doi:10.5194/sed-4-1-2012 Discussions

Solid Earth Discuss., 4, 1-31, 2012 ~ -'s\ :
www.solid-earth-discuss.net/4/1/2012/ ‘GG, So"d Earth

© Author(s) 2012. CC Attribution 3.0 License.

This discussion paper is/has been under review for the journal Solid Earth (SE).
Please refer to the corresponding final paper in SE if available.

The lithosphere-asthenosphere boundary
observed with USArray receiver functions

P. Kumar'?, X. Yuan', R. Kind'>, and J. Mechie'

'Deutsches GeoForschungsZentrum GFZ, Potsdam, Germany
National Geophysical Research Institute NGRI (CSIR), Hyderabad, India
3Freie Universitat Berlin, Fachbereich Geowissenschaften, Berlin, Germany

Received: 30 November 2011 — Accepted: 24 December 2011 — Published: 6 January 2012
Correspondence to: R. Kind (kind @ gfz-potsdam.de)

Published by Copernicus Publications on behalf of the European Geosciences Union.

Joadeq uoissnosiq | Jadeq uoissnosig

Jaded uoissnosiqg

il

Jaded uoissnosiqg

SED
4,1-31, 2012

LAB observed with
USArray

P. Kumar et al.

Title Page

L

Abstract Introduction

Conclusions References

Tables Figures

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

() ®


http://www.solid-earth-discuss.net
http://www.solid-earth-discuss.net/4/1/2012/sed-4-1-2012-print.pdf
http://www.solid-earth-discuss.net/4/1/2012/sed-4-1-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

Abstract

The dense deployment of seismic stations so far in the western half of the United
States within the USArray project provides the opportunity to study in greater detalil
the structure of the lithosphere-asthenosphere system. We use the S receiver function
technique for this purpose which has higher resolution than surface wave tomography,
is sensitive to seismic discontinuities and has no problems with multiples like P receiver
functions. Only two major discontinuities are observed in the entire area down to about
300 km depth. These are the crust-mantle boundary (Moho) and a negative boundary
which we correlate with the lithosphere-asthenosphere boundary (LAB) since a low ve-
locity zone is the classical definition of the seismic observation of the asthenosphere
by Gutenberg (1926). Our S receiver function LAB is at a depth of 70-80km in large
parts of westernmost North America. East of the Rocky Mountains its depth is gener-
ally between 90 and 110 km. Regions with LAB depths down to about 140 km occur
in a stretch from northern Texas over the Colorado Plateau to the Columbia Basalts.
These observations agree well with tomography results in the westernmost USA and
at the east coast. However, in the central cratonic part of the USA the tomography LAB
is near 200 km depth. At this depth no discontinuity is seen in the S receiver functions.
The negative signal near 100 km depth in the central part of the USA is interpreted
by Yuan and Romanowicz (2010) or Lekic and Romanowicz (2011) as a recently dis-
covered mid lithospheric discontinuity (MLD). A solution for the discrepancy between
receiver function imaging and surface wave tomography is not yet obvious and requires
more high resolution studies at other cratons before a general solution may be found.
Our results agree well with petrophysical models of increased water content in the as-
thenosphere, which predict a sharp and shallow LAB also in continents (Mierdel et al.,
2007).
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1 Introduction

The radial structure of the Earth’s interior is basically determined from seismology. The
main elements of Earth structure are separated by seismic discontinuities (Moho, 410
and 660 discontinuities, core-mantle boundary, inner core boundary). At about the
same time as when the first seismic models have been obtained, Wegener (1912) sug-
gested that continents drift laterally over thousands of kilometers, and the existence of
an elastic lithosphere overlying a plastic asthenosphere was postulated (Barrell 1914).
Gutenberg (1926) suggested that a seismic low velocity zone in the upper mantle,
which he had deduced from P phase observations, could possess reduced viscosity
and thus permit continents to move laterally. Until now, the lithosphere-asthenosphere
boundary (LAB) is still the poorest known boundary, although it is probably the most
important boundary for the description of the drifting plates. Modern global reference
models have averaged crustal models, but almost no indication of the lithosphere-
asthenosphere system.

Models for the causes of the asthenosphere could be the enrichment of volatiles
due to increased temperature (e.g. Priestley and McKenzie, 2006) or increased water
content leading to silicate melt (e.g. Mierdel et al., 2007). Karato (2012) suggested
grain sliding, which explains two sharp seismic low velocity zones near about 100 and
200 km depth under continents. Temperature effects predict a broad LAB at depths
near 200 km below continents, whereas water content predicts a sharper and shallower
LAB beneath continents. Several geophysical observations of the LAB are compared
by Eaton et al. (2009).

Since the times of Gutenberg, seismologists have been searching for low velocity
zones in the upper mantle which could represent the asthenosphere. A low velocity
zone is difficult to detect with wide-angle body waves because their traveltime curves
do not exhibit signals which travel with the wave speed inside the low velocity zone.
Nevertheless Thybo and Perchuc (1997) and Thybo (2006) reported about a shallow
low velocity zone in the continental mantle globally (8° discontinuity), observed in short
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period wide-angle data (mainly controlled source). However, seismic surface wave
tomography became the essential method in studying the lithosphere-asthenosphere
system, although it is relatively insensitive to discontinuities and has less resolution
than body waves due to longer periods. For a recent review of the deep structure
of cratons using surface waves and of a description of the method see e.g. Lebe-
dev et al. (2009). Body waves in the form of scattered waves are now used again
to a larger extent to study the lithosphere-asthenosphere system. The so called “re-
ceiver functions” are short period scattered teleseismic signals converted from P to S
waves, or vice versa, at seismic discontinuities beneath a recording station. See Li
et al. (2004) for an early application at the Hawaiian plume and Yuan et al. (2006) or
Kind et al. (2012) for a description of the technique. Kumar et al. (2006) and Kumar
and Kawakatsu (2011) have shown good examples of a subducting LAB in continental
and oceanic environments, respectively. Rychert and Shearer (2009) have compiled a
global map of the LAB from P receiver function observations (see also Romanowicz,
2009). They found a negative discontinuity near 100 km depth in many continental re-
gions, which they said may not be the LAB, because the LAB is thought to be deeper
under continents. Fischer et al. (2010) have compiled global S receiver function stud-
ies showing signals considered as being caused by the LAB. The two receiver function
techniques to observe the LAB, the P and the S receiver functions, differ in an impor-
tant detail. In P receiver functions the LAB signal may be overwhelmed by multiples
from the Moho or internal crustal discontinuities. In contrast, in S receiver functions
direct conversions and multiples are clearly separated. Therefore S receiver functions
are less affected by possible misinterpretations.

Abt et al. (2010) and Ford et al. (2010) have compared LAB observations from S
receiver functions and surface wave tomography studies in North America and Aus-
tralia, respectively. Abt et al. (2010) found disagreement in the old cratonic part of the
USA. Here, the surface wave LAB is near 200 km depth and S receiver functions ob-
serve a negative discontinuity near 100 km depth. No S receiver function signal was
observed near the cratonic surface wave LAB (~200km) and no surface wave signal
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near the cratonic S receiver function signal (~100km). In the westernmost USA both
techniques agree in their observations of the LAB near depths of 100km or less. The
shallow negative S receiver function signal in the cratonic part of the USA was named
Mid Lithospheric Discontinuity (MLD). This discontinuity may be identical with the 8°
discontinuity postulated for the continental mantle by Thybo and Perchuc (1997) and
Thybo (2006). Miller and Eaton (2010) observed in S receiver functions two signals
from low velocity zones in the cratonic parts of Canada and interpreted the shallower
one as a remnant slab. Lekic and Romanowicz (2011) also observed, with improved
tomography techniques, the MLD near 100 km depth and the LAB at 200250 km depth
globally in cratonic regions. Two LABs, a deeper and a shallower one, have been ob-
served in S receiver functions by Zhao et al. (2011) in Tibet as an indication of the
Tibetan lithosphere overriding the Asian lithosphere. The overall lithospheric thickness
in Tibet reaches about 250 km which is in very good agreement with surface wave re-
sults (e.g. Priestley and McKenzie, 2006). In South Africa two negative phases are also
found, one at 150—-200 km and the second one near 300 km (Kastle, 2011). It seems
that also in the east European platform two negative converters may exist above each
other (Geissler et al., 2010). These observations indicate that the lithospheric structure
of the various cratons may differ greatly. This leads to a number of questions concern-
ing especially the cratonic lithosphere. Is the LAB deep or shallow? Are there two
LABs in some places? What is the MLD? Why is the surface wave LAB in the central
parts of the USA not observed with S receiver functions? The solution can only be
found with more data. Significantly more data are already available in the western half
of the USA. These are the openly available USArray data. Some earlier results have
been published by Kumar et al. (2012). Here we present the full amount of presently
available S receiver function data from the upper mantle in the USA.
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2 Data and observations

The website http://www.usarray.org/ provides detailed information about the USArray
project. More than 400 seismic stations are installed in an area of the USA with about
70 km average spacing. After a period of two years they are moved to a neighbouring
area thus covering successively the entire territory of the USA. The resulting huge
amount of seismic data is openly available through IRIS (http://www.iris.edu/hq/). Up
to now the western half of the USA is covered. The stations we used for our study
are shown in Fig. 1. They include also permanent stations. We derived S receiver
functions from all stations. For this purpose the vertical component is deconvolved by
the S signal on the radial component and migrated into the depth domain. The IASP91
global reference model was used for the migration. The results are shown along many
profiles, each one degree wide. See Fig. 2 for the location of the profiles and Figs. 3—
19 for the migrated S receiver function sections along each profile. The difference in
the ray coverage and the resulting data quality is obvious between the USArray data in
the west and the data from the few permanent stations in the east.

All data show very clearly two significant seismic phases down to the depth of
300km. Both are of comparable amplitude and frequency content and very similar
in appearance in the entire covered area. The deeper one is visible near 100 km depth
and has a negative sign (blue - meaning velocity reduction downward, marked LAB in
Figs. 3—19). The shallower one is positive (red - meaning velocity increase downward,
marked Moho) and is visible near 40 km depth. The positive signal is clearly the Moho.
The negative signal indicates the general existence of a negative velocity jump under-
neath the entire study area. We call it the S receiver function LAB (S-RF LAB) following
Gutenberg (1926), although this interpretation in the central part of the USA is not in
agreement with surface wave results (e.g. Abt et al., 2010).

The Moho signal is not the aim of our present study. P receiver functions are more
useful for Moho studies because they have shorter periods which lead to higher resolu-
tion. Besides the Moho and S-RF LAB no additional phase with comparable amplitude
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is visible in all S receiver function data (Figs. 3—19) in the entire USA. Especially no
indication of the tomography LAB near 200 km depth in the cratonic USA is visible. A
map of the depth of the S-RF LAB is shown in Fig. 20. The S-RF LAB is at a depth
of 70-80km in large parts of westernmost North America. East of the Rocky Moun-
tains its depth is generally between 90 and 110km. Regions with LAB depths down
to about 140 km occur in a stretch from northern Texas over the Colorado Plateau to
the Columbia Basalts. These structures could perhaps be related to fragments of the
Farallon slab (e.g. Currie and Beaumont, 2011). Levander et al. (2011) interpreted
the high velocity anomaly below the Colorado Plateau, which they also derived from S
receiver functions, as delamination of lower parts of the lithosphere.

3 Interpretation, discussion, conclusions

Shallow (near 100 km) depths of the (possible) LAB beneath most parts of North Amer-
ica have been found by Rychert and Shearer (2009) in P receiver functions. Similar
LAB depths have also been found by Li et al. (2007) at the west coast and by (Rychert
et al., 2007) at the east coast. Abt et al. (2010) also observed similar depths for a
negative discontinuity at a few sparsely distributed stations in the entire USA which
are confirmed by our S-RF observations with USArray data. In the central part of the
USA, Abt et al. (2010) use the name MLD for the negative discontinuity near 100 km
depth since the LAB is thought to be deeper. The MLD might be identical with the 8°
discontinuity postulated by Thybo (1997) for the continental mantle globally.

Disagreement between the S-RF LAB and the tomography LAB is not the only case
that depth determinations of the LAB with different geophysical methods do not agree
(see e.g. the discussion by Eaton et al., 2009). A good comparison of LAB depth
determinations with magnetotelluric techniques, receiver function techniques and P
travel time residual techniques in Europe is given by Jones et al. (2010).

The missing confirmation of the deep surface wave LAB (near 200 km) by S receiver
functions is interpreted as being caused by a broad negative gradient at this depth,
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which is supposed to be not visible in S receiver functions (Romanowicz, 2009). Our
data are filtered with a 4 s low pass filter. Numerical modeling (Kind et al., 2012) indi-
cates, however, that a gradient as in Lekic and Romanowicz (2011) should be visible in
the S receiver function data. We conclude therefore that the possible negative gradient
at 200 km should be weaker and spread out over a wider vertical region than previously
modeled with long-period surface waves.

Rychert and Shearer (2009) concluded from P receiver functions that the LAB could
be about 10km sharp. Li et al. (2007) concluded from S receiver functions in the
western USA a sharpness of less than 30km. This argues against a thermal origin
of the LAB. A shallow and sharp LAB also beneath continents is, however, explained
by hydrous silicate melt caused by excess water in the Mierdel et al. (2007) model.
Also the missing observations of the bottom of the asthenosphere are explained by
this model, because it predicts a very smooth velocity increase at the bottom of the
asthenosphere. The grain sliding model by Karato (2012) predicts two sharp negative
discontinuities in the continental shallow upper mantle. This model would explain our
shallow data in North America but it would produce a second, deeper signal which is
not seen in the USArray data. In other cratons (e.g. South Africa) where two negative
discontinuities may exist, it could fit better.

Dalton et al. (2011) report about discussions on the global existence of a recently
confirmed negative seismic discontinuity at 60—120 km depth, about its relation to the
LAB and how it should be named. Our present results obtained from the USArray data
are in agreement with the observations which have been obtained earlier by e.g. Thybo
and Perchuc (1997), Rychert and Shearer (2009) and in reviews of Fischer et al. (2010)
or Kind et al. (2012) and in many additional reports on temporary seismic deployments
in many parts of the world. It seems that this discontinuity is in its appearance com-
parable to the Moho, apart from the opposite polarity. Since the Moho is a seismic
discovery, it was named by seismologists. The LAB is not a seismic definition. It is
therefore not easy to equate any seismic observations with the LAB. Several names
for a negative seismic discontinuity in the upper mantle exist already, e.g. Gutenberg
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discontinuity (also sometimes used for the core-mantle boundary), 8° discontinuity or
now Mid Lithospheric Discontinuity (MLD). In any case, our data show that the sharpest
and strongest negative discontinuity beneath the entire USA is near 100 km and not
near 200 km.
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Fig. 6. Migrated S receiver functions along profiles Y07 and Y08 as in Fig. 3.
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Fig. 7. Migrated S receiver functions along profiles Y09 and Y10 as in Fig. 3.

Jaded uoissnasiq

18


http://www.solid-earth-discuss.net
http://www.solid-earth-discuss.net/4/1/2012/sed-4-1-2012-print.pdf
http://www.solid-earth-discuss.net/4/1/2012/sed-4-1-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/

SED

Jaded uoissnasig

4,1-31, 2012
Longitude (deg)
-130 -120 -110 -100 -90 -80 -70

= ™ S L LAB observed with
&
< . USArray
$
% O P. Kumar et al.

(2]

2

»

@,
E o)
g S Title Page ‘
g S

.
=
2
] @,

S

> K N
£ 3
. :
§ 200 -

Full Screen / Esc ‘
| i

PR S
-100
Longitude (deg)

-120 -110

Printer-friendly Version

Interactive Discussion

() ®

Fig. 8. Migrated S receiver functions along profiles Y11 and Y12 as in Fig. 3.
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Fig. 12. Migrated S receiver functions along profiles Y19 and Y20 as in Fig. 3.
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Fig. 14. Migrated S receiver functions along profiles X03 and X04 as in Fig. 3.
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Fig. 15. Migrated S receiver functions along profiles X05 and X06 as in Fig. 3.
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Fig. 16. Migrated S receiver functions along profiles X07 and X08 as in Fig. 3.
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Fig. 17. Migrated S receiver functions along profiles X09 and X10 as in Fig. 3.
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Fig. 18. Migrated S receiver functions along profiles X11 and X12 as in Fig. 3.
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Fig. 19. Migrated S receiver functions along profiles X13 and X14 as in Fig. 3.
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Fig. 20. Map of receiver function LAB. The dashed line marks the region with an approximately
200 km thick lithosphere obtained from surface wave studies (Yuan and Romanowicz 2010).
Key: see Fig. 1.
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