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3Université des sciences et de la technologie, 16111 Bab Ezzouar, El-Alia Alger, Algeria

Correspondence to: V. Lesur
(lesur@gfz-potsdam.de)

Abstract. We investigated how the noise in satellite magnetic data affects magnetic lithospheric

field models derived from these data in the special case where this noise is correlated along satellite

orbit tracks. For this we describe the satellite data noise as a perturbation magnetic field scaled

independently for each orbit, where the scaling factor is a random variable, normally distributed with

zero mean. Under this assumption, we have been able to derive a model for errors in lithospheric5

models generated by the correlated satellite data noise. Unless the perturbation field is known,

estimating the noise in the lithospheric field model is a non-linear inverse problem. We therefore

proposed an iterative post-processing technique to estimate both the lithospheric field model and its

associated noise model. The technique has been successfully applied to derive a lithospheric field

model from CHAMP satellite data up to spherical harmonic degree 120. The model is in agreement10

with other existing models. The technique can be in principle extended for all kind of potential field

data with ”along track” correlated errors.

1 Introduction

All geophysical data are contaminated by signals that cannot be easily described by models. These

poorly parameterized contributions are often treated as errors and they most of the time exceed the15

pure instrumental noise. These kind of errors are particularly difficult to deal with because they

are often correlated in space and/or time. Further they may not follow a gaussian distribution. Yet,

handling properly the data errors is at the heart of the data interpretation process and it usually

requires their full statistical description – i.e. for a set of discrete measurements, the knowledge of

the full covariance matrix of the data errors.20
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Geopotential data – i.e. gravity and magnetic measurements – are not an exception. For these

types of data, the inverse problem that consists in finding the sources of the signals is particularly

ill-posed, and the proper statistical description of the data errors is necessary. Failing to do so may

lead to false conclusions about the signal sources. From a practical point of view, scientists have

been relatively successful in estimating a priori the noise in gravity or magnetic data sets, however25

correlations between errors have been most of the time ignored. This is partly because, when known,

the full covariance matrix for the data errors is generally so large that it cannot be handled easily, even

on modern computers (but see Langel et al. (1989); Holme and Bloxham (1996); Rygaard-Hjalsted

et al. (1997); Holme (2000) as examples where correlated errors are accounted for in geomagnetism).

The effects of these correlation errors are obvious in airborne, marine and satellite data. Typically,30

in all these type of surveys, the data are collected along linear paths and, after processing, the cor-

relation errors become apparent as offsets between adjacent tracks. They then appear in maps and

models as spurious anomalies, elongated in the direction of the tracks. An example of such an effect

is shown in this manuscript for magnetic models derived from satellite data. The traditional way

of dealing with this noise has been to perform a ”leveling” of the data. In airborne geophysics, the35

approach mainly consists in deriving for each track a polynomial expression that is subtracted from

the data such as to minimize data differences at the cross-over points (see for a review e.g. Hamoudi

et al. (2010) ). The method has been also adapted to satellite magnetic data. In that case a large-scale

field of external origin is fitted to a data set made of only few tracks. This allows to successfully

derived magnetic field models of the lithosphere to relatively high degree. A well known example is40

the MF series of models – e.g. Maus et al. (2008). However the method, as applied to satellite data,

has its drawbacks. The effects of its application have been carefully studied in Thebault et al. (2012)

and it appears that, depending on the way the method is applied, it can lead to significant distortions

of the final model. However, the weakest point of this so called ”along track filtering” approach is

the impossibility to estimate how much the processing applied distorts the model. For this aspect,45

post-processing techniques are preferable.

So far post-processing techniques have been developed and applied only to models derived from

satellite gravity data – e.g. Kusche (2007). To the authors knowledge such techniques have never

been applied to magnetic models although we should note the attempt to estimate the model co-

variance matrix in Lowes and Olsen (2004). In this manuscript we present and apply such a post-50

processing scheme for a model of the magnetic lithospheric field derived from ten years of CHAMP

satellite data (Reigber et al., 2005). Although we are presenting this work from its application side, it

has deeper roots: We investigated how typical noise correlated patterns leak, through a least squares

fitting process, inside a magnetic model of the lithospheric field. Therefore this leads to a model

of the noise inside the lithospheric model. Once such a noise model is available, numerous post-55

processing schemes are possible; we just applied one specific approach to show that the noise model

we obtain is relevant. The final resulting model of the lithospheric field is nonetheless of high qual-
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ity and compares well with other recently released models (e.g. MF7 that is not published – but the

MF6 is presented in Maus et al. (2008), CHAOS-4 (Olsen et al., 2010b)) as well as older models

(see for a review Thébault et al. (2010)).60

The manuscript is organized as follows. In the next section we set the hypothesis and approx-

imations, derive the general expression for the noise model and give examples of possible noise

depending on the characteristic of the perturbation magnetic field in the data. In the third section

we describe in details the two steps process towards the final lithospheric field model, the resulting

model is then discussed. We conclude in the last section.65

2 The lithospheric noise model

In this section we present a noise model for a lithospheric model estimated from a set of radial mag-

netic data. We choose to present this case only in the main part of this manuscript as the equations

are relatively simple to derive. The description for the usual case where the lithospheric model is

obtained from the three components of a magnetic data set is given in appendix A.70

2.1 Theory

We consider a magnetic data set made of radial component readings along a single CHAMP satellite

half-orbit during night times. For simplicity we will assume that a track follows a meridian – i.e. it

corresponds to a single longitude value , which is a reasonable approximation for near-polar orbiting

satellites. Several magnetic field sources are contributing to these data (Hulot et al., 2007), typically75

the core and lithospheric fields, the ionospheric and magnetospheric fields, and the fields generated

by field aligned currents. Other contributions exist, as the field induced in the conductive layer

of the Earth, but they are of much weaker amplitudes. Mathematical models are available for all

these contributions and can be subtracted from the data, leaving residuals due mainly to the limited

precision of these models. In particular, the description of the external field is not very accurate and80

the residuals obtained along that half-orbit track contain relatively long wavelengths. We assume

that these residuals are well approximated by the radial component of an external magnetic field

model that does not present time dependencies. It is hereafter named as the perturbation field and

writes:

Brp(θ,ϕ,r)=−
N∑
n,k

(
r

a
)n−1nϵknY

k
n (θ,ϕ), (1)85

where ϵkn is the Gauss coefficient of degree n and order k, a= 6371.2km is the Earth’s reference

radius, Y k
n (θ,ϕ) are the Schmidt semi-normalized Spherical Harmonics (SHs). We use along this

manuscript the convention that negative orders, k < 0, are associated with sin(|k|ϕ) terms whereas

null or positive orders, k≥ 0, are associated with cos(kϕ) terms.
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We consider also a model of the radial component of a magnetic field of internal origin with no90

temporal dependencies. This model becomes below the lithospheric noise model we want to derive:

B̃ri(θ,ϕ,r)=
L∑
l,m

(
a

r
)l+2(l+1)g̃ml Y m

l (θ,ϕ). (2)

It is not possible to separate external field contributions from internal field contributions for data

collected along a single meridian (Olsen et al., 2010a) – i.e. a single half-orbit, hence we can fit by

least-squares the residuals defined in Eq. 1 with the lithospheric model given in Eq. 2 and find a95

non-zero solution. This least-squares solution is found by minimizing the functional:

Φj =
∑
i

wi|B̃ri(θi,ϕj ,r)−Brp(θi,ϕj ,r)|2, (3)

where θi are sampling points along the half-orbit, ϕj is the longitude of the meridian that we labeled

with the subscript j and wi are weights that are defined below.

Over 10 years, the CHAMP satellite has collected data along a large number M of half-orbits. We100

assume now that for each orbit the perturbation field model defined by Eq. 1 is scaled by a number

ηj and that all orbits are at the same radius r. This latter point is clearly a strong approximation but

there is no obvious way to avoid it. Again, these external field contributions can be interpreted as a

field of internal origin. To estimate this field, the functional we have to minimize is then:

Φ=
∑
i,j

wi|B̃ri(θi,ϕj ,r)−ηj ·Brp(θi,ϕj ,r)|2. (4)105

Minimizing Φ for the Gauss coefficients g̃ml leads to a system of equations:

AtA g̃=Atb (5)

where g̃= [g̃ml ]{l,m}. The matrix product AtA is derived from Eqs. 2, 4 and the elements of this

product associated with the degrees and orders l,l′,m,m′ writes:

{AtA}l,m,l′,m′ =M(
a

r
)l+l′+4 (l+1)(l′+1)⟨P |m|

l ,P
|m′|
l′ ⟩Πmm′ (6)110

where the product ⟨Pm
l ,Pm′

l′ ⟩ is defined by ⟨Pm
l ,Pm′

l′ ⟩=
∑

iwiP
m
l (cosθi)P

m′

l′ (cosθi). The vari-

able Πmm′ has been introduced to cover three cases:

Πmm′ =


1
M

∑M
i=1cosmϕi sin|m′|ϕi if mm′ < 0

1
M

∑M
i=1cosmϕi cosm

′ϕi if m≥ 0,m′ ≥ 0

1
M

∑M
i=1sin|m|ϕi sin|m′|ϕi if m< 0,m′ < 0,

(7)

and is symmetric relative to its subscripts – i.e. Πmm′ =Πm′m.

The elements of the right hand side vector of Eq. 5 are:115

{At b}l,m =−M
N∑
n,k

(
a

r
)l−n+3 n(l+1) ⟨P |k|

n ,P
|m|
l ⟩ ϵkn χk

m. (8)
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Depending on the sign of the orders m and k, χk
m takes the following values:

χk
m =


1
M

∑M
i=1cosmϕi coskϕi ηi if m,k≥ 0

1
M

∑M
i=1cosmϕi sin|k|ϕi ηi if mk< 0

1
M

∑M
i=1sin|m|ϕi sin|k|ϕi ηi if m,k< 0,

(9)

and, as for Πmm′ , its is symmetric relative to its subscripts: χk
m =χm

k . We note at this point that it

is important to have the ηi constant along half-orbits otherwise the summations over latitudes and120

longitudes could not be separated.

For very large number M of orbits uniformly distributed along longitudes, the quantity Πmm′

tends to a δ-function – i.e. Πmm′ ≃ ( 12 +
1
2δm0)δmm′ . Further, by setting the weights wi to wi =

sinθi and assuming that the sampling points are evenly spaced over the full meridian, we have125

⟨P |m|
l ,P

|m|
l′ ⟩= 4−2δm0

2l+1 δll′ . The value given to the weights wi is less important than insuring the or-

thogonality of the legendre functions through the product ⟨P |m|
l ,P

|m|
l′ ⟩. This is also what a modeler

tries to acheive when building a lithospheric magnetic field model from real data. However, assum-

ing that both Πmm′ and ⟨P |m|
l ,P

|m|
l′ ⟩ can be regarded as δ-functions, it is easy to see from Eq. 6 that

the product matrix AtA is diagonal. Now turning to Eqs. 8, 9, if the ηi form a set of uncorrelated130

random variables, the χk
m are also random variables with zero mean.

The Gauss coefficients for the lithospheric noise model in Eq. 2 are then obtained by combining

Eqs. 5, 6 and 8. They are:

g̃ml =−
N∑
n,k

(
r

a
)l+n+1n

2l+1

2l+2
⟨P |k|

n ,P
|m|
l ⟩ ϵkn χk

m. (10)

They correspond to the noise in a lithospheric field model that would be generated by un-modeled135

external fields in the radial component of magnetic data. Similarly, it is straightforward to find the

noise in a lithospheric field model (i.e. static internal field model) generated by a perturbation field

of internal origin. This case is relevant for signals generated in the lower E-region ionosphere (e.g.

at 110 km altitude) when data are acquired at satellite altitudes. Other possible sources for this type

of noise are the un-modeled induced fields generated in the conductive layers of the Earth by rapid140

variations of the external fields. It gives:

g̃ml =
N∑
n,k

(
r

a
)l−n(n+1)

2l+1

2l+2
⟨P |k|

n ,P
|m|
l ⟩ ıkn χk

m, (11)

where ıkn are the Gauss coefficients for the ionospheric and/or induced field models.

In order to understand the behaviour of the lithospheric noise model, it is important to have an

estimate of the probability density function of the random variable χk
m. Assuming the random145

variable η is normally distributed with variance vη then χk
m appears to be also normally distributed.

The set of χk
m are uncorrelated with the exception that χk

m =χm
k . Further the χk

m have a variance

vχ that depends on vη , the number of half-orbits M , the orders k and m. Possible values of the
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variance vχ are given in table 1. These variances have been derived from numerical experiments

involving 20000 independent realizations of the random variables χk
m calculated from the same150

number of uniformly distributed orbits. They can also be estimated analytically as shown in appendix

B. Figure 1 presents the histograms for few values of m and k.

In the remaining parts of this section we consider only the noise model given by Eq. 11. The gen-

eral behaviour of the noise characterized by Eqs. 11 and 10 is basically the same. In particular they

have the same dependence relative to the degree l. These two noise models are only relevant for the155

cases where the radial components of vector data are used. The way the noise propagates in a litho-

spheric model is different if the three components of the vector data are fitted. The corresponding

equations for that case are relatively complex and given in appendix A.

The noise model defined in Eq. 2 has L(L+2) parameters – i.e. L(L+2) Gauss coefficients. This

number reduces to N(N+2) Gauss coefficients ıkn with (2N+1)(2L+1)−2N2 random variables160

χk
m through Eq. 11. For small values of N – e.g. N =10, there is a very significant reduction of

number of parameters, but the Eq. 11 is non-linear.

2.2 Examples

In order to understand the main characteristics of the noise model defined by Eqs. 2 and 11, we

present in this section the results of forward modelling calculations for a given choice of Gauss165

coefficients ıkn and one realization of the set of random variables χk
m. The products ⟨P |k|

n ,P
|m|
l ⟩ are

calculated numerically. These products are relatively difficult to estimate accurately as the Pm
l (x)

functions are oscillatory. However, an adaptive Gaussian quadrature (Piessens et al., 1983; Kahaner

et al., 1989) was ultimately chosen as it gave the best results.

2.2.1 Dipole perturbation field170

For this first example we use a simple model for the perturbation field of internal origin made of a

single spherical harmonic n= 1, k= 1. Specifically, we set ı11 = 1 and ıkn = 0 for {n,k} ̸= {1,1}.

This type of noise in satellite data could result from a poor modelling of the field induced by a

large-scale external field in the conductive layers of the Earth. In that case Eq. 11 reduces to:

g̃ml =(
r

a
)l−12

2l+1

2l+2
⟨P |1|

1 ,P
|m|
l ⟩ ı11 χ1

m, (12)175

and the noise in the radial component of the field of internal origin is:

B̃ri(θ,ϕ,r
′)= ı11 2 (

a

r′
)3

L∑
l,m

(
r

r′
)l−1 (l+1)(2l+1)

(2l+2)
⟨P |1|

1 ,P
|m|
l ⟩χ1

mY m
l (θ,ϕ), (13)

where r′ is the modelling radius that is set to r′ = a=6371.2 km in this example. As the observation

radius r is expected to be larger than the modelling radius, the short wavelengths dominate the model

due to the ratio r
r′ raised to the power l−1 in the right hand side of Eq. 13.180
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In Fig. 2, the model defined by Eq. 13 is mapped for the model coefficient ı11 =1 nT, an observation

radius at 300 km altitude (r = 6671.2 km) and the random variables χ1
m with variances defined

in table 1 using vη =M . The maximum SH degree involved is L= 120. We observe that the

noise model is symmetric relative to the equator, vanishes at the poles, and is made of East-West

oscillating anomalies typical of the noise in lithospheric field model drived from satellite data. We185

note that these characteristics are independent from the sign of the SH order k as only the random

variable χk
m depends of this sign in Eq. 13. The obtained symmetry of the model is due to the

product ⟨P |1|
1 ,P

|m|
l ⟩ that vanishes if the Legendre function P

|m|
l is anti-symmetric – i.e. l−|m|

is odd. An anti-symmetric model, vanishing at the equator but not at the poles, would have been

obtained if ı01 =1nT would have been chosen in place of ı11 =1 nT. These symmetry/anti-symmetry190

characteristics are specific to models derived from the radial component alone. It can be seen in

appendix A that these characteristics are lost when a noise model is obtained from the three vector

components.

The power spectrum of the model calculated at r′ =6371.2 km is also plotted in Fig. 2. It presents

some variability due to the use of a single SH in Eq. 12. Nonetheless, the behaviour is generally195

along a ( r
r′ )

2l trend as it would be expected for a white noise at satellite altitude. Although the small

wavelengths overshadow the larger wavelengths, the latter are also present in the noise model. It is

clear that any magnetic field model derived from satellite data is contaminated by such a noise at all

wavelengths unless pertinent processing steps are applied.

2.2.2 Auroral electrojet and field aligned currents200

Another expected source of noise in satellite data is associated with auroral electrojet and/or asso-

ciated field-aligned currents. We do not aim at a precise description of the disturbance field but just

consider the radial component of a perturbation field of internal origin, mapped in Fig. 3 (left), and

defined by :

Brp(θ,ϕ,r)=

N∑
n,k

(
a

r
)n+2(n+1)ıknY

k
n (θ,ϕ). (14)205

The model was built simply by defining a circular ridge in a geomagnetic system of coordinates,

that was then rotated in the usual reference frame. We recall that in our approach this field is scaled

by a random variable with zero mean for each orbit. Therefore it is more the geometry of the field

that is important here than its true value. We see that the perturbation field model is centred on the

geomagnetic North pole and takes relatively large values up to 60o colatitudes. The lithospheric210

noise model we obtain, derived from Eq. 11, is mapped in Fig. 3 (right). This model is also fairly

well localized in latitudes as it basically vanishes in the southern hemisphere. However, it seems

that the noise is propagating over all longitudes. The power spectrum of the model has essentially

the same characteristic than in the previous example.
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The results of this example have to be analysed with some caution since real satellite orbits deviate215

from the exact polar direction at high latitudes. Nonetheless, we take out from these results that there

is no need to describe precisely the longitudinal dependence of the rapidly varying field to obtain a

realistic noise model. Therefore, in Eq. 11, the range of SH order k can be restricted to small values

– e.g. kmax =2, even if the maximum SH degree in the model remains large – e.g. N =30. This

will reduce even further the number of parameters needed to describe the noise model.220

3 Application to magnetic models of the lithosphere

We are now using the results presented in the previous section to derive a model of the magnetic field

generated in the lithosphere from real CHAMP satellite data. The process we applied to calculate

such a model is in two stages. First we estimate a rough lithospheric field model from satellite

data using an usual approach and a straightforward least-squares process (e.g. Lesur et al. (2008)).225

Second, in the post-processing stage, we co-estimate a new lithospheric field model and a model of

the noise where the output model of the first stage is used as data. The final results depend on the

processes applied during the two stages and therefore both are described in independent subsections

below.

In order to avoid confusion between the different models we use the following notations for the230

fields and Gauss coefficients:

- the noisy lithospheric model, output of the first stage, is denoted using a .̂ – e.g B̂i for the

magnetic field vector,

- the lithospheric field model output of the post-processing (second) stage does not have any

distinctive sign – e.g Bi.235

- the noise model is denoted, in the same way as in the previous section, using a .̃ – e.g B̃i.

3.1 First stage: Data set, data selection, model parameterization and model estimation

Three component vector magnetic readings acquired during the ten years of the German CHAMP

satellite mission are used. The data are selected for night-times and magnetically quiet days, in the

same way as data are selected for the GRIMM series of core field model (Lesur et al., 2008, 2010).240

However, here the three components of the vector data are used and data in single star camera mode

are rejected, whereas in the GRIMM selection scheme only the X and Y SM components are selected

at mid and low latitudes. A core field model and a model of the large-scale external field with its

internally induced counterpart are subtracted from these data, leaving mainly the contributions from

the lithosphere and the noise. The core field model and external field models used are resulting245

from the derivation of GRIMM-3 (Lesur et al., 2011), but this is not seen as an important point in
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the processing: another core field model would have been possible – e.g. CHAOS-4 (Olsen et al.,

2010b).

Next a first lithospheric field model up to SH degree 60 is derived, but our aim here is to reject

outliers. The data corresponding to residuals larger than 3 times the standard deviation are rejected.250

The value of the threshold, for each data type, is given in table 2. This selection process is known

to potentially affect strongly the final lithospheric field model. At mid and low latitudes only few

data are rejected, and those rejected data do not present clusters: No major difficulties are therefore

expected there. At high latitudes however, a large amount of data are rejected and it is not possible

to assess at this point if magnetic anomalies are erased or minimized there. We checked however,255

that outside the polar gaps due to the satellite orbits, the final data density at satellite altitude is

everywhere large enough to allow for a lithospheric field model to be estimated up to SH degree

120.

In order to avoid spurious oscillations of the lithospheric model, further vertical down component

data values were added over the polar gaps at an altitude of 6371.2 km. The data values were260

arbitrarily set to zero, and the associated weights for the inversion process were adjusted such that

the lithospheric field model remained smooth while the misfit to the original satellite data stayed

unchanged. We have tested other possible approaches, but the one we used gave the best results.

One could alternatively use vertical down component values derived from aeromagnetic maps.

The data set resulting from this selection process still consists in some 5 014 325 data values. A265

model of the lithosphere magnetic field, defined by Eq. 15 below, was fitted through a simple least-

squares process to the data. The data weights are set to mimic a homogeneous data repartition and

therefore depend only on the inverse of the data density.

B̂i(θ,ϕ,r)=−∇

aL=120∑
l,m

(
a

r
)l+1ĝml Y m

l (θ,ϕ)

. (15)

The power spectrum at the Earth surface of the resulting lithospheric field model is presented in270

Fig. 4, left, together with the power spectrum of the CHAOS-4 model. Both models present very

similar spectra up to SH degree 60 or 65. Our model presents slightly less power around degree

70, possibly due to the selection technique used. Above SH degree 85, CHAOS-4 spectrum is

strongly minimized, whereas our model presents a spectrum rising to high values, evidence of the

predominance of noise in the model at these SH degree. The final misfits to the data are given in275

table 2.

The vertical down component of the model – i.e. the Z component, is mapped at 300 km above the

Earth surface in Fig. 4, right. At this altitude the long wavelength lithospheric signal dominates but

the noise is clearly visible, mainly over oceans, as elongated anomalies in the north-south direction

– e.g. to the south of Australia. We point out that there are strong correlations between the estimated280

Gauss coefficients of the model and therefore the model cannot be truncated at an arbitrary degree

without introducing artefacts.
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3.2 Second stage: Model post-processing

The post-processing part consists in fitting a model of the magnetic field generated in the lithosphere

together with the model of noise to a 300 km altitude map of the vertical down component of the285

field model B̂i(θ,ϕ,r) (see Fig. 4). The noise model B̃i we used is derived in appendix A and

is parameterized by the variable χk
m and the Gauss coefficients of the perturbation model ikn. This

inverse problem that consists in fitting the noise model and the lithospheric field model to B̂Zi values

presents some difficulties that are described first, results are given in a second subsection.

3.2.1 Inverse problem290

We map the vertical down component of the magnetic field model B̂i(θ,ϕ,r) at 29161 positions on

a Gauss-Legendre grid at r=300 km altitude. These data values are related to the Gauss coefficients

gml of the field model Bi by the relation:

B̂Zi(θi,ϕi,r)=−
L=120∑
l,m

(l+1) (
a

r
)l+2 gml Y m

l (θi,ϕi)+B̃Zi(θi,ϕi,r)+ϵi, (16)

where B̃Zi(θi,ϕi,r) is the vertical down component of the noise model derived in appendix A, and295

ϵi is an unknown noise. As the maximum SH degrees in B̂i and Bi are the same, it is clear that the

gml can be estimated such as Bi fits exactly the values of B̂Zi(θi,ϕi,r) with the noise model and the

ϵi not contributing to the problem. These latter contributions become necessary only when a priori

smoothness requirements are introduced on Bi. Hence the inverse problem consists in minimizing

the functional Φ defined by:300

Φ=
∑
i

{B̂Zi(θi,ϕi,r)−BZi(θi,ϕi,r)−B̃Zi(θi,ϕi,r)}2+λ

L∑
l,m

l(l+1)3

2l+1
(gml )2 (17)

The first term insures the fit to the data B̂Zi(θi,ϕi,r) whereas the second minimizes the integral of

the squared horizontal gradient of the radial component of Bi over a sphere of radius a=6371.2 km.

The parameter λ controls the smoothness constraint applied on Bi.

As stated above, the noise model B̃i (Eqs. A3 and A12) is parameterized by the variable χk
m and305

the Gauss coefficients of the perturbation model ikn. A possibility is to set the perturbation model

coefficients ikn, such that the model corresponds to a dipole field, and to try to estimate the χk
m. The

inverse problem is then linear. However, for such a choice the derived lithospheric field model Bi

appears to be still contaminated by noise, probably because the perturbation models is more complex

than a simple dipole. Therefore, there is no other option than to co-estimate the χk
m and ikn values.310

As these quantities enter as products in Eq. A12, the inverse problem is non-linear and must be

solved iteratively. We want to point out that finding the χk
m and ikn values in Eq. A12 or in Eq. 11 are

two different problems with their own specific null-space and difficulties. In particular, ikn and i−k
n

values cannot be estimated independently if Eq. 11 is used. With Eq. A12 this estimation becomes
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possible solely because of the way the Y component data affect the noise model. However in both315

cases the maximum value for n can be relatively large, whereas the maximum value of k has to be

small. We used in this work a maximum value of n: N =20 and a maximum value for k : K =1. As

noted in section 2.2.2 most of the complexity in longitude of the noise model is carried by the χk
m;

there is no need for a large longitudinal complexity of the perturbation model. With such settings,

the number of unknowns describing the noise model in Eq. A12 is reduced to N(2K+1)+K−K2320

for the ikn (i.e. 60 values) and (2K+1)(2L+1)−2K2 for the χk
m (i.e. 721 values for L=120).

These numbers have to be compared with the number of unknowns in the lithospheric field model

L(L+2)=14640.

The iterative inversion process we followed to reach the solution presented in the next subsection

is described in three steps:325

step-1 Find the gml in Eq. 16 minimizing Φ (Eq. 17) imposing χk
m =0 for all possible m and k values.

step-2 Keeping the gml unchanged, and starting with ikn = 1 for all possible n and k values, find

iteratively the ikn and χk
m that minimize Φ in Eq. 17.

step-3 Iteratively find the gml , ikn and χk
m that minimize Φ in Eq. 17, starting from the output of the

step 2.330

3.2.2 Results

The results were obtained by iteratively minimizing the functional defined in Eq. 17 following the

process described above, with the parameter λ set to λ=4.010−5 such that the resulting field model

has a power spectrum in its expected range. The level of noise is larger at high latitudes in the

B̂Zi(θi,ϕi,r), we therefore weight the data by 1
6 for magnetic latitudes higher than 50ø.335

The output of the step-1 described above, is a smoothed model obtained without co-estimation

of the noise model. The map of this model vertical down component at radius 6371.2 km is shown

in Fig. 5. The perturbation due to the along track noise in the satellite data are strong, particularly

over Antarctica, and in the Indian, Atlantic and eastern Pacific oceans. This map is given here as

reference for comparison with our final model obtained by co-estimation with the noise model.340

The residuals to the fit to the data after the last step of the fitting process are mapped in Fig. 6, left.

The largest anomalies, as the Bangui anomaly in central Africa or the Kursk anomaly in western

Russia, are clearly identifiable on this residual map, although they are not associated with too large

residuals. There are very large clusters of residuals at high latitudes, and some of these residuals

obviously correspond to lithospheric magnetic anomalies – e.g. North America, Southern tip of345

Greenland, Northern Europe. This is an incentive to work with localized system of representation

and to define local constraints. Here we want to keep the processing as simple as possible and did not

follow such approaches. It should be noted, however, that the amplitude of the residuals are clearly
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smaller than 1.5 nT and that there is only few traces of the ”along track” noise in these residuals.

The effect of the smoothing on the model remains acceptable.350

Figure 6, right, shows the power spectra of the field model Bi and of the noise model B̃i. Also

plotted is the spectrum from MF7. The damping parameter λ in Eq. 17 has been adjusted to λ=

4.010−5 such that the power spectrum does not present excessively high values at high degrees.

Overall, the derived map has the same level of energy than MF7 up to degree 100. Above that

degree the spectra is clearly decreasing. Our opinion is that we are reaching at these SH degrees the355

maximum ”global” resolution of the CHAMP data selected and processed following the technique

described above. Improvements are probably still possible locally, particularly above the largest

anomalies seen as Bangui and Kursk anomalies.

Figure 7 maps, on the left, the noise model B̃i, and, on the right, the perturbation model defined

in Eq. A1. The noise model presents the expected East-West high frequency oscillations. The map360

cannot be directly compared with Fig. 5 because the patterns of the oscillations in Fig. 7 correspond

to the noise present in B̂i: the Fig. 5 is only a smoothed version of it. The perturbation model

(Fig. 7, right) is dominated by a dipole term consistent with un-modelled contributions generated

in 1-D conductive layers of the Earth by a large-scale, rapidly varying external field. Although this

large-scale field is dominant, higher spherical harmonic contributions exist in the perturbation model365

and are determinant for the success of the post-processing.

Our final result is a map of the vertical down component of the lithospheric field calculated at the

Earth’s surface (see Fig. 8). The map includes all SH degrees of the lithospheric field model. The

model is displayed with two different central meridians for a better view of the anomaly patterns.

The anomaly patterns are not as clearly defined as in MF7, but in numerous areas – e.g. the northern370

pacific, the map resulting from our processing is remarkably detailed. However, in the present case,

the only difference with regards to a straightforward least-squares approach is the co-estimation of

the noise model. In particular, there are no pre-processing steps such as data levelling (or micro-

levelling) with mostly unknown consequences on the final map, and the only data used are the

CHAMP satellite data. We have made numerous experiments, and it appears that the determinant375

step for the final quality of the map is the data selection used to build the model B̂i. Out of all these

trial, the maps presenting the lowest level of noise are systematically the outputs of the step-2 of our

processing. We decided not to show these results here because they are not consistent with the noise

model presented in appendix A that assumes a model derived through a non-regularized scheme. It

is however an approach worth studying. There are no major difficulties in estimating what the noise380

model should be for a lithospheric model built using a regularized least-squares process.
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4 Conclusions

We have calculated the gauss coefficients describing the noise leaking in lithospheric magnetic field

models when derived from satellite data. The noise models were derived to cover two cases: first

when exclusively the radial components of the satellite data are used and second when all three com-385

ponents are used. The first case would be primarily applicable to gravity data, whereas the second, as

we used it here, is better suited for magnetic data, although applications to vector gravimetry or gra-

diometry may be possible. We made several strong hypotheses to obtain these results. Particularly,

we consider that the orbits are exactly polar, that they are at constant radius and that the sampling

rate along an orbit is ”ideal” – i.e. the relation ⟨P |m|
l ,P

|m|
l′ ⟩ ∝ δll′ is verified. We also make the390

assumption that the lithospheric field model is derived through a simple un-regularized least-squares

process. This latter approximation is well verified for our application, but the three former are rather

rough – e.g. in our data set the altitudes varies between 480 km and 250 km. However, it appears

that final result does not suffer too much from these hypotheses. We insist here on the fact that the

noise models do not represent the expected noise in the satellite data but the noise leaking in the395

derived lithospheric models.

It is interesting to notice that the amplitude of the noise generated depends on the variance of

the random variable χk
m, that itself depends on the variance of the external field scaling factor η

and the number of orbits M (see table 1). Therefore the usual choice of rejecting a significant part

of the data because of its level of noise is questionable. For example when dealing with magnetic400

data, rejecting a full year of satellite data because of the high level of magnetic activity is unlikely

to reduce the noise level in the model since the ratio vη

M generally does not get smaller. We cannot

comment however on a data rejection criteria based on the satellite altitude.

Another remarkable property of the noise models is their weak dependence with regard to the

source of the noise. We used here perturbation models either from internal or external origin, but405

both lead to similar noise models. The same developments could be done for a noise described

by spherical harmonics without reference to any specific source. For the case where only radial

component data are used (Eqs. 10, 11), such an hypothesis would not make any difference.

In the application to real data, the noise models were estimated in a post-processing scheme. The

reason for this choice is that we did not know what kind of perturbation model Bp(θ,ϕ,r) should410

be used. We have seen that for deriving a lithospheric field model, a dipole perturbation field is not

leading to the best results. In an ideal case where the perturbation model is known, the best approach

to the problem would be to build a covariance matrix Cn for the noise from the variances given in

table 1 and the Eq. A12. Such a covariance matrix can then be used as a regularization matrix in the

least-squares fit of the lithospheric field model to the satellite data. However, even if the information415

provided by the estimated variances has not been used in our post-processing scheme, the resulting

lithospheric field model is nonetheless much improved compared to what can be obtained through a

simple smoothing (see the differences between Fig. 8 and Fig. 5).
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One can question if parts of the lithospheric field can be removed by our post-processing steps

and contribute to the noise model. The lithospheric noise model derived is only a combination of420

spherical harmonics with some strong correlations between the Gauss coefficients. Therefore, there

is no doubt that part of the true lithospheric magnetic field model can contribute to the noise model.

It is however not possible to estimate a priori what this part is because it clearly depends on both

the noisy lithospheric field model on which the post-processing is applied and the true lithospheric

field we want to estimate. In order to test our scheme we have first applied the processing on425

a synthetic data set built on a Gauss-Legendre grid where both the lithospheric field model and

the noise are known. We used only the radial component of the field and verified that the noisy

lithospheric field model derived from these data was contaminated by a noise corresponding exactly

to Eq. 11. However, the full inversion process revealed that part of the lithospheric field was seen

as noise. We also applied the step-2 of our processing using a noise free synthetic lithospheric field430

model and the noise model defined by equation Eq. A12. Here again, despite a noise free data set,

the lithospheric field is partly interpreted as noise. The amplitude of the obtained noise model is

relatively large where there are strong, more or less aligned along orbits, anomalies. This is the case

for the Kursk anomaly (51◦N, 37◦E), whereas the Bangui anomaly (4◦N, 16◦E) is apparently not

affected by the processing. Outside few localized areas, the noise model remained relatively small.435

This impossibility to properly separate the noise from the lithospheric field is a common limitation

of all existing processing methods. In our specific scheme, the only way we can reduce this effect

is by constraining the perturbation model. We therefore recommend that the post-processing is

used only when the noise is clearly identifiable at the smallest wavelengths, constraining this way

the perturbation model. Overall, the proposed post-processing performs probably better than other440

smoothing techniques but that has to be tested on a case-by-case basis.

The work presented here opens numerous possibilities for processing data acquired along linear

paths, as satellite data. The major difficulty when dealing with large data set, is to handle the cor-

related errors. Facing this problem we have here simply calculated how this correlated noise affects

the derived model through a least-squares process. Extending this to regularized least-squares ap-445

proaches is certainly possible. The same technique can be applied for calculating small-scale secular

variations from satellite data, or to process yearly estimates of the core field. The technique is also

applicable for airborne data using any local system of representation rather than spherical harmon-

ics. Interesting developments are possible through the design of local filters. The link with oriented

wavelets on the sphere is also promising.450
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Appendix A

Noise model for three component vector data

We follow here the same developments as in section 2 but consider the case where the perturbation

field is of internal origin and the three magnetic vector components are used. The perturbation field455

writes:

Bp(θ,ϕ,r)=−∇

a L∑
l,m

(
a

r
)l+1ıml Y m

l (θ,ϕ)

. (A1)

It is scaled at each orbit by a factor η and is fitted by least-squares with a field of internal origin

constant in time. Therefore we minimize the functional:

Φ=
∑
i,j

wi|B̃i(θi,ϕj ,r)−ηj ·Bp(θi,ϕj ,r)|2, (A2)460

where the noise model B̃i is defined by:

B̃i(θ,ϕ,r)=−∇

aL=120∑
l,m

(
a

r
)l+1g̃ml Y m

l (θ,ϕ)

. (A3)

This leads to a linear system equivalent to Eq. 5, where the left hand side writes:

{AtA}l,m,l′,m′ =(ar )
l+l′+4 (l+1)(l′+1)

∑
i,jwiY

m
l (θi,ϕj ,r)Y

m′

l′ (θi,ϕj ,r)

+(ar )
l+l′+4

∑
i,jwi∇hY

m
l (θi,ϕj ,r) ·∇hY

m′

l′ (θi,ϕj ,r).
(A4)

The operator ∇h is the horizontal gradient on a sphere of unit radius. The first term in the right hand465

side does not present difficulties. For the second we use the identity:

Y m
l Y m′

l′ =

|l+l′|∑
L=|l−l′|

∑
M

CL,M
l,l′,m,m′Y

M
L . (A5)

Applying twice the gradient operator gives:

∇hY
m
l ·∇hY

m′

l′ =
l(l+1)+ l′(l′+1)

2
Y m
l Y m′

l′ − 1

2

|l+l′|∑
L=|l−l′|

∑
M

CL,M
l,l′,m,m′L(L+1)Y M

L . (A6)

The Eq. A4 becomes:470

{AtA}l,m,l′,m′ =(ar )
l+l′+4 (l+l′+1)(l+l′+2)

2

∑
i,jwiY

m
l (θi,ϕj ,r)Y

m′

l′ (θi,ϕj ,r)

−(ar )
l+l′+4

∑|l+l′|
L=|l−l′|

∑
MCL,M

l,l′,m,m′
L(L+1)

2

∑
i,jwiY

M
L (θi,ϕj ,r).

(A7)

Defining Πmm′ as in Eq. 7 gives in the limit of a large number M of orbits:

Πmm′ ≃ (
1

2
+

1

2
δm0)δmm′ .

Further, the weights wi are chosen such that∑
i

wiP
m
l (cosθi)P

m′

l′ (cosθi)=
4−2δm0

2l+1
δll′ ,475
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which reduces for l′ =m′ = 0 to
∑

iwiP
m
l (cosθi) = 2δm0δl0. As a consequence, for the second

term in the right hand side of Eq. A7 only the term L=0 remains. It therefore vanishes because of

the factor L(L+1) and we obtain:

{AtA}l,m,l′,m′ =2M (
a

r
)2l+4 (l+1)δll′ δmm′ . (A8)

The matrix AtA is therefore diagonal: The discret summations in Eq. A4 are equivalent to continu-480

ous integrations.

The product {At b}l,m in the right hand side of Eq. 5 now writes:

{At b}l,m =M
∑N

n,k (
a
r )

l+n+4 { (l+1)(n+1)
∑

i,jηjwiY
m
l (θi,ϕj ,r)Y

k
n (θi,ϕj ,r)

+
∑

i,jηjwi∇hY
m
l (θi,ϕj ,r) ·∇hY

m′

l′ (θi,ϕj ,r) }.
(A9)

We further introduce the variable χ̇k
m defined by:

χ̇k
m =


χ−k
−m if mk> 0

−χ−k
−m if mk< 0

0 if mk=0,

(A10)485

where the experession of χk
m is given in Eq. 9. The Eq. A9 becomes:

{At b}l,m =M
∑N

n,k ıkn (
a
r )

l+n+4 { (l+1)(n+1) ⟨P |k|
n ,P

|m|
l ⟩χk

m

+⟨∂θP |k|
n ,∂θP

|m|
l ⟩χk

m+ ⟨ |k|P
|k|
n

sinθ ,
|m|P |m|

l

sinθ ⟩ χ̇k
m},

(A11)

leading when combined with Eq. A7 to:

g̃ml =
∑N

n,k ıkn (
a
r )

n−l { n+1
2 ⟨P |k|

n ,P
|m|
l ⟩χk

m

+ 1
2l+2 ⟨∂θP

|k|
n ,∂θP

|m|
l ⟩χk

m+ 1
2l+2 ⟨

|k|P |k|
n

sinθ ,
|m|P |m|

l

sinθ ⟩ χ̇k
m}.

(A12)

The L(L+2) gauss coefficients g̃ml of the noise model can be represented by only N(N+2) coeffi-490

cients ıkn of the perturbation model and (2N+1)(2L+1)−2N2 independent random variables χk
m

where all symmetry properties have been accounted for.

Appendix B

Estimating the variance of χk
m495

The random variable χk
m has been defined above by:

χk
m =


1
M

∑M
i=1cosmϕi coskϕi ηi if m,k≥ 0

1
M

∑M
i=1cosmϕi sin|k|ϕi ηi if mk< 0

1
M

∑M
i=1sin|m|ϕi sin|k|ϕi ηi if m,k< 0,

(B1)

where ηi is a random variable with zero mean and normally distributed with variance vη. Let’s con-

sider first the simplest case where m,k≥ 0. If we introduce the two vectors D= [cosmϕi coskϕi]i=1,M

and N = [ηi]i=1,M then Eq. (B1) writes:500

χk
m =

1

M
Dt.N . (B2)
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With this definition it is clear that

vχ =
1

M2
Dt.CN .D, (B3)

where vχ is the variance of χk
m and CN = vη Id, with Id being the identity matrix. We therefore

obtain:505

vχ =
vη

M2
{

M∑
i=1

(cosmϕi coskϕi)
2}, (B4)

and using the identity cosacosb= 1
2 (cos(a−b)+cos(a+b)) it follows:

vχ =
vη

4M2

M∑
i=1

{(cos(m+k)ϕi)
2+(cos(m−k)ϕi)

2+2 (cos(m+k)ϕi cos(m−k)ϕi)}. (B5)

Over the CHAMP mission there is a large number of orbits and the ϕi are uniformly distributed

between [0;π]. It follows that the last term on the right-end-side vanishes unless k=0 or m= k=0,510

and it can be verified that:
M∑
i=1

(cosnϕi)
2 =

M∑
i=1

(sinnϕi)
2 =

M

2
, (B6)

as long as n is not too large. Therefore it comes:

• if k=m=0, vχ = vη

M

• if k=0 and m ̸=0, vχ = vη

2M515

• if m= k ̸=0, vχ = 3vη

8M

• if m,k ̸=0, m ̸= k, vχ = vη

4M

Extending these results to the two other cases (i.e. km< 0 and m,k< 0) is straightforward.
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Fig. 1. Histograms of the random variable χk
m for several values of k and m. Is also plotted the dashed curve

M·S√
2πvχ exp{−e2/(2vχ)} where S is the histogram step length.

Table 1. Estimated variance of χk
m

m= k m=−k m ̸=0 and m ̸= k

k=0 vη

M
- vη

2M

k ̸=0 3vη

8M
vη

8M
vη

4M
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Fig. 2. Left: Mapping at r′ =6371.2 km of the model defined in Eq. 13 where ı11 =1, r=6671.2 km – i.e. 300

km altitude, and the random variables χ1
m have a variance defined in table 1 using vη =M . Right: Associated

power spectrum. The dashed line is proportional to ( r
r′ )
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Fig. 3. Mapping at r′ =6371.2 km of the field of internal origin (left) and the resulting noise model (right).

The data acquisition radius has been set to r=6671.2 km – i.e. 300 km altitude, and the random variables χk
m

have the variances defined in Table 1 with the ratio vη

M
set to 1.

Table 2. Thresholds and misfit values obtained when estimating B̂i from selected satellite data. Mid and low

latitudes are defined by magnetic latitudes in between ±55deg. Values are given in nT.

Mid and low latitudes High latitudes

XSM YSM ZSM XSP YSP ZSP

Threshold 9.0 8.5 10.5 36 27 36

Misfit 2.47 2.30 2.53 13.52 10.79 10.49
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Fig. 4. Left: Power spectra of the lithospheric field model (solid line) and of CHAOS-4b model (dashed line)

calculated at the Earth’s surface (i.e. r=6371.2 km). Right: Mapping of the vertical down component of the

(noisy) lithospheric field B̂i at r=6671.2 km. The largest magnetic anomalies dominate, but the ”along track”

noise is nonetheless visible over oceanic areas.

22



−60˚ −60˚

−30˚ −30˚

0˚ 0˚

30˚ 30˚

60˚ 60˚

−60˚ −60˚

−30˚ −30˚

0˚ 0˚

30˚ 30˚

60˚ 60˚

−180˚

−
90

˚

0˚

90
˚

−180˚

−
90

˚

0˚

90
˚

−180˚

−
90

˚

0˚
90

˚

−180˚

−
90

˚

0˚
90

˚

−200
−160
−120

−80
−40

0
40
80

120
160
200

nT

Fig. 5. Map of the vertical down component of the lithosphere magnetic field model at r=6371.2 km radius

derived after the step-1 of the processing chain. This corresponds to a smoothed model without co-estimation

of the noise model. It is given here as a reference to be compared with figure 8. Along track noise is particularly

visible around Antarctica, and in the Indian, Atlantic and eastern Pacific oceans.
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Fig. 6. Left: Residuals map to the final model fit to (noisy) lithospheric field B̂i at r=6671.2 km. Residuals

have been scaled by a factor 10. At mid-latitudes the largest residuals are associated with the strong magnetic

anomalies. The along track noise has been fitted by the noise model and therefore does not appear in these

residuals. Right: Power spectra of the lithospheric field model Bi (solid line), of MF7 (dashed line), and the

noise model (dotted line) calculated at the Earth’s surface (i.e. r=6371.2 km radius).

−60˚ −60˚

−30˚ −30˚

0˚ 0˚

30˚ 30˚

60˚ 60˚

−60˚ −60˚

−30˚ −30˚

0˚ 0˚

30˚ 30˚

60˚ 60˚

−180˚

−
90

˚

0˚

90
˚

−180˚

−
90

˚

0˚

90
˚

−180˚

−
90

˚

0˚

90
˚

−180˚

−
90

˚

0˚

90
˚

−200
−160
−120

−80
−40

0
40
80

120
160
200

nT

−60˚ −60˚

−30˚ −30˚

0˚ 0˚

30˚ 30˚

60˚ 60˚

−60˚ −60˚

−30˚ −30˚

0˚ 0˚

30˚ 30˚

60˚ 60˚

−180˚

−
90

˚

0˚

90
˚

−180˚

−
90

˚

0˚

90
˚

−180˚

−
90

˚

0˚

90
˚

−180˚

−
90

˚

0˚

90
˚

−200
−160
−120

−80
−40

0
40
80

120
160
200

nT

Fig. 7. Left: Map of the vertical down components of, left, the noise model, right, the perturbation model. Both

maps have been calculated at r= 6371.2 km radius. By definition the perturbation model is very smooth in

longitude, but that does not preclude a large complexity for the noise model.
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Fig. 8. Map of the vertical down components of the final lithospheric field model Bi. The map has been

calculated at the Earth’s surface (6371.2 km). Although some noise is still visible in the northern Atlantic

and over the southern polar cap, the noise level over mid latitudes has been greatly reduced. Anomalies are

particularly well defined over continents, and Indian and Pacific oceans.
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