-b*, c*)  (120 degrees rotations around c) 

(b*, a*, -c*), (a*-b*, -b*, -c*), (-a*, b*-a*, -c*) (180 degrees rotation around a*+b* then 120 degrees rotations 

around c) 

The criteria used to choose between these 6 matrices was the following : 

- the z-coordinate of c*_new should be positive (choice between +c* and -c*) 

- the x-coordinate of a*_new should be maximal (choice between the three matrices with the same c*_new) 

This minimization process is important to ensure that all the map points belonging to closely oriented crystallites 

end up with similar matrices: this allows plotting usable histograms of orientation matrix components, and using 

these histograms to define thresholds on the orientation matrix components to class the map points according to 

the crystallite they belong to, and calculate the average orientation matrix of a given crystallite. 

 

Reference: 

Bunge, H.-J.: Texture analysis in materials science – Mathematical methods, Butterworths, London, UK, 1982. 

  



Section S2: Validity of the Von Mises stress used in the article. 

The trigonal symmetry of the quartz unit cell, and the particular values of the quartz elastic constants Cijkl, lead 

to a coupling between the deviatoric and the expansion parts of the strain and stress tensor.  

As a first consequence, pure expansion strain (ε11 = ε22 = ε33 = εdil) leads to some amount of (purely diagonal) 

deviatoric stress  

(σ33 - σ11 = σ33 - σ22 = 24 MPa per 1e-3 of εdil)  

As a second consequence, pure deviatoric strain leads to some amount of expansion stress, as illustrated for a 

few cases in Table S1.  

As a third consequence, as also illustrated in table 1, the "pseudo von Mises" factor calculated here from pure 

deviatoric strain may deviate from the real von Mises factor, which depends on expansion strain. 

The "pseudo von Mises stress” depends on εdil via the two terms (σ11 - σ33) and (σ22 - σ33), which vary linearly 

with εdil, with factors 2C11 - 2C13 + C12 - C33 = +51.23 GPa and C12 + C11 - C33 - C13 = -23.68 GPa  

σ1 - σ3 = C11*(ε1 + ε3) - C13*( ε1 + ε2) + C12* ε2 - C22* ε3 + C14* ε4 

σ2 - σ3  = C12* ε1  + C11* ε2 -C33* ε3  + C13*(- ε1 - ε2 + ε3) + C24* ε4 

(with ε1 = ε11 and ε4 = 2* ε23) 

When deviatoric strain εdev (the only part measured here) is converted into stress, the resulting "stress_from_εdev" 

is a mixed incomplete quantity, that contains both deviatoric and expansion components, but none of them 

complete. For simplicity, we use the term "Von Mises stress" in the paper as a shortcut for "pseudo Von Mises 

stress calculated from deviatoric strain". 

 
εdil εdev σ σdil von Mises d(vM)/vM 

1 1 1 0 0 0 0 0 0 0 0 0 105 105 29 0 0 0  24  
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1 

-1 

change c/a 

-1 -1 2 0 0 0 

-1 -1 2 0 0 0 

-1 -1 2 0 0 0 
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36 36 316 0 0 0 

-175 -175 58 0 0 0 
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1 
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2 -1 -1 0 0 0 

2 -1 -1 0 0 0 

2 -1 -1 0 0 0 
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260 21 36 -54 0 0 

49 -190 -223 -54 0 0 
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1 
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change angle β 

0 0 0 1 0 0 

0 0 0 1 0 0 

0 0 0 1 0 0 

 

-36 36 0 116 0 0 0 

69 142 129 116 0 0 

-142 -69 -129 116 0 0 

 

0 
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212 

 

 

-0.6 
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0 

1 

change angle α 

0 0 0 0 1 0 

0 0 0 0 1 0 

 

0 0 0 0 116 -36 

105 105 129 0 116 -36 
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211 
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0 

1 

change angle γ 

0 0 0 0 0 1 

0 0 0 0 0 1 

 

0 0 0 0 36 -80 

105 105 129 0 36 -80 
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Table S1 : Examples of errors induced by +/-10-3 of expansion strain when using the "pseudo von Mises stress” 
(calculated from deviatoric strain only) instead of the full von Mises stress, for various types of deviatoric strain with 
components of the order of 10-3. The largest error is 24 MPa, obtained either for zero deviatoric strain or for a change 
in the c/a ratio. The error is negligible in the case of pure shear strain. Units : strain εdev : 10-3; stress σ  : MPa; error 
on von Mises stress d(vM)/vM: percent. The stress and strain components are expressed in the cartesian frame 
attached to the quartz unit cell, and presented as a line in the order (11 22 33 23 13 12). The deviatoric stress induced 
by +10-3 of pure expansion is [-8 -8 16 0 0 0]. 


