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Abstract. Carbon sequestration has been proposed as a
means of slowing the atmospheric and marine accumulation
of greenhouse gases. This study used observed and simulated
land use/cover changes to investigate and predict carbon se-
questration rates in the city of Karaj. Karaj, a metropolis of
Iran, has undergone rapid population expansion and associ-
ated changes in recent years, and these changes make it suit-
able for use as a case study for rapidly expanding urban areas.
In particular, high quality agricultural space, green space and
gardens have rapidly transformed into industrial, residential
and urban service areas. Five classes of land use/cover (resi-
dential, agricultural, rangeland, forest and barren areas) were
considered in the study; vegetation and soil samples were
taken from 20 randomly selected locations. The level of car-
bon sequestration was determined for the vegetation samples
by calculating the amount of organic carbon present using the
dry plant weight method, and for soil samples by using the
method of Walkley and Black. For each area class, average
values of carbon sequestration in vegetation and soil sam-
ples were calculated to give a “carbon sequestration index”.
A cellular automata approach was used to simulate changes
in the classes. Finally, the carbon sequestration indices were
combined with simulation results to calculate changes in car-
bon sequestration for each class. It is predicted that, in the
15 year period from 2014 to 2029, much agricultural land
will be transformed into residential land, resulting in a se-
vere reduction in the level of carbon sequestration. Results
from this study indicate that expansion of forest areas in ur-
ban counties would be an effective means of increasing the
levels of carbon sequestration. Finally, future opportunities

to include carbon sequestration into the simulation of land
use/cover changes are outlined.

1 Introduction

Carbon sequestration is defined as the process of removing
carbon from the atmosphere and depositing it in a carbon
reservoir (UNFCC, 2015). Soil carbon sequestration is the
process of storing carbon in soil, sometimes for thousands
of years. When carbon is removed from the atmosphere and
stored in the soil as organic carbon, its contribution to global
warming is reduced. Plants absorb carbon from the atmo-
sphere through photosynthesis and they release carbon to the
atmosphere through respiration. Any carbon that is stored in
plant tissue is either consumed by animals or, after the plant
dies, it enters the soil as decomposed organic matter. Soil or-
ganic matter is a complex mixture of carbon-containing ma-
terials that include decomposed plant and animal tissues, mi-
crobes (protozoa, nematodes, fungi and bacteria) and carbon-
containing minerals. Factors such as climate, natural vege-
tation, soil texture and drainage all influence the level and
duration of soil carbon sequestration (Schlesinger, 1984).

Humic organic materials form the main sequestered con-
stituents in soil, whereafter humus is transformed into or-
ganic and inorganic compounds that become located deep
down in the soil due to agricultural plowing, root transporta-
tion by plants and calcareous soil. Carbon sequestration has
been proposed as a way to slow the atmospheric and marine
accumulation of greenhouse gases that are released by burn-
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ing fossil fuels (Hodrien, 2008). Terrestrial carbon seques-
tration is the result of a balance between the different stages
of the carbon cycle in the biosphere and pedosphere, such as
photosynthesis, plant growth, congestion and carbon accu-
mulation in soil, as well as carbon emissions from breathing
organisms, microbial decomposition of leaf litter, and oxida-
tion of organic carbon in soil and land degradation. Several
factors are involved in this process, which can be classified
into two main classes: physical and managerial. Physical fac-
tors can be further divided into three subclasses: soil, climate
and terrain geometry. Since the physical factors are generally
difficult, sometimes impossible, to control, management of
carbon sequestration must focus on managerial factors (Fer-
reiro et al., 2010).

Because the majority of carbon is sequestered in soil, or-
ganic carbon that is contained in soil plays an important role
in the overall sequestration process. The amount of carbon
that is sequestered in soil changes significantly according to
location, topography, bedrock or vegetation type and previ-
ous management approaches (Schoonover and Crim, 2015).
Furthermore, the amount of carbon found in the roots, litter
and biomass of microorganisms in the soil varies according
to the time of year due to growing season effects and time re-
quired for biomass decomposition. Erosion, compaction and
reduction of soil permeability, loss of soil structure, miner-
alization and oxidation of humic substances all contribute to
reducing the amount of organic matter in soil (Bruce et al.,
1999). Although the amount and rate of carbon sequestra-
tion is higher in mild and humid tropical forest ecosystems,
the high level of plant respiration that is associated with high
humidity and temperature results in a fast release of carbon
dioxide back into the atmosphere so that, on balance, the net
carbon storage is reduced. Therefore, arid and semi-arid re-
gions are considered to be the most desirable locations for
carbon sequestration (Lal, 2008). Indeed, international orga-
nizations, such as FAO and UNDP, have chosen to implement
programs of carbon sequestration in arid and semi-arid re-
gions in an effort to reduce levels of greenhouse gases (Ghan-
bari, 2014).

Changes to land use are a major driver of carbon storage
in the terrestrial ecosystem (Chuai et al., 2013). Cellular au-
tomata are often used to simulate spatial changes in land use.
A cellular automaton is a system that contains a finite num-
ber of cells that are located next to each other in a regular and
continuous grid which takes the form of a raster (Kwadwo
Nti, 2013). When used to model land use, the cells are clas-
sified into multiple grid classes according to land use type.
This classification includes sorting the cells in groups of cells
based on the relationships that exist between them (Sokal,
1974; Anderson et al., 1976; Gregorio and Jansen, 2005).
Changes in land use/cover are caused either by natural fac-
tors or human intervention. Although human intervention is
a long time historical factor in changes to land use/cover, the
current rate of change is much higher now than in the past,
and this is causing many changes in the environment and eco-

Figure 1. The location of the city of Karaj in Iran.

logical processes at the local, regional and international lev-
els. Monitoring and modeling regional land use helps to pre-
dict future consequences of changes in land use/cover, so that
resources can be adequately protected (Şatır and Berberoğlu,
2012).

This study investigates if and/or how changes in land
use/cover affect carbon sequestration, which we will regard
as an ecosystem service, over time. Furthermore, this study
will ascertain if cellular automata are an appropriate simula-
tion method for predicting the levels of carbon sequestration.
Specifically, we use cellular automata to simulate different
classes of land use/cover.

2 Materials and method

2.1 Study area

The Iranian city of Karaj, located in the region 35.42◦ N,
50.50◦ E to 35.53◦ N, 51. 03◦ E (Fig. 1), was selected as the
study area.

Karaj was recorded as having a population of around
1.97 million in its 2016 census, making it the fourth-largest
city in Iran, after Tehran, Mashhad and Isfahan; in the pe-
riod from 2006 to 2011 Karaj had a rapid annual growth
rate of 3.6 % (SPSDKC, 2012). The city of Karaj became
the capital of Alborz Province in 2008 and it has faced rapid
development, especially in its urban structures, such that it
has been transformed from an agricultural-based city to a
city with rapid population growth. High quality green spaces,
for example agricultural land and gardens, have rapidly been
transformed into industrial, residential and urban service ar-
eas. Figure 2 shows land use/cover classes for the years 1985
and 2014.
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Figure 2. Land use/cover classes in 1985 and 2014.

2.2 Simulation of land use/cover changes

Satellite images were obtained from Landsat TM and ETM+
sensors during the period from 1985 to 2014, and land
use/cover changes were simulated using the Dinamica EGO
2.4.1 software. Prior to use in the simulations, all data were
preprocessed in other applications such as ArcGIS 10.2,
ENVI 4.7 and IDRISI Taiga, and all images were checked
(number of rows and columns, geographic coordinate sys-
tem and overlapping border areas), reviewed and modified as
needed (Makhdoom et al., 2001). For the cellular automata
simulation, the main simulation parameter was the proba-
bility of a change in class for each cell. Probability values
were calculated using the Markov chain method (Soares-
filho et al., 2012). The probability of a cell’s class chang-
ing was then used as the rule for a cellular automata, giving
a probability map that shows the most probable status for
land use/cover classes after a specific period of time. Markov
chain probabilities can be improved by adding other auxiliary
relations into the cellular automata rule. These auxiliary rela-
tions come from regression analysis between land use/cover
changes and arbitrary variables such as depth of soil, slope,
aspect and distance to rivers and water bodies.

In this study we considered five land use/cover classes:
(i) residential, (ii) agricultural, (iii) rangeland, (iv) forest and
(v) barren areas. In addition, following auxiliary variables
were used: (i) slope, (ii) aspect, (iii) elevation, (iv) distance to
rivers and other water bodies, (v) distance to roads, (vi) depth
of soil, (vii) salinity of soil, (viii) soil texture and (ix) dis-
tance to each other land use/cover class. Before running the
simulation based on the proposed model, all the proposed
variables were examined for effectiveness on the model; all
ineffective variables were removed from the model sepa-
rately for each transition. The transition matrix was then de-
termined using the Markov chain model. The cellular au-
tomata model, which took the initial land use/cover maps as
its input, and which used transition matrix as its main rule,

was used to simulate land use/cover over a specific period
of time. The initial simulation, which was used to validate
the model, was performed for the period from 1985 to 2014.
A simulation was then performed for the period from 2014
to 2029 to predict the future status of land use/cover classes
(Soares-filho et al., 2009; Kwadwo Nti, 2013).

The Dinamica EGO software considers many types of em-
bedded models and it enabled us to introduce data to our
model, including land use/cover maps and auxiliary vari-
ables. We executed the model for a specified time period
and stored the results as maps. The Dinamica EGO soft-
ware incorporates a number of map comparison tools; we
used the “fuzzy reciprocal similarity tool”, which locates a
window of odd dimensions at the same coordinates on two
different maps. Proportional to the relative window sizes, a
minimum similarity was calculated using the fuzzy recipro-
cal similarity method. Briefly, this method uses an enhanced
kappa accuracy method which is suitable for circumstances
where “small patches” cannot be “moved around” the area
under investigation. In our study, we used this tool to com-
pare the predicted and observed maps in order to validate the
proposed model. The size of the moving window was var-
ied from 1 to 33 (arbitrary units). The square window, with
unity area, had a side length of 30 m and a land area that
is equivalent to a square window with an area of 33 and a
side length of over 990 m on Earth (Soares-filho et al., 2009,
2012; Kwadwo Nti, 2013).

2.3 Sampling and calculation of carbon sequestration
index per land use/cover class

A total of 20 sampling points were randomly selected, and
three vegetation (plant) and soil samples were taken around
each point. The sampling points are shown in Fig. 2 (2014
plate). For plants, carbon sequestration was determined us-
ing the dry plant weight method, and for soil carbon seques-
tration was determined using Walkley and Black’s method
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Table 1. Summary of final effective variables.

Transition from Transition to Variable Significant

Residential Agriculture Distance to agriculture class 1
Residential Agriculture Distance to forest class 0
Residential Agriculture Soil texture 1
Residential Rangeland Distance to agriculture class 1
Forest Rangeland Distance to roads 1
Forest Agriculture Soil texture 1
Forest Residential Distance to rivers 0
Forest Residential Distance to roads 0

Table 2. Study area Markov chain probabilities (1985–2014).

The most probable class transition

Class Probability Class

Residential 0.0094 Rangeland
Agriculture 0.0520 Rangeland
Rangeland 0.0307 Barren area
Forest 0.1122 Agriculture
Barren area 0.0604 Residential

Table 3. Minimum similarities between observed and simulated re-
sults for the year 2014.

Area (m2) Minimum similarity

900 0.30
4500 0.41
8100 0.50
15 300 0.61
26 100 0.70

(Allison, 1965). Plant sampling was usually performed when
plants were in their dormant growth season; thus, the plant
species that was dominant in the sampling area determined
the time of year at which the sample was taken (Karimian,
2009). For samples that were dominated by grass and shrub
cover, above-ground and below-ground biomasses were sam-
pled separately. Direct measurements were taken of above-
ground biomass by cutting samples and drying them in the
laboratory. The dried samples were weighed and the plant ba-
sis weight per unit area calculated; weight of above-ground
biomass and total biomass per hectare were thereby esti-
mated (Mesdaghi, 2001).

The sampling points were made up of plots with spe-
cific dimensions (1 m2). Plant litter from each plot was col-
lected as part of the above-ground biomass. Plant litter sam-
ples were transported to the laboratory and, after being fully
dried, the dry weight of each sample was recorded and the to-
tal mass of plant litter per square meter was determined. The
below-ground biomass of the sampled species was also sam-

Figure 3. Maximum and minimum similarities between simulated
and observed maps for the year 2014.

pled, usually in 30× 30× 30 cm samples. For each sampling
point, roots were collected, dried and weighed, so that the
root mass per unit area could be calculated. In forest cover,
only trees with trunks of at least 10 cm diameter were se-
lected for sampling in order to avoid damaging very young
trees. In order to determine the biomass of standing trees,
plots of different sizes were used depending on forest density
and homogeneity. To do this, plots were randomly selected
within forest areas and the number of each tree species was
counted. We measured the tree diameter at 1.5 m height in or-
der to determine the tree volume. To determine the bulk tree
density, tree branches with specific dimensions were cut, and
their dry weight and volume was measured; bulk tree den-
sity was determined by dividing weight by volume. Then,
by multiplying the volume of trees with the calculated bulk
density, biomass weight per unit area was determined. The
method was used for sampling forest litter was similar to
the method used for herbaceous plants and shrubs (Karim-
ian, 2009).

To study soil characteristics in areas of grass and shrub
cover, profile sampling points were drilled in the areas below
the plant canopy. Sampling was carried out in the first 30 cm
of soil because that is the depth at which microorganisms are
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Table 4. Changes of land use/cover in the period from 1985 to 2014 (in hectares).

Year/Class Residential Agricultural Rangeland Forest Barren area

1985 7534.53 7289.37 17 138.61 1412.37 2202.75
2000 9267.21 7201.98 13 968.36 531.81 4608.27
2014 16 002.54 3632.85 9433.98 89.37 6418.89
Change direction Increasing Decreasing Decreasing Decreasing Increasing

Figure 4. Predicted land use/cover classes in different years.

most prevalent and where the majority of the plant roots that
were growing were formed. Samples of approximately 1 kg
weight were sent to the laboratory for analysis. Sampling in
forest areas was also usually carried out in the first 30 cm
of soil, in 30× 30× 30 cm (or until bedrock was reached)
samples; soil was sampled both under trees and in the spaces
between trees (Mahdavi et al., 2007). In other land use/cover
classes, such as barren areas, only soil samples were taken.

Samples of shoots, below-ground plants and plant litter
were dried in the open air for several weeks and then their
dry weight were determined (Karimian, 2009). Wet samples
were dried in an oven at 72 ◦C for 48 h and the dry weight
of each sample was calculated (Gholami, 2008). The weight
of organic carbon stored in samples was determined using
the combustion method (McDicken, 1997). Samples were
ground to a powder and 2 g of each sample was placed in
an electric furnace at 550 ◦C for 5 h (Ghanbari, 2014). Af-
ter weighing the combustion ashes, the difference between
initial weight and weight of the ashes revealed the amount of
organic matter in the sample. The weight of organic carbon is
calculated using Eq. (1), where OC is the weight of organic
carbon and OM is the weight of organic matter (Birdsey et
al., 2000):

OC=
1
2

OM. (1)

Soil samples were dried in the open air, ground and sieved
using a 2 mm mesh. The amount of organic matter and or-
ganic carbon in the soil samples was determined according
to the soil analysis methods of Walkley and Black (Allison,
1965). Specifically, the amount of soil organic matter was

determined by measuring the amount of oxide-able organic
matter in the soil; after determining the percentage of or-
ganic carbon, the amount of soil organic matter and soil or-
ganic carbon was calculated by using the Walkley and Black
method, and an Erlenmeyer flask (Haghighi, 2003). The per-
centage of soil organic matter is calculated by Eq. (2):

%OM=
(V2−V1)×N × 0.39

S
, (2)

where V1 is the volume of ferrous ammonium sulfate used
for the control sample (in mL), V2 is the volume of ferrous
ammonium sulfate used for the sample (in mL), N is the nor-
mality of ferrous ammonium sulfate, S is the weight of dried
soil sample in the open air and OM is percentage of organic
material in the soil sample. Equation (3) gives the percent-
age of organic matter expressed as the percentage of organic
carbon (Haghighi, 2003):

%OC=
%OM
1.724

, (3)

where OC is the organic carbon content. Finally, Eq. (4)
gives the organic carbon content of the soil, in kilograms per
hectare (Haghighi, 2003):

OC= 10000×%OC ×Bd ×E, (4)

where Bd is the soil sample density in gram per cubic cen-
timeter, and E is the sampling depth in cm.

2.4 Modeling of carbon sequestration changes

Considering the measured data about the amount of car-
bon sequestration for each land use/cover class in the study
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Table 5. Predicted changes to land use/cover in the period from 2019 to 2029 (in hectare).

Year/Class Residential Agricultural Rangeland Forest Barren area

2019 18 240.89 2659.06 9916.14 73.29 4459.79
2024 19 141.89 1830.01 9851.92 166.24 4345.46
2029 19 705.01 1407.71 9657.84 193.10 4373.93
Change direction Increasing Decreasing Decreasing Increasing Decreasing

Table 6. Carbon sequestration of soil by land use/cover class.

Land use/cover class Mean values of carbon MSE
sequestration in soil at

30 cm depth
(t ha−1)

Agriculture 1178 310.9
Rangeland 686 178.8
Forest 675 172.5
Barren area 92 22.16

Table 7. Carbon sequestration in vegetation per land use/cover
class, using dry plant weight method.

Land use/cover class Mean carbon MSE
sequestration
in vegetation

(t ha−1)

Agriculture 28 3.7
Rangeland 14 2.1
Forest 94 15.7

area and combining it with the results of the land use/cover
change simulation, the rate of carbon sequestration and its
variations in accordance with the land use/cover changes was
simulated in the future. Thus, if the sampling region has n

land use/cover classes, and each class has Ci cells, each class
has CSi carbon sequestration; if the area of each cell on the
ground is S (in hectares), as determined by the cell size of the
satellite image, then the total amount of carbon sequestration
in the study area can be calculated using Eq. (5):

CST=
n∑

i=1

(
CSi ×Ci × S

)
. (5)

In the above equation for each i = 1,2, . . .,n, part of (CSi ×

Ci × S) gives the amount of carbon sequestration in the ith
class, in hectares. The amount of carbon sequestration of
each class includes amount of carbon sequestration of vege-
tation shoots, underground organs, all of the vegetation cover,
soil and the average for the land use/cover class.

Table 8. Total carbon sequestration per land use/cover classes.

Land use/cover class Mean carbon MSE
sequestration

(t ha−1)

Agriculture 1206 315.5
Rangeland 700 186.6
Forest 769 210.6
Barren Area 92 22.16

3 Results and discussion

3.1 Simulation of land use/cover changes

By using the Dinamica EGO software, a cellular model was
run for a 29-year period, starting from 1985, to obtain a sim-
ulated result for the year 2014. In order to simulate changes
in land use/cover classes, the transition matrix between two
land use/cover maps between the years 1985 and 2014 was
calculated, based on the Markov chain method. By introduc-
ing auxiliary variables to the model, the correlation between
them and land use/cover classes was calculated using the re-
gression method; one of two correlated variables, or the vari-
ables that did not have any impact on the transition matrix,
were excluded from the model. Table 1 details the final ef-
fective variables. The final probability matrix was then recal-
culated (Table 2).

As explained in the material and methods section, mini-
mum similarity between observed and simulated result was
determined using the fuzzy reciprocal similarity method for
the same area regions in order to validate the model (Table 3
and Fig. 3).

The results of simulated land use/cover classes for changes
of land use/cover in the period from 1985 to 2014 are shown
in Table 4.

Finally, land use/cover classes were simulated for a period
of 15 years, from 2014 to 2029. Selected simulation results
are presented in Fig. 4 and Table 5.

3.2 Sampling and carbon sequestration index
calculations

As mentioned in the methods section, 20 sampling points
were selected randomly in accordance with literature reports
and expert knowledge; vegetation and soil samples were
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Table 9. Simulated carbon sequestration of the study area from 2014 to 2029 (millions of tons).

Year/Class Agricultural Rangeland Forest Barren area Total

1985 43.95 6.00 0.05 0.20 50.21
2000 43.42 4.89 0.20 0.42 48.94
2014 21.90 3.30 0.03 0.59 25.83
Change direction Decreasing Decreasing Decreasing Increasing Decreasing
2019 16.03 3.47 0.02 0.41 19.94
2024 11.03 3.45 0.06 0.39 14.94
2029 8.48 3.38 0.07 0.40 12.34
Change direction Decreasing Decreasing Increasing Decreasing Decreasing

taken at each point in order to measure the level of carbon
sequestration. Using the method of Walkley and Black, the
amount of sequestered carbon was calculated to provide an
index of soil carbon sequestration of the soil (see Table 6 for
results).

Following the soil experiments, carbon sequestrations of
plant samples were measured and, according to the average
volume of plants in each plot, the levels of carbon seques-
tration of plants per plot (and per hectare) were calculated.
After the calculation for each sample in same the class by
using plant dry weight method, mean values were calculated
for each land use/cover class; the mean values were intro-
duced as an index of the average carbon sequestration in
vegetation of that class (Table 7). There were different types
of vegetation within the overall study area. For example, in
agricultural areas most of plants were alfalfa and potatoes. In
rangeland areas, most samples included sagebrush, and in the
forest areas, plane tree and cedar were the most commonly
sampled.

The mean soil and vegetation index values for each land
use/cover class (Tables 6 and 7) were combined to give a
total index for each class (Table 8).

3.3 Simulation of carbon sequestration changes

Carbon sequestration changes based on the changes of the
land use/cover classes in the study area were predicted by
inserting the carbon sequestration indices and results of land
use/cover simulation into Eq. (5) (Table 9).

3.4 Discussion

By measuring the direction of change of land use/cover, we
are able to better understand a range of important phenom-
ena and make important predictions into the future (Webster,
2002); therefore this work is invaluable for future environ-
mental planning. In this study, which was based in the city
of Karaj, Iran, we determined, in the laboratory, two sepa-
rate indices of carbon sequestration for soil and vegetation
for five land use/cover classes. We simulated the changes in
those classes by using satellite images of Landsat TM and
ETM+ sensors during the period from 1985 to 2014, and

by using the method of cellular automata. Our simulations
determined that, in the study period (1985 to 2014), residen-
tial and barren areas underwent an annual size increase of
approximately 2.63 and 3.76 %, respectively, and that agri-
cultural, forest and rangeland areas decreased annually by
approximately 2.37, 9.08 and 2.04 %, respectively. By com-
paring the results of observed data from 1985 to 2014 with
simulated data from 2014 to 2029 we predict that the rate
of land use change in the period from 2014 to 2029 will be
slower than that observed in the period from 1985 to 2014.
According to our simulations, residential space will increase
in area by approximately 10 %, agricultural land will reduce
by 5 %, forests will increase slightly by approximately 0.3 %,
barren areas will reduce by approximately 6 % and rangeland
will remain almost constant, with only slight fluctuations in
area. Finally, the results suggest that the city of Karaj will ex-
perience a reduction in its levels of carbon sequestration due
to the impingement of residential areas, which do not con-
tribute to carbon sequestration, into other land use classes. In
this study we used a reciprocal fuzzy method to validate the
proposed model by comparing observed and simulated land
use/cover maps from 2014. Our results show that observed
and simulated results will converge over a 15 year period
as the size of the compared areas increases. More specifi-
cally, simulated results will converge with observed data for
regions with an area of at least 900 m2 with a probability
of > 30 %, and for regions with an area of 26 100 m2 with
a probability of > 70 %. Sheng et al. (2012), Soares-fihlo et
al. (2012, 2013) and Kwadwo Nti (2013) also used cellu-
lar automata and Markov chain with fuzzy analysis methods
to simulate and validate predicted changes in land use/cover
use; this further validates the results of the present study.

The carbon sequestration levels were determined for both
vegetation and soil samples at each sampling point. Carbon
sequestration in soil samples taken from agricultural land
was much higher than equivalent samples taken from for-
est and rangelands. Although there is no current single data
source that details the impact of different land management
practices on carbon sequestration in agricultural land (World
Bank, 2012), it has been demonstrated that carbon sequestra-
tion changes according to plant growth season (Forge, 2001);

www.solid-earth.net/9/735/2018/ Solid Earth, 9, 735–744, 2018
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monitoring of carbon sequestration, therefore, remains im-
portant. In this study, soil samples were collected at the start
of the growing season, in April; this is a season during which
farmers use many types of fertilizers, both natural and chem-
ical. Carbon sequestration levels were found to be high in the
agricultural classes, especially directly after the application
of fertilizers. Indeed, the amount of fertilizer present in the
soil was measured so that, if desired, its effect could be re-
moved from the data by using only vegetation-derived data;
we decided not to remove those data so that we were able to
show the overall impact of land use/cover change simulation
on carbon sequestration. The results of other studies confirm
that the model used in this study is well suited to simulate
land use changes (Al-ghamdi, 2012; Guan and Clarke, 2010;
Jantz et al., 2010; Kwadwo Nti, 2013; White and Engelen,
1993, 1997; Deadman et al., 1993; Itami, 1994; White, 1998;
Li and Yeh, 2002; Barredo et al., 2003, 2004; Al-Ahmadi et
al., 2008). Furthermore, the results of this study agree with
the findings of Soares-filho et al. (2012), who used cellular
automata and Markov chain tools with Dinamica EGO soft-
ware to study carbon sequestration in agricultural land and
forests in Brazil.

It is important to note that the results of this study are
specific to urban areas, and that they can, therefore, be ap-
plied to urban growth over time. For our study area, as de-
tailed in Tables 4 and 5, some land use/cover classes, such
as agricultural, decrease in size due to increases in residen-
tial requirements. Thus, our results cannot be extrapolated to
all landscape types beyond urban. Furthermore, it is impor-
tant to note that the results of our study indicate that the use
of fertilizers resulted in levels of carbon sequestration that
were elevated in agricultural areas compared to forest areas.
We decided to include data from soil that had been fertil-
ized because (i) the traditional fertilization methods used by
the farmers meant that the amount of fertilizer used was not
recorded and (ii) agricultural land forms a significant part of
carbon sequestration capacity and, therefore, should not be
excluded from the study.

4 Conclusions

Our results indicate a number of opportunities to include car-
bon sequestration in simulations of land use change in fast
growing cities; the methods used in this study can be ap-
plied elsewhere as an “ecosystem service” for urban plan-
ning based on land use changes. Based on our results, which
demonstrate rapid changes in residential areas, we recom-
mend that city managers take effective measures to increase
residential green spaces which are planted with appropriate
plant species. We also recommend that comparative studies
are performed to confirm that our methods can be used else-
where; these studies should ascertain whether the results are
affected by variables that were not possible to isolate in the

present study, such as population density, crop yields, or bi-
ological and physical soil characteristics.

Data availability. All used data in this research were provided by
the authors. These data are divided into two parts: the first part con-
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vironment at the faculty of natural resources at the University of
Tehran.
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