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Abstract

Heat flux at the Arabian Shield is a significant component in reconstructing tectonic,
seismic, and hydrologic models. In this paper we analyze temperature data from all
the available oil and water wells in Israel. We show that the average heat flux in Israel
is 40–45 mW m−2. A supporting evidence for the low heat flux is the relatively deep5

seismicity, extending almost to the mantle in the region. A Heat flux anomaly that
exists in Northern Israel and Jordan could be attributed to groundwater flow or young
magmatic activity (∼100 000 years) that is common in this area. Xenoliths that yield
relatively steep geothermal gradients could be the result of local heating by magmas or
by lithospheric necking and shear heating. The higher Heat flux in Southern Israel and10

Jordan probably reflects the opening of the Red Sea and the Gulf of Eilat and does not
reflect the average value of the Arabian Shield.

1 Introduction

Heat flux is a major factor that affects the rheology of the lithosphere, magmatism,
and groundwater flow (Ranalli and Rybach, 2005). Different assumptions for the heat15

flux in Israel have led to different tectonic and seismological models (Al-Zoubi and ten
Brink, 2002; Aldersons et al., 2003; Sobolev et al., 2005). The heat flux controls the
thickness of the lithosphere, the type of deformation (brittle versus ductile), and the
depth of the seismogenic zone (Ranalli, 1995). Sobolev et al. (2005) and Petrunin and
Sobolev (2006) presented results of a three-dimensional thermo-mechanical model of20

a pull-apart basin formed at left stepping segments of an active continental transform
fault such as the Dead Sea basin. Adopting the classical scheme of a pull-apart basin
formation, they demonstrated that the major parameter controlling the basin structure
and deformation pattern beneath the basin is the thickness of the brittle layer. Signif-
icant ductile deformation of the lower crust and upper mantle associated with basin25

growth due to a pull-apart mechanism requires normal or elevated heat flux. The
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closest fit to the Dead Sea structure have been obtained with the model corresponding
to a surface heat flow above 60 mW m−2. They also argued that a strong lower crust
in a cold lithosphere with heat flow below 50 mW m−2 could not allow the opening of a
pull-apart such as the Dead Sea basin

Recently, Förster et al. (2010) analyzed a set of samples from the uppermost crust5

down to the lithospheric mantle underneath Jordan and argued that their composition
and petrophysical properties support heat flux of 60–65 mW m−2. These values are
compatible with the average heat flux of 56–66 mW m−2 measured in five boreholes
at southeastern Jordan (Förster et al., 2007). Thermobarometric calculations, based
on lower crustal and lithospheric mantle xenoliths, suggest even significantly steeper10

geothermal gradients (e.g. McGuire, 1988; McGuire and Bohannon, 1989; Nasir, 1992;
Stein et al., 1993; Al-Mishwat and Nasir, 2004), thus higher heat flux (>80 mW m−2).
The above considerations contradict the general view of the Arabian Shield as an
anomalously cold terrain characterized by heat flux values below ∼45 mW m−2 (Get-
tings and Showail, 1982). Davies and Davies (2010) showed that the heat flux along15

the Red Sea is very high (>150 mW m−2), whereas the heat flux at the Arabian Shield
is low (<55 mW m−2). Measurements supporting low geothermal heat flux were pub-
lished by Eckstein (1976) and Eckstein and Simmons (1978), who measured thermal
gradients and thermal conductivity in abandoned oil wells and unused water boreholes
distributed over Israel. They calculated an average heat flux of 42 mW m−2. The20

mean value of the corrected heat data for the northern part of the Dead Sea basin
is 38 mW m−2 (Ben-Avraham et al., 1978). Recent re-evaluation of the heat flow data
for the Dead Sea basin (Shalev et al., 2007) confirmed these low values. Based on
coal rank measurements, Bein and Feinstein (1988) showed that a low heat flux has
prevailed in the Dead Sea area since the mid-Miocene period.25

Another characteristic of a large part of the Dead Sea fault is its anomalous deep
seismicity, extending almost to the mantle (Aldersons et al., 2003; Shamir, 2006). Sixty
percent of well-constrained micro-earthquakes (ML≤3.2) in the Dead Sea basin for
the period 1984–1997 nucleated at depths of 20–32 km. The deep seismic activity
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suggests that the lower crust might be cold and brittle and is consistent with a low
heat flow of 40 mW m−2. This situation is different from that of the San Andreas fault,
where the majority of the seismic activity takes place in the upper crust, shallower than
∼15 km depth (e.g., Magistrale, 2002; Rolandone et al., 2004). The slip rate for the San
Andreas Fault is several times higher than for the Dead Sea fault. Hence, one might5

expect a shallower seismogenic zone in Israel. It is probably the difference between the
heat fluxes, 60–80 mW m−2 in California (e.g., Blackwell and Richards, 2004a, b) and
∼40 mW m−2 in the Dead Sea, that is responsible for the anomalous deep seismicity
along the Dead Sea fault.

The purpose of this paper is to reexamine the geothermal heat data collected in Israel10

for the past 50 years and to determine the average geothermal heat flux in Israel.

2 Geological setting

The Arabian Shield is underlain by a continental crust with Phanerozoic sediments
overlaying a Late Proterozoic crystalline basement. The basement consists of meta-
morphic and plutonic rocks (mainly granite and diorite compositions). These old rocks15

(older than 550 Million years) are exposed only in the Eilat area and are covered by
thick sedimentary sequences in most of Israel (Fig. 1). The sedimentary cover, which
consists mainly of limestone and dolomite and also chalk, sandstone, clay and evapor-
ites, thickens toward the northwest.

The tectonic activity along the Red Sea and the Dead Sea transform was accompa-20

nied by widespread volcanism since the Oligocene, mainly on its Arabian side. North-
ern Israel is the only place, where extensive volcanism is also found on the Sinai sub-
plate. Volcanism is intra-plate, alkali-basaltic in nature (e.g. Weinstein et al., 2006),
composed mainly of basaltic flows and scoria cones. It mainly occurs at northeastern
Israel, with thicknesses between a few tens of meters and more than 800 m. Volcan-25

ism in this area is Middle Miocene (17 Ma; Shaliv, 1991) to Late Pleistocene (100 Ka,
e.g. Mor, 1993; Weinstein et al., 2009; Shaanan et al., 2010), but younger ages (a few
thousand years) were reported for some nearby Syrian basalts (Dubertret, 1954).
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The tectonic regime of Israel has considerably changed about 15 Million years ago.
Faulting produced new plate boundaries in the region including the Dead Sea trans-
form, which separates the Sinai sub-plate and the Arabian plate. The Arabian plate
has been displaced by 105 km northwards relative to the Sinai sub-plate. Several
deep pull-apart basins were developed along the Dead Sea transform (Gulf of Eilat,5

Dead Sea, Sea of Galilee, Hula Valley). These basins are topographically low and
their sedimentary cover is very thick. Further south the Arabian plate is also diverging
from the African plate while creating and widening the Red Sea. The different tectonic
boundaries of the Red Sea Rift (extension) and the Dead Sea Transform (shear) have
implications on the heat flux at these fault systems (high at the Red Sea and low at the10

Dead Sea transform).

3 Temperature data

3.1 Temperature logging

Logs of continuous temperature measurements were taken in several oil and water
wells in Israel with the precision of ±0.001◦C. These measurements, when done years15

after drilling, are considered to be the most reliable data, representing the true forma-
tion temperature (the temperature of the geological formation). Often during drilling,
cement is used to plug various intervals. Cement generates considerable heat while
setting. In fact, temperature logs are regularly taken in order to follow the state of the
setting cement. Such logs, performed during and close after drilling, do not represent20

the true temperature and are ignored in this study.

3.2 Drill stem test (DST)

Drill Stem Test is a procedure used to determine the productive capacity, pressure,
permeability or extent of an oil or gas reservoir. DST is usually conducted with a
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downhole shut-in tool that allows the well to be opened and closed at the bottom of
the hole or above the screen with a surface-actuated valve. Often, temperature is also
measured during the test. These temperature measurements are considered to be a
reliable formation temperature when the test has recovered a fair amount of formation
water.5

3.3 Bottom-hole temperature (BHT)

Bottom-hole temperature is the temperature in the borehole at total depth at the time
it is measured. BHT data are routinely obtained during wire-line logging operations
and are taken as the maximum recorded temperature during a logging run. The data
are typically lower than the true virgin formation rock temperature due to the cooling10

effect of the drill fluid circulation. If a bottom-hole temperature can be measured several
times at a fixed depth while the well is shut in (no drill fluid circulation), it is possible
to monitor the well bore temperature as it recovers toward its pre-drilling state, thus
permitting extrapolation to virgin rock temperature. However, in the oil wells in Israel,
BHT was not measured in every logging operation. In many cases, the temperature15

from one logging run was often copied later to another log. Therefore, every depth has
only one record of measured temperature.

3.4 Calculated temperature-depth data base

Förster (2001) showed that in the German basin temperatures perturbed by drilling
and mud circulation are higher than the true formation temperature at shallow depth20

and, below the pivot point, they are lower. In this study, we used Harrison et al. (1983)
correction that was developed from North American data, which relates the difference
between the formation temperature and BHT to the depth (Z) at which it is measured:

Tcor=−16.51213476+0.01826842109×Z−2.344936959×10−6×Z2 (1)
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The Tcor values are added to the original BHT values. Z is the depth in meters.
The equation is similar to the ones originally proposed by Kehle et al. (1970) and it
was applied to produce geothermal maps for North America (Blackwell and Richards,
2004a, b; Blackwell et al., 2006; Tester et al, 2006).

Figure 2 shows that the newly corrected BHT closely fits with temperature logs and5

DST data. These corrected values are used below for calculating temperature at depth
and heat flux maps. In this analysis, only wells that have more than three measure-
ments in different depths are included (221 wells).

4 Data interpolation

4.1 Heat flux map10

A geothermal gradient was calculated for each well with reliable newly generated tem-
perature data. The thermal conductivity was estimated for every section of each well
from its lithology (Table 1). The product of the geothermal gradient and the thermal con-
ductivity yields the heat flux (Fig. 3). In some cases the geothermal gradient changes
within the well with the lithology, conserving the heat flux. In other cases the tempera-15

ture gradient was calculated only on one segment of the well with a uniform lithology. In
cases where there was a uniform gradient over the entire well, which penetrated mixed
lithology of limestone, dolomite, chalk, clay, and marl, an average thermal conductivity
of 1.8 W (◦C m)−1 was assumed.

The results show that southeast of the Sea of Galilee and in southern Israel the heat20

flux exceeds 60 mW m−2. Elsewhere, the heat flux is between 35 and 55 mW m−2.
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4.2 Maps of temperature at depth

Following Turcotte and Schubert (1982), we assume that the heat production due to
radioactive elements per unit mass decreases exponentially with depth as:

T (X )= T0+
qmX
Ki

+
ρcH0h

2
r

Ki

(
1−e−X/hr

)
(2)

where X is depth beneath surface, T0 is the temperature at the surface, Ki is the thermal5

conductivity of layer i , qm is the mantle heat flux, H0 is the radiogenic heat production,
ρc is the density of the rock, and hr is a length scale. Following Turcotte and Schu-
bert (1982), we use hr = 10 km and ρc H0 = 0.0037 mW m−3 for the basement. Each
borehole was divided into several layers depending on its lithology. Because most of
Israel’s sedimentary cover consists of chalk, limestone, and dolomite, no radiogenic10

heat production is assumed for this part.
A depth-temperature profile was fitted to each borehole using Eq. (2). qm was iter-

atively changed until the surface heat flux was equal to the heat flux in that borehole.
Temperature at 4, 6, 8, and 10 km depth are shown in Figs. 4–7. In each map, the con-
touring is based on the depth prifile of the boreholes (black circles and is linearly inter-15

polated between the boreholes using ANUDEM – a computer algorithm (Hutchinson,
1989). The reliability of the presented results decreases with depth since only a few
measurements were taken at depths greater than 6 km and none were taken deeper
than 6.5 km. Accordingly, the temperature at depths of 6, 8, and 10 km strongly depend
on the calculated surface heat flux.20

5 Discussion

The average geothermal heat flux throughout Israel is low (40–45 mW m−2). Israel is
part of the Sinai sub-plate that formed as a result of the break up from the Arabian
plate along the left lateral Dead Sea transform and the opening of the Red Sea.
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In southern Israel, there are no temperature anomalies down to 10 km depth. How-
ever, the thin sedimentary cover in this region and the high thermal conductivity of the
basement results in a relatively high heat flux through southern Israel. Similar values
were found by Förster et al. (2007, 2010) at this area, which probably represents the
effects of the opening of the Red Sea but not the common heat flux in Israel.5

At northern Israel, there is a thermal and heat flux anomaly east of the Sea of Galilee.
This anomaly could be attributed to groundwater flow. Alternatively, this could be re-
lated to crustal heating associated with the young magmatic activity (∼100 000 years)
in this area.

Upper mantle (lithospheric) and lower crustal xenoliths, including peridotites, pyrox-10

enites and mafic granulites, are often found in Israeli and other Arabian basalts. Ther-
mobarometric calculations, based on mineral equilibria, usually yield relatively high
temperatures and steep geothermal gradients (McGuire, 1988; McGuire and Bohan-
non, 1989; Nasir, 1992; Stein et al., 1993; Al-Mishwat and Nasir, 2004; Gazit, 2005),
e.g. 1.015 ◦C at 15 kbar. This implies a surface heat flux over 80 mW m−2 in promi-15

nent disagreement with the above. However, the measured high T in xenoliths could
as well be the result of local heating at depth by the ascending magmas (Stein et
al., 1993; Weinstein et al., 2006) with no impact on heat flux. Moreover, several recent
studies suggest that strain localization and development of necking instabilities may oc-
cur even in cold lithosphere due to very limited stretching. Benallal and Bigoni, 2004;20

Regenauer-Lieb and Yuen, 2004; Kaus and Podladchikov, 2006; Regenauer-Lieb et al.,
2006; Weinberg et al., 2007; Rosenbaum et al., 2010; Ricard and Froidevaux (1986),
Zuber et al. (1986). Accordingly, it could be that a limited extension of the cold Arabian
shield lead to, the development of localized lithospheric necking and shear heating re-
quired for the high equilibrium temperature documented by the xenoliths. Alternatively,25

Forster et al. (2010) suggested that the high P-T indicated by lower crustal xenoliths is
a “frozen-in” signal, which represent P-T conditions in Pan-African time (Late Protero-
zoic).
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Ben-Avraham and Schubert (2006) proposed a conceptual model of a “drop down”
mechanism for the formation of the Dead Sea basin, alternative to the classic pull-
apart approach. According to their suggestion, propagating faults isolated a block of
lithosphere that dropped into the mantle. Ben-Avraham et al. (2010) provided a quan-
titative description of this process by 3-D numerical simulations in a model with a seis-5

mogenic crust governed by a continuum damage rheology. Their modeling suggests
that pre-existing heavy magmatic body, formed in the crust or upper mantle during
previous stages of regional magmatism started dropping down into the upper mantle
when strike-slip faults were created. The isostatically non-compensated heavy body
detached from the surrounding lithosphere sinking and pulls down the crustal block10

above it, providing the main mechanism driving formation of the Dead Sea basin. Nu-
merical simulations indicate that the resulting basin is rhomb-shaped, grows by the
addition of distinct segments to its edges and created fault geometry mimics the pull-
apart rhomb-shaped structure, but the mechanism of the basin formation is very dif-
ferent. The proposed mechanism accounts for the observed low heat flow and deep15

seismicity in the Dead Sea.

6 Conclusions

Reexamination of temperature data confirms that the common geothermal heat flux
throughout Israel is low (40–45 mW m−2). The heat flux is higher in southern Israel
as a result of the opening of the Red Sea. In northeastern Israel, the relatively high20

heat flux is attributed to groundwater flow or to the young magmatic activity (∼100 000
years) that is common in this area. The steeper geothermal gradients implied by data
from xenoliths could be the result of local heating either by the magmatic activity or by
lithospheric necking and shear heating.
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Table 1. Thermal conductivities of different rocks (data from Eckstein and Simmons, 1978 and
Maurath, 1989).

Rock type Thermal conductivity (W (◦C m)−1)

Limestone 2.1
Dolomite 3.5
Chalk and Marl 1.3
Clay and Shales 1.2
Sandstone 2.1
Salt 3.2
Basalt 1.7
Granite (basement) 2.7
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Fig. 1. The depth of the crystalline basement from the surface (after Rybakov and Segev, 2004
and Segev et al., 2006). This depth represents the sediment thickness. In southern Israel the
basement is exposed.
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Fig. 2. Measured bottom-hole temperature and its correction along with measured drill stem
temperature and temperature logs in (a) Negba, (b) Nir-Am, (c) Ashdod, and (d) Helez fields.
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figure 3Fig. 3. Calculated geothermal heat flux in Israel from borehole temperature measurements.
South east of the Sea of Galilee and in southern Israel the heat flux is relatively high. Black
circles represent the boreholes used for the calculation and interpolation.
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figure 4Fig. 4. Average temperature at 4 km.
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figure 5Fig. 5. Average temperature at 6 km.
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figure 6Fig. 6. Average temperature at 8 km.
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Fig. 7. Average temperature at 10 km.
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