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Abstract

Stochastic Quantization (SQ) is a method for the approximation of a continuous prob-
ability distribution with a discrete one. The proposal made in this paper is to apply this
technique to reduce the number of numerical simulations for systems with uncertain in-
puts, when estimates of the output distribution are needed. This question is relevant in5

volcanology, where realistic simulations are very expensive and uncertainty is always
present. We show the results of a benchmark test based on a one-dimensional steady
model of magma flow in a volcanic conduit.

1 Introduction

Since the demand for eruption scenario forecast in the world is pressing, there is a10

strong need for using complex physical models and numerical codes in order to get
information about the possible eruptive conditions at many hazardous volcanoes (e.g.,
Sparks, 2003; Neri et al., 2007). Such models can describe volcanic processes thor-
oughly, but this ability often results in high computational costs: a single simulation can
require a time of the order of days to weeks to be completed.15

On the other hand, since volcanic systems are largely inaccessible to direct obser-
vation, the models which describe them often involve intrinsically uncertain quantities.
As a consequence, some of the input data required by the numerical codes should be
considered as random variables rather than as fixed parameters. Therefore, the most
direct way of obtaining information about the probability of possible eruptive scenarios20

would be to implement a Monte Carlo (MC) method. As a drawback, this would require
a large number of numerical simulations (e.g. 104), while often a number of the order
of 10 simulations cannot be exceeded.

It is thus fundamental to be able to choose the input data values in such a way that
the simulations provide the maximum amount of information possible about the output25

quantities. Furthermore, the selection of the “best” sets of values of input data should
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be guided by fairly general principles, which could be applied to a large class of models
and numerical codes and are not devised for a particular situation.

In the first section of this paper we present our approach to the problem, showing
that the stochastic quantization (SQ) method provides a possible solution. In Sects. 2
and 3 we briefly sketch the basic principles of one-dimensional and multi-dimensional5

quantization. In Sect. 4 we show the application of our strategy to an ideal situation,
while in Sect. 5 we turn to a more realistic situation, involving the one-dimensional
steady model of magma flow in a volcanic conduit described in (Papale, 2001). We
show that, given a maximum number N of simulations, the results obtained using the
SQ method to choose N sets of values of input data are better than those produced by10

N MC simulations.
The origins of the theory of quantization of probability distributions date back to

the three fundamental articles (Oliver et al., 1948; Bennett, 1948; Panter and Dite,
1951); the field of application was that of signal processing, in particular modulation
and analog-to-digital conversion. See (Gray and Neuhoff, 1998) for a survey of the15

method and of its engineering applications, besides a huge list of references (mainly
in the field of engineering); the book (Graf and Luschgy, 2000) gives a mathematically
rigorous treatment of the subject.

2 Outline of the strategy

In order to illustrate our strategy, consider a practical situation: suppose that a nu-20

merical code for the simulation of some volcanic processes has the random variable
X among its input data. Likewise, X can be a collection of input random variables
(X1,...,Xd ), i.e. a d -dimensional random vector. Let Y be one relevant output quantity
of the numerical code. We denote by f (x1,...,xd ) and g(y) the probability density func-
tions of X and Y , respectively; f is assumed to be known, while nothing is known about25

g. We also suppose that the numerical code has such a high degree of complexity that
the maximum number N of affordable simulations is very small, of the order of 10. It is
thus not possible to collect information about g using a MC method.
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Our strategy (see Fig. 1) consists in three main steps and an optional fourth step.

1. Find N values of the random vector X,
(
x(1)

1 ,...,x(1)
d

)
,...,
(
x(N)

1 ,...,x(N)
d

)
and N

corresponding weights
(
w (1),...,w (N)

)
, with

∑N
i=1w

(i ) = 1, such that the discrete

probability distribution f̂ which assigns the weight w (i ) to the point
(
x(i )

1 ,...,x(i )
d

)
(for i =1,...,N) is the optimal approximation of f , among all the discrete probability5

distributions concentrated in N points. The meaning of optimality is to be precised
later.

2. Perform N numerical simulations to compute the N corresponding values
y (1),...,y (N) of the random variable Y . We represent the action of the numerical

code on the input data through a function ϕ, so that y (i ) =ϕ
(
x(i )

1 ,...,x(i )
d

)
for i =10

1,...,N.

3. Build a discrete approximation ĝ of g by assigning the weight w (i ) to the point y (i )

for i =1,...,N.

4. Use ĝ to build a continuous probability distribution.

The core of the problem is thus to find the “best” discretization of a fixed continu-15

ous probability distribution f (step 1). Stochastic quantization is a mathematical theory
which allows to accomplish this task by giving a definition of the optimal discretization
and providing an algorithm to find it. Once this is done, a discrete approximation of
the unknown output probability distribution is automatically produced (steps 2 and 3).
Concerning step 3, it is a rigorous fact that the transformation of a discrete probabil-20

ity distribution by a function ϕ is the discrete probability distribution having the same
weigths on the image points. Thus step 3 is the most natural choice. If we would know
the output density g, a better choice would be the weigths given by the SQ algorithm
applied to g and the given output points. But we do not know g. It is an open problem
to improve step 3 in this direction.25
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Though the discrete probability distribution ĝ can be used to estimate the values of
some parameters of g (e.g. its mean, its variance, some quantiles), its graphical rep-
resentation gives poor insight into the main qualitative features of g. This is one of the
motivations of step 4, which can be carried out through a kernel smoothing algorithm
(e.g., Wand and Jones, 1995). Moreover, it may be useful for other purposes to have a5

continuous distribution in output, like for random number generation. The main idea of
kernel smoothing algorithms is to smear out each weight w (i ) around the corresponding
point y (i ) according to a fixed rule and then to sum up all the contributions. This leads
to the continuous probability distribution

ĝKS (y)=
1
Nh

N∑
i=1

K

(
y−y (i )

h

)
, (1)10

where K is a smooth probability distribution and h is a measure of the width of the
interval over which each weight is spread. h is chosen according to an optimality
criterion, based on the minimization of some kind of error resulting from the substitution
of g with ĝKS . K is usually chosen to be a unimodal probability density symmetric about
zero, but its exact expression does not affect very much the result.15

3 Quantization of univariate probability distributions (d =1)

As a first step, in order to give a precise meaning to the expression “best approxi-
mation”, we introduce a distance between probability distributions. Consequently, the
optimal discretization of f can be defined as the discrete probability distribution f̂ which
has the minimum distance from f .20

Since we have to compare discrete and continuous probability distributions, it is eas-
ier to rely on the cumulative distribution functions, especially in the case d =1, in which
there is only one input random variable X . Let F be the cumulative distribution function
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associated with the density f and F̂ the one associated with f̂ : namely (see Fig. 2),

F (x)=
∫ x
xmin

f (t)dt,

F̂ (x)=
∑
x(i )≤x

f̂
(
x(i ))= ∑

x(i )≤x

w (i ),

for xmin ≤x≤xmax,

where xmin and xmax are the minimum and maximum values of X , x(i ) are the points in5

which f̂ is concentrated and w (i ) are the corresponding weights.
For instance, we can define a distance between f and f̂ as

d (f ,f̂ )=
∫ xmax

xmin

|F (x)− F̂ (x)|dx (2)

(see Fig. 3). Therefore, the procedure consists in searching for the discrete probability
distribution f̂ which minimizes the quantity d (f ,f̂ ), among all the discrete distributions10

concentrated in N points.

4 Quantization of multivariate probability distributions (d >1)

A more complicated situation arises when there are several random variables X1,...,Xd
in input, or equivalently a single random vector X = (X1,...,Xd ). If X1,...,Xd are inde-
pendent and f1(x1),...,fd (xd ) are their probability density functions, then f (x1,...,xd )=15

f1(x1)× ...× fd (xd ) is the probability density function of X. If X1,...,Xd are not indepen-
dent, the probability density function f (x1,...,xd ) of X is not related to f1(x1),...,fd (xd )
in an obvious way. However, the independency hypothesis is not necessary for the SQ
algorithm.

A definition of distance similar to the one in Eq. (2) could be given, but it is easier and20

more appropriate to use another definition of distance, based on the random variables
rather than on their cumulative distribution functions.
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Let X̂ be a discrete random vector with probability distribution f̂ , approximating the
continuous random vector X; it seems quite natural to choose, as a measure of the
distance between f and f̂ , the mean value of the error |X−X̂| resulting from the substi-
tution of X with X̂:

d (f ,f̂ )=E
[
|X− X̂|

]
. (3)5

The distance defined by Eq. (3) could be computed numerically, but the calculation
is easier and faster (especially in higher dimension) via a MC method; appendix A
shows in detail how it can be performed. The MC simulations involved in the algorithm
use only samples of X and X̂, which can be generated easily, and not samples of Y ,
whose generation is out of reach. The randomness on the value of d (f ,f̂ ) (and, as10

a consequence, on the values of the “optimal” points x
(1),...,x(N)) due to the choice

of a stochastic algorithm can be made negligible, provided that the number M of MC
simulations is large enough. Moreover, the stochastic algorithm easily provides the
weights w (1),...,w (N) (see Appendix A).

In appendix A we also show that, for univariate distributions, the distances in Eqs. (2)15

and (3) lead to the same optimal discretization: therefore the definition given by Eq. (3),
besides having an intuitive motivation, is a natural generalization of that given by
Eq. (2).

5 Testing SQ in a simple case

In order to assess the quality of the approximation of the output probability distribution20

given by the SQ, we first consider a simple test case.

– There is a 2-dimensional random vector X = (X1,X2) in input; X1 and X2 are inde-
pendent and their probability distributions are both gaussians, truncated at 0 and
at 1; the distribution of X1 has mean 0.5 and standard deviation 0.2, that of X2
has mean 0.6 and standard deviation 0.1.25
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– The relation between X and the output random variable Y is known and has a
simple analytical expression:

Y =ϕ(X1,X2)=

=
1
8

(X 2
1 +X1)(X 2

2 +X2)+
1
4

(X1+X2). (4)

In such a simple case it is possible to implement a MC method with very high numeros-5

ity (e.g. 105), producing an estimate of g which can be considered exact for practical
purposes. This version of g can be directly compared to the results produced by the
SQ method and by MC methods with variable numerosity, in order to establish which
one gives the best approximation of g: for instance, the SQ method can be compared
to a MC with the same numerosity, or to other low numerosity MC simulations. For each10

numerosity, the MC can be repeated several times, thanks to the simplicity of the func-
tion ϕ; consequently, it is possible to estimate the probability that the performances of
the SQ are better than those of the MC (see Fig. 5).

Figure 4 compares some quantiles of g, whose values are very well known thanks
to the high numerosity MC, to their estimates produced by the SQ method. These15

estimates are obtained via a linear interpolation of the cumulative distribution associ-
ated to ĝ. Figure 4 shows that, as the numerosity N of the SQ grows, the estimates
of the percentiles of g globally improve. N = 15 is a first good compromise; then the
improvement is not so strong, until N = 40 or 50, where the result is almost perfect.
On the other hand, the central quantiles do not become better and better but fluctuate20

around the true values in an unpredictable manner. This is the reason why the estimate
of a parameter sometimes gets worse even if N increases, as is shown in Fig. 5: for
instance, the estimate of the median of g (red curve) gets worse as N passes from 5
to 10. This makes it possible for MC simulations to rapidly achieve better estimates of
the median than 10 points SQ as their numerosity increases.25

However, Fig. 5 also shows that there is a general tendency to improvement as N
grows. The whole bundle of curves, in fact, moves gradually towards the upper right
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corner of the graph: this means that the probability of the estimates given by the SQ be-
ing better than those given by the MC is generally increasing as N grows. Furthermore,
it is evident that, if N is sufficiently high (N >10 in this case), the SQ method gives bet-
ter results than MC simulations with the same numerosity with probability greater than
0.5.5

6 Application of SQ to volcanic conduit dynamics

As a test application of the SQ approach to a volcanologically relevant case, we con-
sider a one dimensional steady model of magma flow in a cilindrical conduit with fixed
diameter and uniform temperature (Papale, 2001). This model is ideal for testing SQ,
since it provides a set of volcanologically relevant, strongly non-linear equations relat-10

ing input and output distributions in a complex, unpredictable way, despite keeping the
computational time small enough (order of minutes for each simulation) to allow a MC
simulation with N = 103. The output distribution given by this MC is reasonably close
to the exact one and can be used for comparison with SQ. Hence, this first application
of SQ to a volcanologically relevant case is also a further test of the method.15

Among the several input quantities that are intrinsically uncertain we choose two
of them, namely, the diameter D of the conduit and the total mass fraction of water
wH20. These two quantities are known to largely control the conduit flow dynamics
and the associated mass flow-rate (e.g., Wilson et al., 1980; Papale et al., 1998). D
and wH20 are therefore considered as random variables. We assign to each of them a20

probability distribution (truncated gaussian) and we study the corresponding probability
distribution of the logarithm of the mass-flow rate ṁ. The latter is a volcanologically
relevant quantity, as it defines the intensity of an eruption and as it largely affects the
impact on the surroundings (Valentine and Wohletz, 1989; Todesco et al., 2002).

Figure 6a shows the assumed continuous distribution of the two random variables25

wH20 and D, while Fig. 6b illustrates the result of the application of the SQ method
to discretize the distribution in 20 wH20-D pairs. In order to test the SQ method, the
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discretization has been done also with 15 and 10 wH20-D pairs. The results have been
compared, in terms of output probability density (Fig. 6c) and cumulative probability
distribution (Fig. 6d).

The three SQ cases with N =10, 15 and 20 reproduce well the mode of the distribu-
tion at a mass flow-rate of about 108 kg/s, but fail in predicting correctly the shape of the5

distribution, resulting in a larger and less skewed curve with respect to the MC case.
The larger values of density predicted by SQ at the high mass flow-rate tail largely ex-
plain the lower values of the mode with respect to the MC case. On the contrary, the
left tail of the distribution, corresponding to the minimum mass flow-rates, is predicted
accurately by the SQ. The improvement due to increased numerosity of SQ from 10 to10

20 is clearly visible from the cumulative plots in Fig. 6d.
Figure 7 compares the estimates of the quantiles of the output distribution of mass

flow-rates given by MC and SQ with N = 10,15 and 20. The quantiles are obtained
by means of a linear interpolation of the cumulative distributions in Fig. 6d. As for the
analogous Fig. 4 (referring to the polynomial map at Eq. 4), the bulk of the distribution15

is predicted well by the SQ method, but the tails of the distribution are not. While a
significant improvement clearly emerges from N = 10 to N = 15, there is no significant
gain in accuracy when moving from N = 15 to N = 20. Table 1 shows the same results
numerically for a few selected quantiles.

As for the ideal case discussed above, it is possible to compare the performances20

of the SQ with those of some low numerosity MC simulations (Fig. 8). This time, the
discrete distributions generated by the SQ and the low numerosity MC simulations are
both compared to the one obtained from the MC simulation with N = 103. In all cases,
and for any quantity investigated, the SQ provides a better approximation of the output
distribution than the MC with equal numerosity. For many quantities a MC with at25

least hundreds of simulations is required in order to exceed the accuracy given by SQ
simulations with numerosity up to 20.
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7 Conclusions

The performance of the SQ method has been analyzed both for an artificial polynomial
map with random input and for a more complex set of non-linear equations. The latter
case also represents an application of the SQ method to the volcanologically relevant
case of steady multiphase magma flow along a volcanic conduit. Our analysis includes5

both a comparison between SQ and pure MC (Monte Carlo) method, and the accuracy
of SQ in itself. In both cases the SQ method provides substantially better estimates
of output distributions than the MC method with the same number of simulations. This
property is already clear with values of N around 15–20, and it becomes stronger
with the increase of N. The results are less definite for very small N, like N = 5 and10

sometimes 10, where further ideas and research are needed. In general, MC gives
results comparable to SQ only when the number of MC simulations is much higher,
sometimes by one or more orders of magnitude, than that of SQ. Therefore, the SQ
method results in a considerable computational saving for the same degree of accuracy
of the estimates. With values of N of 15 or 20, in general the estimates obtained by SQ15

are very close to the true ones (or to our better estimates of the true ones).
In conclusion, the SQ method allows the introduction of uncertainties in the deter-

ministic approach without requiring exceeding CPU time. This result is promising for
the capability of estimating future volcanic scenarios and volcanic hazards by means of
a merged deterministic-probabilistic approach, whereby complex deterministic models20

are employed by taking into account the intrinsic uncertainties involved in the definition
of the conditions characterizing the volcanic systems.
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Appendix A

The numerical algorithm

This appendix describes in detail how the distance d (f ,f̂ ), defined in Eq. (3), is ap-
proximately computed via a stochastic algorithm. Morevorer, it shows that the optimal5

discretization of f is found by moving the points x
(1),...,x(N) in such a way that d (f ,f̂ )

is minimized, i.e. by minimizing a function of N d -dimensional vectors (function h in
Eq. A2 below).

The starting point is represented by a fundamental result of the SQ theory
(Graf and Luschgy, 2000, Lemma 3.1), which states that, if the N possible values10 (
x(1)

1 ,...,x(1)
d

)
,...,
(
x(N)

1 ,...,x(N)
d

)
of the random vector X̂, i.e. the N points in which

f̂ is concentrated, are fixed, then the corresponding optimal weights w (1),...,w (N) are
uniquely determined.

More precisely, the weights are defined as follows.

– For i = 1,...,N, let Vi be the region of the d -dimensional space such that15

x ∈ Vi ⇐⇒
∣∣∣x−x

(i )
∣∣∣ = mink=1,...,N

∣∣∣x−x
(k)
∣∣∣, where x

(k) =
(
x(k)

1 ,...,x(k)
d

)
for k =

1,...,N. Vi is called the Voronoi region of x
(i ) with respect to the set{

x
(1),...,x(N)

}
; it contains the points which are closer to x

(i ) than to any other

element of the set
{
x

(1),...,x(N)
}

(see Fig. 9).

– The optimal approximation X̂ of the random vector X is defined as follows: X̂ =x
(i )

20

if and only if the value of X belongs to Vi . Namely, X̂ is obtained by rounding off
X to the nearest vector among x

(1),...,x(N).

– Correspondingly, w (i ) (i.e. the probability that X̂ =x
(i )) is the weight assigned to Vi

by the probability distribution f : w (i ) =
∫
Vi
f (x)dx.
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If X̂ is defined as just described, it can be shown that (Graf and Luschgy, 2000,

Lemma 3.4), in the case d =1, E
[
|X − X̂ |

]
=
∫xmax
xmin

|F (x)− F̂ (x)|dx; moreover, if X̂ ′ is an-

other random vector, with the same possible values x(1),...,x(N) but defined in whatever
way, and F̂ ′ is its cumulative distribution function, it can be shown that

E
[
|X − X̂ ′|

]
≥
∫ xmax

xmin

|F (x)− F̂ ′(x)|dx≥5

≥
∫ xmax

xmin

|F (x)− F̂ (x)|dx=E
[
|X − X̂ |

]
.

This means that, in the case d = 1, minimizing
∫xmax
xmin

|F (x)− F̂ (x)|dx is the same as

minimizing E
[
|X − X̂ |

]
, so that the criterion used when there are several parameters in

input is indeed a generalization of that used when there is only one parameter.

If the points
(
x

(1),...,x(N)
)

are fixed, an approximate calculation of the mini-10

mum value of the distance in Eq. (3) and of the corresponding optimal weights(
w (1),...,w (N)

)
can be carried out through the following steps (see Fig. 9):

1. generate a large number M (e.g. M = 105) of d -dimensional random vectors
z1,...,zM with probability distribution f ;

2. for each vector zj , select the index ij such that zj belongs to Vij , i.e.
∣∣∣zj −x

(ij )
∣∣∣=15

mink=1,...,N

∣∣∣zj −x
(k)
∣∣∣;

3. for k = 1,...,N, assign to x
(k) the weight w (k) = m(k)

M , where m(k) is the number of
vectors zj into the Voronoi region Vk , i.e. the number of indexes j such that ij =k;
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4. calculate

d (f ,f̂ )=E
[
|X− X̂|

]
≈ 1
M

M∑
j=1

|zj −x(ij )|. (A1)

In our situation, in which the points (x(1),...,x(N)) are not fixed, the function

h
(
x(1),...,x(N)

)
=

1
M

M∑
j=1

|zj −x(ij )| (A2)

must be minimized. The program which performs the minimization moves the points5

x
(1),...,x(N), starting from an initial guess; for each new choice of x(1),...,x(N), it goes

through the steps 1–4 above, until the minimum value of the function h is found. The
set of points which produces this minimum value is just the optimal set of points we
are searching for. The minimization can be repeated several times, varying the initial
guess, in order to improve its reliability; this is particularly advisable when h depends10

on many variables (namely, when the product Nd is high).
Note that the error in the estimate (A1) of d (f ,f̂ ) is proportional to 1√

M
, so that, for

sufficiently high values of M, it becomes negligible and minimizing 1
M

∑M
j=1 |zj −x

(ij )| is

the same as minimizing d (f ,f̂ ).
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Table 1. Comparison between the estimates of some parameters of the output distribution
given by the SQ with N = 10,15,20 points and by a MC with 103 simulations. The considered
parameters are the mean, the standard deviation and the 5%,25%,50%,75%,95% quantiles.

mean st. dev. q5 q25 q50 q75 q95

MC 7.7418 0.5023 6.7173 7.4585 7.8610 8.1200 8.3808
SQ, N =10 7.7589 0.4194 7.0919 7.3202 7.8674 8.0711 8.3244
SQ, N =15 7.7448 0.4453 6.9427 7.4619 7.8276 8.1025 8.3372
SQ, N =20 7.7351 0.4648 6.8525 7.4949 7.7995 8.0979 8.3503
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(c) Input discretization, with N = 10. (c) Output discretization, with N = 10.

(a) Known input distribution. (b) Unknown output distribution.

Fig. 1. Graphical representation of the first three steps of our strategy, with d = 1 and N = 10.
The lower graphs represent the discrete approximations of the input and output probability dis-
tributions produced by the SQ method. The weight w (i ) is the area of the rectangle associated
to the i -th point for i =1,...,N.
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Fig. 2. Continuous and discrete cumulative distribution functions.
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Fig. 4. Quantile-quantile plots. On the x axis there are the true values of the quantiles of g,
on the y axis their estimates given by the SQ. The orange daggers represent the percentiles,
from 1 to 99. If a dagger is close to the dashed line y =x, the SQ gives a good estimate of the
corresponding percentile. Different graphs refer to different numerosities of the SQ.
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Fig. 5. Comparison between the SQ and MC simulations. On the x axis there is the numerosity of the MC, in

logarithmic scale; on the y axis there is the probability that errSQ <errMC, where errSQ =
∣∣∣p−pSQ

∣∣∣ and errMC =
∣∣∣p−

pMC

∣∣∣, p is the real value of a parameter of the output probability distribution g, pSQ and pMC are its estimates given by

SQ and MC, respectively. The curves represent the results for various parameters: mean, standard deviation and the
5%,25%,50%,75%,95% quantiles. The horizontal dashed line marks the value 0.5 of probability. Different graphs refer
to different values of the numerosity N of the SQ. In each graph, a vertical dashed line is drawn in correspondance of
the MC numerosity equal to N.
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Fig. 6. Graph (a) represents the probability distribution of the input random vector
(
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)
,

while in graph (b) there is its discretization produced by the SQ with N =20. Graph (c) shows a
comparison between the approximation of g resulting from 103 MC simulations and ĝKS, which
is obtained through the application of a kernel smoothing algorithm to the discrete distribution ĝ
given by the SQ with N =10,15,20. Graph (d) represents a comparison between the cumulative
distribution function resulting from 103 MC simulations and those resulting from the SQ with
N =10,15,20, without application of kernel smoothing.
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Fig. 9. Implementation of the stochastic quantization method with d = 2 and N = 7. The blue
points are a sample of the input random vector X = (X1,X2); the orange points x

(1),...,x(7) are
the possible values of X̂, which is a discrete approximation of X. The orange lines define the

Voronoi regions generated by the set
{
x

(1),...,x(7)
}

: the region associated to x
(i ) contains the

sample points which are closer to x
(i ) than to any other of the orange points.
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