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Abstract

Bilinear flow occurs when fluid is drained from a permeable matrix by producing it
through an enclosed fracture of finite conductivity intersecting a well along its axis. The
terminology reflects the combination of two approximately linear flow regimes, one in
the matrix with flow essentially perpendicular to the fracture and one along the fracture5

itself associated with the non-negligible pressure drop in it. We investigated the charac-
teristics, in particular the termination, of bilinear flow by numerical modeling allowing an
examination of the entire flow field without prescribing the flow geometry in the matrix.
Fracture storage capacity was neglected relying on previous findings that bilinear flow
is associated with a quasi-steady flow in the fracture. Numerical results were general-10

ized by dimensionless presentation. Definition of a dimensionless time that other than
in previous approaches does not use geometrical parameters of the fracture permitted
identifying the dimensionless well pressure for the infinitely long fracture as the master
curve for type curves of all fractures with finite length from the beginning of bilinear
flow up to fully developed radial flow. In log-log-scale the master curve’s logarithmic15

derivative initially follows a 1/4-slope-straight line (characteristic for bilinear flow) and
gradually bends into a horizontal line (characteristic for radial flow) for long times. Dur-
ing the bilinear flow period, isobars normalized to well pressure propagate with fourth
and second root of time in fracture and matrix, respectively. The width-to-length ratio of
the pressure field increases proportional to the fourth root of time during the bilinear pe-20

riod and starts to deviate from this relation close to the deviation of well pressure and
its derivative from their fourth-root-of-time relations. At this time, isobars are already
significantly inclined with respect to the fracture. The type curves of finite fractures all
deviate counterclockwise from the master curve instead of clockwise or counterclock-
wise from the 1/4-slope-straight line as previously proposed. The counterclockwise25

deviation from the master curve was identified as the arrival of a normalized isobar re-
flected at the fracture tip sixteen times earlier. Nevertheless, two distinct regimes were
found regarding pressure at the fracture tip when bilinear flow ends. For dimensionless
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fracture conductivities TD < 1, a significant pressure increase is not observed at the
fracture tip until bilinear flow is succeeded by radial flow at a fixed dimensionless time.
For TD > 10, the pressure at the fracture tip has reached substantial fractions of the
associated change in well pressure when the flow field transforms towards intermittent
formation linear flow at times that scale inversely with the fourth power of dimension-5

less fracture conductivity. Our results suggest that semi-log plots of normalized well
pressure provide a means for the determination of hydraulic parameters of fracture
and matrix after shorter test duration than for conventional analysis.

1 Introduction

Transient fluid flow in fractures or faults plays an important role for the production of10

oil and gas, for fresh water supply and the production of geothermal energy especially
from artificial fracture systems, so called Hot-Dry-Rock (HDR) or Enhanced Geother-
mal Systems (EGS). Flow in fractures and fracture networks may as well be important
for the triggering of seismicity by precipitation (e.g. Hainzl et al., 2006), by groundwater
recharge (e.g. Saar and Manga, 2003), by hydraulic stimulation (e.g. Deichmann and15

Ernst, 2009; Majer et al., 2007; Shapiro and Dinske, 2009), and by water level changes
in dams (e.g. Chen and Talwani, 1998).

For fractures in an impermeable rock matrix, fluid flow and pressure propagation are
restricted to the fracture volume and are thus exclusively controlled by the hydraulic dif-
fusivity of the fractures. In contrast, fluid flow and pressure propagation in fractures is20

accompanied by fluid exchange with a permeable rock matrix, a rather complex prob-
lem for mathematical treatment. A first analytical solution was presented in the context
of well testing (Cinco-Ley et al., 1978) that applies to the case of fluid production from
boreholes subsequent to hydraulic fracturing. Cinco-Ley et al. (1978) simplified the
flow field as a superposition of two fields of parallel flow, one in the fracture and one in25

the rock matrix, the latter perpendicular to the fracture plane. Accounting for its pecu-
liar geometry, this flow regime was named bilinear flow (Cinco-Ley and Samaniego-V.,
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1981). Evidence for bilinear flow was reported from hydraulic tests after hydraulically
fracturing a low permeable matrix, e.g. in tight basins that produce gas (Rushing et al.,
2005; Stright and Gordon, 1983) and in sedimentary and granitic geothermal reser-
voirs (Häring et al., 2008; Jung and Weidler, 2000; Ortiz et al., 2011; Zimmermann,
2006). Interest in unconventional gas recovery from tight formations triggered studies5

considering horizontal wells, too (see for example Du and Stewart, 1995; Jelmert and
Vik, 1995; Verga and Beretta, 2001).

For constant production, a bilinear flow field is accompanied by a decrease of the
wellbore pressure proportional to the fourth root of elapsed pumping time. The time
window, during which this fourth-root relation can be observed, is however finite and10

thus long term predictions – of great practical importance for exploitation of liquid or
gaseous resources – are erroneous when using this relationship. Therefore, constrain-
ing estimates of the end time of bilinear flow received attention in previous research
(Cinco-Ley and Samaniego-V., 1981; Weir, 1999). Since radial flow dominated by the
matrix properties develops when this time is exceeded it specifically marks the end of15

the gain due to a stimulation operation involving hydraulic fracturing.
Until today, the physical understanding of the proposed relations for the end time of

bilinear flow is incomplete. In this study, we rely on numerical simulations using a two
dimensional finite element model in order to investigate the hydraulic diffusion in finite
conductivity fractures. We include an analysis of the spatio-temporal characteristics of20

the entire pressure field in fracture and matrix in order to clarify the flow processes
that lead to the termination of bilinear flow and to substantiate quantitative rules for
the end of bilinear flow. Outlining the end time and investigating the pressure field in a
dimensionless parameter space allow us to generalize our findings obtained for specific
cases to fractures with a range of dimensionless fracture conductivities. Focus is put25

on fractures with negligible storage capacity and wellbore storage is neglected, too.
Yet, the formulation aims at clarifying the role of fracture length. In this contribution, we
first briefly give the background in terms of governing equations and non-dimensional
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formulation, describe the chosen modeling approach, report results and subsequently
discuss them in the light of their practical use.

2 Background and approach

2.1 Governing equations for the hydraulics of a fractured well

For a well intersected by a single fracture and surrounded by a permeable matrix, two5

basic hydraulic equations, partial differential equations for fluid pressure p, have to be
considered, namely

∂p
∂t

= Dm∇2p (1)

for flow in the infinite, isotropic and homogeneous matrix and

∂p
∂t

= DF∇2p+
qF(t)
hSF

(2)10

for flow in the fracture. The two equations are coupled by the fluid flow between ma-
trix and fracture, qF(t) (see for example Cinco-Ley et al., 1978). Here, Dm = km/ηfsm
and DF = TF/ηfSF denote the hydraulic diffusivity of the matrix (m) and the fracture (F),
respectively, comprising matrix permeability km and specific storage capacity of the
matrix sm, fluid viscosity ηf, fracture conductivity TF = kFbF (product of fracture perme-15

ability kF and fracture width bF) and fracture storativity SF = sfbF (product of specific
storage capacity of fracture sF and fracture width bF).

Specific solutions of the governing Eqs. (1) and (2) for particular initial and boundary
conditions have led to the distinction of characteristic flow regimes. Radial flow, charac-
terized by a well pressure changing proportionally to the logarithm of elapsed pumping20

time, results when production from (injection into) a homogeneous formation causes
radial flow lines to develop normal to the production surface composed solely of the
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well. For homogeneous and isotropic media, diffusion of pressure perturbations obeys
a linear scaling relation between the square of the characteristic propagation distance
Lc and the characteristic propagation time tc involving the hydraulic diffusivity of the
matrix, i.e. Dm ∼ L2

c/tc (see for example radius of investigation or drainage in Bourdet,
2002; Chaudhry, 2004; Dake, 2001; Earlougher, 1977; Horne, 1995; Matthews and5

Russell, 1967). Highly permeable fractures, i.e. fractures in which the pressure gradi-
ent is negligible, intercepting the well may extend the effective production surface such
that flow in the subsurface is actually directed towards this extended surface rather
than radial towards the well (e.g. Jenkins and Prentice, 1982). Such flow geometry is
termed formation linear flow since straight flow lines are thought to result in the ma-10

trix. The well pressure changes proportionally to the square root of elapsed pumping
time. The bilinear flow regime is encountered when the flow is approximately linear in
both the fracture or narrow zone of high conductivity and the matrix (e.g. Butler and
Liu, 1991). In this regime the finite conductivity of the fracture leads to a finite pressure
gradient in the fracture (Boonstra and Boehmer, 1986; Gringarten, 1985). Fractures in15

an impermeable matrix result in fracture linear flow, per-se indistinguishable from for-
mation linear flow regarding the power law relation between well pressure and elapsed
pumping time.

2.2 Modeling approach

In our study, we focus on fractures with negligible storage capacity SF → 0, i.e. the20

fracture is considered undeformable and the amount of fluid in the fracture is consid-
ered small enough for its compressibility to be neglected. In this approximation, Eq. (2)
reads

0 =
TF

η
∇2p+

qF(t)
h

, (3)

i.e. the pressure in the fracture obeys an inhomogeneous diffusion equation with a25

time-dependent source term but without an intrinsic transient term. The changes of
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pressure with time are considered to be dominated by the fluid transfer between matrix
and fracture. Previous studies revealed that only for small dimensionless times the flow
in the well and the flow in the matrix deviate from each other due to storage effects in
the fracture (e.g. Weir, 1999). In the classical dimensionless form of Eq. (2) (see Eq. A-
1 in Cinco-Ley and Samaniego-V., 1981), the transient term on the left side appears5

multiplied by the diffusivity ratio κ = Dm/DF. When this ratio is small, the effect of the
intrinsic transient term on wellbore pressure becomes important only for extremely
small values of time and thus can be neglected for bilinear flow (see Cinco-Ley and
Samaniego-V., 1981; Riley, 1991).

We use a two dimensional finite element model consisting of a fracture with half10

length xF positioned on the x-axis (at y = 0, see Fig. 1a) and intercepting a well along
its axis. Flow in the fracture of finite conductivity embedded in the permeable matrix
is approximated as one-dimensional and wellbore storage is neglected. Thus, Eqs. (1)
and (3) are implemented as

∂p
∂t

= Dm

(
∂2p

∂x2
+
∂2p

∂y2

)
(4)15

and

TF

ηf

∂2p

∂x2
+
qF(x,t)

h
= 0. (5)

The origin of the coordinate system coincides with the well, actually represented by a
point source with a flow rate qw/h determined from the true flow rate in the well qw and
the height of the open well section h (Fig. 1). The fluid flow between matrix and fracture20

qF(x,t) = 2
km

ηf

∂p
∂y

∣∣∣∣
y=0

(6)
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couples the two equations where the factor of 2 accounts for the communication via
the two fracture surfaces.

In principle, numerical analysis does not require to prescribe the flow geometry in the
matrix as do the majority of previously presented analytical solutions. The assumption
of most analytical treatments, that flow lines in the fracture and in the matrix remain5

strictly perpendicular to each other, indeed cannot hold towards the end of bilinear

flow. The pressure diffusion in the matrix proceeds proportional to t1/2 ultimately sur-

passing pressure diffusion in the finite conductivity fracture that scales with t1/4. Thus,
eventually isobars have to change direction with increasing time.

We performed more than 30 simulations. In order to ensure the occurrence of bilin-10

ear flow, fracture length was varied from 1.5 to 1500 m, while the further parameters
remained constant (qw/h = 2×10−4 m2 s−1, ηf = 2.5×10−4 Pas, TF = 1.5×10−16 m3,
km = 1×10−18 m2, and sm = 1×10−11 Pa−1). An effect of the model boundaries on the
simulation results was avoided by locating them far from the fracture (about 600 to
1200 m).15

2.3 Dimensionless formulation

Our numerical modeling is performed with dimensional properties but for reporting re-
sults we use non-dimensional parameters in order to foster a fundamental understand-
ing of bilinear flow in our conceptual study. Previous analyses of flow regimes employed
a variety of non-dimensionalization approaches. Here, we use the conventional defi-20

nition for dimensionless pressure (see for example Earlougher, 1977; Matthews and
Russell, 1967)

pwD = 2π
kmh
qwηf

∆pw. (7)
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However, we use a modified definition of dimensionless time

τ =
tD
T 2

D

=
Dmk

2
m

T 2
F

t (8)

where tD = tDm/x
2
F is the classical definition of dimensionless time for an infinite reser-

voir adapted for the flow in fractures by replacing radial distance r with half-fracture
length xF (Cinco-Ley et al., 1978; Earlougher, 1977; Matthews and Russell, 1967).5

Furthermore, the dimensionless fracture conductivity is defined by

TD =
TF

kmxF
. (9)

The employed model parameters correspond to values of TD ranging from 0.1 to 100.
Our choice of non-dimensional parameters is guided by the necessity to avoid frac-

ture storage capacity and the request to also avoid fracture length. When fracture10

length is used as an explicit parameter in the conventional definition of dimensionless
time, one encounters the problem that “time” becomes ill defined for very long or in-
finitely long fractures. The formulation should however be apt for fractures with a range
of finite lengths, such as created for example during hydraulic fracturing operations,
as well as for fractures with “infinite” length, such as encountered when length simply15

exceeds the influence zone of the pumping operation. The latter situation may rather
be typical for stimulations in a geothermal context that create a connection between
the well and either an extended network of natural fractures or a large geological fault.

2.4 Previously presented solutions for bilinear flow

The theoretical background of bilinear flow was first presented by Cinco-Ley20

et al. (1978) and Cinco-Ley and Samaniego-V. (1981) who studied the solution of
Eqs. (1) and (2) using a two dimensional numerical model and Laplace transform, re-
spectively. They demonstrated that the pressure in a vertically fractured well producing
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at constant flow rate is proportional to the fourth root of time in the bilinear flow regime.
This result, subsequently confirmed by several approaches (e.g. Riley, 1991) reads

pwD =
π

Γ
(
5/4
)√

2
τ1/4 ' 2.45τ1/4 (10)

for the non-dimensional well pressure during bilinear flow with our set of non-
dimensional parameters. Thus, we get a unique relation between non-dimensional well5

pressure and non-dimensional time independent of any further model parameters.
Some approximate analytical solutions for the pressure distribution in infinitely long

fractures were derived in previous studies (see Boonstra and Boehmer, 1986; Weir,
1999). Notably, Boonstra and Boehmer (1986) already demonstrated that during a cer-
tain sequence of bilinear flow the pressure distribution is governed by a single variable10

combining time and distance (w in their notation). Weir (1999) subsequently empha-
sized the self-similarity of the pressure function with x4/t in contrast to Theis’ solution
for a homogeneous reservoir (also called line source or exponential-integral solution,
Earlougher, 1977; Matthews and Russell, 1967; Theis, 1935) that admits r2/t as a
self-similar variable.15

In their seminal study, Cinco-Ley and Samaniego-V. (1981) report three expressions
for the end time of bilinear flow but did not explicitly state how these relations were
derived. Essentially, two extended regimes separated by a short intermediate regime
are found for end time as a function of dimensionless fracture conductivity.

3 Results20

Presentation of the results of our numerical simulations first focuses on the evolution
of well pressure. We then continue with the propagation of the pressure perturbation
along the fracture and in the matrix in order to identify the mechanisms for the end of
bilinear flow based on which we establish rational criteria for the end time.
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3.1 Evolution of the well pressure

Following common praxis, results are presented in the form of type curves (in log-log
scale) of the dimensionless well pressure and its dimensionless logarithmic derivative
versus dimensionless time (Fig. 2a, b). The main features can be best explained using
the derivative (Fig. 2b). Characteristic for bilinear flow, the derivatives follow a straight5

line with slope 1/4 over a certain period of dimensionless time. For sufficiently high
dimensionless fracture conductivities (i.e. TD � 1), the derivative first turns counter-
clockwise into a straight line with slope 1/2 corresponding to formation linear flow, fully
developed only for TD > 50 (Fig. 2b). Ultimately, derivatives bend into a unique hori-
zontal line (dpwD/dlnτ = 0.5) for all fracture conductivities indicating that radial flow is10

reached. The dimensionless time to reach fully developed radial flow increases with
decreasing TD and is highest for TD = 0.

The log-log plots of the well pressure and its derivative (Fig. 2a, b) suggest that type
curves with TD > 1.8 and TD ≤ 1.8 bend off counterclockwise and clockwise from the
1/4-slope straight line, respectively, as previously described by Cinco and Samaniego15

(1981). However, introducing a normalized well pressure, pwD/2.45τ1/4, as a measure
of the deviation from the expected bilinear behavior Eq. (10), the resulting presentation
is more sensitive than the conventional type curves of the well pressure and shows that
the curve for TD = 0 actually constitutes the master curve followed by all type curves of
normalized pressure for a certain time interval (Fig. 2c). The master curve (Table 1),20

addressed as p∞
wD in the following, is associated with an infinitely long fracture (note that

the alternative case for TD = 0, namely TF = 0, is meaningless since in this case no fluid
can be injected or withdrawn via the fracture). The normalized pressure stays close to
unity until dimensionless time τ > 10−6 when the master curve bends downwards with
increasing slope (clockwise) indicating the transition from bilinear to radial flow.25

All normalized type curves first deviate counterclockwise from the master curve be-
fore finally bending clockwise like the master curve itself. The latter behavior is ev-
idenced for a few curves but outside the explored time range for others (Fig. 2c).
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Normalized type curves for TD > 10 start counterclockwise bending in the section where
the normalized master curve is still at unity, those for TD < 10 only in the downward
bending part of the master curve. As a consequence normalized type curves for TD > 10
exhibit a maximum whereas those for 1.6 < TD < 10 a succession of a minimum and a
maximum. For TD ' 1.6 the two extrema degenerate to a single saddle point and all5

normalized type curves with TD < 1.6 decrease monotonically. Normalized type curves
with 1.8 < TD < 10 intersect the horizontal line corresponding to unity twice, whereas
those with TD < 1.8 stay below. This behavior is probably the reason why previous au-
thors, e.g. Cinco and Samaniego (1981), assumed a discontinuity in the behavior of
the type curves near TD = 1.8.10

3.2 Evolution of the pressure along the fracture and in the matrix

For a systematic analysis of the evolution of the pressure field in the fracture and in the
matrix, a ratio of pressure differences

pN =
p(x,y ,t)−p0

pw(t)−p0
(11)

is defined where p(x,y ,t) denotes the pressure at position (x,y) in the fracture or15

matrix, p0 the initial pressure (assumed identical in matrix and fracture), and pw(t) the
well pressure at time t. Thus, the quantity pN compares the change in pressure at
some point in the fracture or matrix to the pressure change in the well. Lines in the
(x,y)-plane with pN = const. are referred to as normalized isobars in the following (see
examples in Fig. 3). The ratio of pressure differences notably assumes identical values20

when calculated using either absolute or dimensionless pressures.
The numerical simulation shows that after the start of injection or production the

normalized isobars migrate with the fourth root of dimensionless time along the xD-
axis and with the square root of time along the yD-axis for a certain time (Fig. 4).
During this time period the dimensionless distance of the normalized isobars on the25

402

http://www.solid-earth-discuss.net
http://www.solid-earth-discuss.net/5/391/2013/sed-5-391-2013-print.pdf
http://www.solid-earth-discuss.net/5/391/2013/sed-5-391-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


SED
5, 391–425, 2013

Two-dimensional
numerical

investigations

A. E. Ortiz R. et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

xD-axis progresses according to

xiD(τ) = αbTDτ
1/4 (12)

with the value of the constant αb depending on the chosen isobar, e.g. αb = 3 and 2
for the normalized isobars pN = 0.01 and 0.05, respectively. In dimensional variables,
Eq. (12) reads5

xi (t) = αb (Dbt)
1/4 (13)

where xi (t) is the position of the isobar in the fracture for time t and

Db =
T 2

F

ηfkmsm
, (14)

here referred to as the bilinear flow diffusivity. This diffusivity combines fracture and
matrix properties and has dimensions of L4/T . Equations (13) and (14) are specific10

formulations of the self similarity of the pressure profiles in the fracture during bilinear
flow found by Weir (1999).

The dimensionless distance of the normalized isobar on the yD-axis is given by

yiD = αmTDτ
1/2 (15)

during bilinear flow corresponding to15

yi = αm (Dmt)
1/2 (16)

in dimensional variables. Combining Eqs. (12) and (15), the evolution of the ratio
yiD/xiD depends on dimensionless time as

yiD

xiD
=

αm

αb
τ1/4 =

αm

αb

(
D2

m

Db

)1/4

t1/4. (17)
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The migration of the normalized isobars according to Eqs. (12) to (17) terminates for
two different reasons depending on the size of the dimensionless fracture conductivity.
The change in migration behavior occurs in the interval 1 < TD < 2 and we illustrate
the two types of terminations by considering two examples, TD = 0.314 and TD = 5, in
Fig. 4.5

For dimensionless fracture conductivities lower than 1, the normalized isobars start
to slightly accelerate relative to the fourth-root-of-time migration along the xD-axis long
before they reach the fracture tip, i.e. xD = 1 (Fig. 4). Migration of the normalized iso-
bars in the y-direction simultaneously slows down a little bit relative to the initial square-
root-of-time migration (Fig. 4a, b). The curves of xiD and yiD merge close to the inter-10

ception of the two extrapolated diagnostic fourth-root and square-root relations actu-
ally occurring at (τ ' 1, xD = yD ' 1). After merging the two curves follow the 1/2-slope
straight line indicating that radial flow conditions are approached.

For dimensionless fracture conductivities larger than 2 migration of the normalized
isobars along the xD-axis decelerates and actually almost terminates for a finite time15

interval when reaching the fracture tip and long before the interception of the two ex-
trapolated diagnostic fourth-root and square-root relations (Fig. 4c, d). After some time,
the migration finally accelerates again and appears to approach the straight line of yiD
that closely follows a square-root-of-time relation. Upon closer inspection, one notices
that xiD slightly accelerates at xiD ' 0.8, i.e. before the prominent halt in migration. This20

intermittent acceleration is caused by the reflection of the isobar at the fracture tip that
one can rationalize when invoking an image fracture at the fracture tip and an image
well at a distance of 2xF producing or injecting at the same rate as the real well. The
“reflection” of the normalized isobar is then approximated by the superposition of the
pressure fields of the two wells. Migration will accelerate when the isobars of the two25

wells are approaching each other from both sides of the fracture tip.
A more detailed view of the deviation of the normalized isobars from the fourth-

root and square-root-of-time behavior is obtained by using normalized presentations,

xiD/TDτ
1/4 and yiD/TDτ

1/2, similar to the one used for the well pressure (Fig. 2c). These
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presentations (Fig. 5a, b) confirm that normalized xiD is constant for a certain time in-
terval and starts to bend upward in a similar way as the normalized well pressure
bends downward (Fig. 2c). Normalized yiD is not constant even in the early stage
(τ ' 10−6) but decreases continuously with a slight increase in slope at dimension-
less time τ ' 10−2 (Fig. 5b). The early deviation from the square root of time migration5

indicates that even in the direction perpendicular to the fracture the pressure propaga-
tion is affected by the presence of the fracture at all times. The width-to-length ratio of
the normalized isobars (or pressure field), yiD/xiD, initially follows a fourth-root-of-time
relation (Fig. 5c) and subsequently bends clockwise from the 1/4-slope-straight line
simultaneously with the upward bending of normalized xiD. Within the resolution of our10

numerical simulation this ratio is almost identical for all normalized isobars (Fig. 5c)
suggesting that all normalized isobars have a similar shape and undergo the same
evolution simultaneously in dimensionless time. The observed relationship between
the ratio yiD/xiD and dimensionless time τ allows us to determine the width-to-length
ratio of all normalized isobars at any instant. During the bilinear flow period this ratio is15

approximately given by yiD/xiD ' 1.1τ1/4 (Fig. 5c).

3.3 End time of bilinear flow from well pressure observations

For single-well tests, well pressure constitutes the only observable pressure and the
end time of bilinear flow is generally determined by using its deviation from the 1/4-
slope-straight line (in log-log plots of well pressure vs. time). According to our observa-20

tions (Sect. 3.1), the type curve for the infinitely long fracture rather than the 1/4-slope-
straight line represents the master curve, and only in its initial part up to dimensionless
time τ ' 10−6 this master curve is identical with the 1/4-slope-straight line. For later
times the master curve bends clockwise from the 1/4-slope-straight line due to the
gradual transition from bilinear to radial flow. All type curves for fractures with finite25

length deviate counterclockwise from this master curve. Type curves for dimensionless
fracture conductivity TD < 10 do this in the clockwise bending section of the master

405

http://www.solid-earth-discuss.net
http://www.solid-earth-discuss.net/5/391/2013/sed-5-391-2013-print.pdf
http://www.solid-earth-discuss.net/5/391/2013/sed-5-391-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


SED
5, 391–425, 2013

Two-dimensional
numerical

investigations

A. E. Ortiz R. et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

curve, those for TD > 10 in the straight-line section. We consequently introduce two cri-
teria for the termination of bilinear flow, one for the clockwise deviation of the master
curve from the 1/4-slope-straight line and a second one for the counterclockwise de-
viation from the master curve. According to the underlying mechanisms these criteria
are addressed as transition criterion and reflection criterion, respectively. The time de-5

termined by the transition criterion will be addressed as transition time, the time deter-
mined by the reflection criterion as reflection time. In order to achieve higher accuracy
in the determination of transition time and reflection time the two criteria are formulated
for the normalized type-curves pwN = pwD/2.45τ1/4 and p∞

wN = p∞
wD/2.45τ1/4.

The transition criterion10

pwN = p∞
wN = 1−ε (18)

addresses the clockwise deviation of type curves and master curve from the horizontal
at unity, i.e. actual pressures fall short of the bilinear relation by a relative amount of ε
due to the transition to radial flow (Fig. 6). Unaffected by the fracture tip, the type curves
under consideration are identical with the master curve before the transition criterion15

is fulfilled. Accordingly the transition time is identical for all type curves complying with
this criterion and in particular does not depend on dimensionless fracture conductivity
TD but only on the value of ε used (Fig. 7a, c). For each ε a maximum TD however
exists up to which the transition time can be determined. For type curves deviating
from the master curve before the transition criterion is met the transition time cannot20

be determined.
The reflection criterion

pwN = (1+ε)p∞
wN (19)

reflects the described reflection of normalized isobars at the fracture tip (Sect. 3.2) that
produces the counterclockwise deviation of the normalized type curves pwN from the25

normalized master curve p∞
wN (Fig. 6). Our data show that for normalized type curves

with TD ≥ 1 the reflection at the fracture tip is strong enough to produce intersections
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with the curved deviation lines (Eq. 19) up to at least ε = 0.05 and thus a reflection
time τr can be determined. Type curves with TD < 1 also show a reflection but the
associated deviation from the normalized master curve remains quite small and the
reflection criterion may not be met for any ε of practical significance. The reflection
time is proportional to T−4

D for all type curves with TD > 1 (Fig. 7). This relation is in-5

tuitively understandable when recalling our observation that the normalized isobars in

the fracture migrate proportional to τ1/4. The time it takes for a normalized isobar to
propagate from the well to the fracture tip is therefore proportional to x4

F and since TD is
inversely proportional to xF the observed relation between reflection time and dimen-
sionless fracture conductivity results. For dimensionless fracture conductivities TD < 110

this relation may no longer be valid since in these cases migration of the normalized
isobars starts to accelerate relative to the fourth-root-of-time migration long before the
reflection criterion is fulfilled.

The arrival time of a normalized isobar pN at the fracture tip is smaller than the re-
flection time by a factor of 16 (Fig. 7a, c) when the same value is used for ε and pN15

(e.g. ε = pN = 0.05). This numerical relation can be explained by turning again to the
above introduced concept of an image fracture and an image well. In this concept, the
reflection of the normalized isobar at the fracture tip is approximated by the superposi-
tion of the normalized pressure profiles of the two wells. Inserting 2xFD instead of xFD
in Eq. (12) increases the time by the observed factor of 16.20

During the bilinear flow period the dimensionless well pressure is proportional to τ1/4

and thus its values are constant for the transition time and proportional to T−1
D for the

reflection time (Fig. 7b, d). Dimensionless well pressures for the reflection time and
for the time of arrival of the normalized isobar at the fracture tip differ by a factor of

161/4 = 2.25

The end time of bilinear flow reported by Cinco-Ley and Samaniego-V. (1981) dif-
fers significantly from our time estimates for dimensionless fracture conductivities
TD < 5 (Fig. 7). When reporting their three regimes, Cinco-Ley and Samaniego-V.
(1981) weren’t specific on their criterion for quantitative determination. Their data likely
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reflects the shortcomings encountered when relying on a deviation from the 1/4-
power relation without investigating the deviation in detail especially for type-curves
with 1.6 < TD < 2.5; end time apparently becomes a discontinuous function of TD as
reported in Cinco-Ley and Samaniego-V. (1981).

4 Discussion5

Introducing the dimensionless time τ according to Eq. (8) as an alternative to the ap-
proach by Cinco-Ley and Samaniego-V. (1981), while leaving all other dimensionless
parameters consistent with this previous analysis, proved to be favorable for a bet-
ter understanding of bilinear flow. The new dimensionless time permits identification
of a unique function of the dimensionless well pressure for an infinitely long fracture10

(TD = 0) applicable from the beginning of bilinear flow up to fully developed radial flow.
A normalized presentation of computed type curves for various dimensionless fracture
conductivities showed that the type curve for the infinitely long fracture rather than the
1/4-slope-straight line, as assumed by Cinco-Ley and Samaniego (1981), constitutes
the master curve for the type curves of all fractures with finite length. The latter all15

deviate counterclockwise from the master curve instead of clockwise (for low fracture
conductivity) or counterclockwise (for high fracture conductivity) from the 1/4-slope-
straight line as assumed by these authors.

The master curve itself starts its clockwise deviation from the 1/4-slope-straight line
at a dimensionless time τ ' 10−6. However, clockwise deviation builds up very slowly20

and becomes noticeable in the commonly used log-log presentation only at τ ' 10−2.
Furthermore, this clockwise deviation is counteracted by a counterclockwise bending
for finite fractures. These counteracting effects are balanced best for fracture con-
ductivities close to 2 so that these type-curves stay close to the 1/4-slope-straight
line the longest explaining why the end times of bilinear flow given by Cinco-Ley and25

Samaniego (1981) strikingly peak for TD ∼ 1.8.
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In order to distinguish the two types of processes that lead to a termination of bi-
linear flow, transition to radial flow and isobar reflection at the fracture tip preceding
the transition to intermittent formation linear flow, we replaced the term “end time” by
the specifications “transition time” and “reflection time” and established corresponding
criteria. Application of these criteria to normalized type curves is especially advan-5

tageous for fractures with dimensionless conductivity between 1 and 2 since in this
interval both, transition time and reflection time, can be determined. The transition
time that is independent of dimensionless fracture conductivity can be determined for
dimensionless fracture conductivities up to about 2; reflection time, inversely propor-
tional to the fourth power of dimensionless fracture conductivity, can be determined for10

dimensionless fracture conductivities down to about 1.
Investigating the migration of isobars for (effectively) infinite fractures we found that

isobars normalized with respect to the well pressure migrate proportional to τ1/4 along

the x-axis (i.e. in the fracture) and approximately proportional to τ1/2 along the y-axis
(i.e. in the matrix perpendicular to the fracture) up to a dimensionless time τ ' 10−2.15

Their width-to-length ratio is close to 1.1τ1/4 during this time period and is independent
of dimensionless fracture conductivity. This relation approximately holds for all normal-
ized isobars with pN < 1 that therefore have similar shape at any instant. When τ is
known this simple relation allows for determination of the width-to-length ratio of the
isobars at any instant. The ratio is 0.035 for τ ' 10−6, when the first sign of deviation20

from the fourth-root-of-time behavior of the well pressure is noticeable relying on the
semi-log plots of normalized well pressure (Figs. 2c and 6). For τ ' 10−2 when the
deviation becomes noticeable in conventional log-log presentations the ratio amounts
to 0.35. Thus, in a strict sense bilinear flow ends at a very early state of the shape
evolution but the termination becomes noticeable in conventional type curves only at a25

much later state, i.e. at a time when the growth of the width-to-length ratio also starts to
deviate noticeably from the fourth-root of time relationship. Shape evolution of normal-
ized isobars was computed up to dimensionless time τ ' 1, where the width-to-length
ratio is about 0.7 and apparently needs about two orders of magnitude more time to
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approach 1 for true radial flow in case of the infinite fracture, a suggestion that has to
be checked by further studies.

For finite fractures the shape evolution is disturbed when the isobars approach the
fracture tip by a process here described as “reflection”. This reflection is noticed by
a clockwise deviation of the well pressure from the master curve at a time sixteen5

times later than its actual occurrence at the fracture tip. Interestingly, the disturbance
in the shape evolution shortens the time it takes to approach radial flow conditions
characterized by a width-to-length ratio of 1. This shortening can be explained by the
fact that migration of the isobars along the x-axis is retarded after passing the fracture
tip.10

5 Implications for well test analysis

Our findings may be used to determine geometric and hydraulic properties of fracture
and matrix from short injection and production tests for which conventional well-test
analysis would not be applicable. However, this evaluation requires excellent test con-
ditions and high-quality pressure data. We recommend analyzing plots of normalized15

well pressure (Fig. 6) in addition to the conventional log-log plots and derivative (exem-
plified in Fig. 2 a, b). Using these normalized plots one may obtain the desired infor-
mation on fracture transmissibility, matrix permeability, and fracture length at a much
earlier time than with conventional procedures as explicitly outlined below.

The first step of any analysis is to determine the slope M characterizing the bilinear20

flow section of a diagram of the change in well pressure vs. fourth root of time (∆pw =

Mt1/4). The slope is then used to construct a ∆pw/Mt1/4 vs. time diagram. In case
bilinear flow ended during the pumping operation (indicated by either a clockwise or
an counterclockwise deviation from a horizontal line at 1), transition time (tt) and/or
reflection time (tr) and the corresponding well pressure (pwt and/or pwr) can be read25

from this diagram for a considered relative deviation, i.e. a specific value of ε in Eq. (18)
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or Eq. (19). The following cases and their potential for determining fracture and matrix
characteristics have to be distinguished:

Case 1: When the well pressure record constrains only the slope M, then the product

TF (kmsm)1/2 can be determined using

TF (kmsm)1/2 =

qwη
3/4
f

Mh

2

. (20)5

Case 2: When the well pressure record exhibits a clockwise deviation of relative
magnitude ε, i.e. the transition time is known, then the permeability of the matrix km
can be determined from

km =
qwηf

2πh
pwtD

pwt
(21)

where pwtD = 0.38, 0.68 and 0.92 for ε = 0.01, 0.03, and 0.05, respectively (Fig. 7b,10

d). In case the storage coefficient of the matrix, sm, is known or can be reasonably
estimated, the fracture conductivity can be derived by

TF =
1

(kmsm)1/2

qwη
3/4
f

Mh

2

. (22)

Then, also the two diffusivities of the system, the one for bilinear flow Db (Eq. 14) and
the one for the matrix Dm, are constrained. Furthermore, the ratio yiD/xiD (or yi/xi ) can15

be determined from
yiD

xiD
=

αm

αF
τ1/4

e ' 1.1τ1/4
t . (23)

The dimensionless fracture conductivity obeys the relation TD < TDmax with TDmax =
2.5, 1.6, and 1.0 for ε = 0.01, 0.03, and 0.05, respectively, and thus one also has a
constraint on fracture length, i.e. xF > TF/TDmaxkm.20
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Case 3: When the pressure record contains a counterclockwise deviation of rela-
tive magnitude ε but no clockwise deviation, then one knows the reflection time and
has the relation TD > 10. The dimensionless fracture conductivity TD cannot be further
constrained, however, since all type curves rapidly rise in a similar way. Thus, only

the product TF (kmsm)1/2 can be determined (as in case 1). In addition, if the matrix5

properties (km and sm) are known or can be reasonably estimated one can infer

xF = C

(
T 2

F

kmηfsm
tr

)1/4

= C(Dbtr)
1/4 (24)

from the reflection time where C = 1.73, 1.41, and 1.25 for ε = 0.01, 0.03, and 0.05,
respectively (Fig. 7a, c).

Case 4: when the pressure record exhibits a clockwise deviation from the 1/4-slope-10

straight line succeeded by a counterclockwise deviation from the master curve p∞
wN,

then transition time as well as reflection time are known. Such data allows for deter-
mination of matrix permeability, fracture transmissibility, and the ratio yi/xi (as in case
2). In addition, the dimensionless fracture conductivity TD can be quantified by looking
for a pair of matching transition times and reflection times in Fig. 7 and with that the15

fracture length xF can be determined according to

xF =
TF

kmTD
. (25)

6 Conclusions

Using two-dimensional numerical modeling we investigated the evolution of the pres-
sure field in and around a fracture imbedded in a permeable matrix during injection20

or production tests at constant rate in a borehole aligned with the fracture. The un-
derstanding of the well-pressure evolution gained significantly from introducing a new
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dimensionless time containing only the transport parameters of fracture and matrix as
well as the storage coefficient of the matrix but no geometrical or storage parame-
ters of the fracture. In this presentation, type curves of dimensionless well pressure for
fractures with finite length evolve from a single master curve when dimensionless time
progresses. The unique master curve corresponds to an infinitely long fracture and5

comprises two stages with an extended transition in-between. The early and the late
stage are characterized by pressure in the well increasing with time to a power of 1/4
(bilinear flow) and the logarithm of time (radial flow), respectively. For fractures of finite
length, well pressure always deviates from the master curve towards higher pressures,
i.e. all type curves branch off counterclockwise from the master curve instead of clock-10

wise or counterclockwise from the 1/4-slope-straight line as considered by Cinco-Ley
and Samaniego-V. (1981). Nevertheless, two mechanisms have to be distinguished for
the termination of bilinear flow depending on fracture and matrix properties.

For any fracture of finite length, the propagation of the pressure front in the fracture
will eventually be affected by the fracture tip. Fractures with a dimensionless conduc-15

tivity TD > 10 qualify as fractures with high conductivity since for these the reflection
of the pressure front at the fracture tip happens long before substantial migration of
isobars in the matrix. The reflection leads to a reduction of the pressure gradient in the
fracture and thus signals the transition to formation linear flow. Termination of bilinear
flow is noticed by an increase of well pressure relative to the horizontal section of the20

normalized master curve that occurs however only 16 times later than the actual reflec-
tion at the fracture tip. In contrast, for fractures with low conductivity (TD < 1) migration
of isobars in the matrix becomes significant long before the pressure front in the frac-
ture approaches the fracture tip due to the difference in the power in the relation with
time, i.e. square root and fourth root for matrix and fracture, respectively. The gaining of25

pressure propagation in the matrix on that in the fracture ultimately results in radial flow
indicated by normalized well pressures falling below the horizontal at unity and width-
to-length ratios of isobars deviating significantly from an initial relation to the fourth root
of dimensionless time and indicating substantial inclination of isobars with respect to
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the fracture. For an intermediate range of fracture conductivities (1 < TD < 10), reflec-
tion at the fracture tip interferes with the transition to radial flow and normalized well
pressure exhibits a peculiar succession of decrease, increase, and decrease in cases.

The two criteria introduced for the deviation of the master-curve from the fourth-root-
of-time behavior (transition criterion) and for the deviation of the type curves for finite5

fractures from the master curve (reflection criterion) revealed that the transition time is
independent of the dimensionless fracture conductivity and applies to the infinite frac-
ture as well as to all finite fractures whose type curves do not branch off from the master
curve before this end time is reached. The reflection time is inversely proportional to
dimensionless fracture conductivity to a power of 4 corresponding to the fourth-root-of-10

time migration of the normalized isobars in the fracture expressed by a scaling relation
that includes a bilinear diffusivity with dimensions of L4/t.

The gained insight into the relation between the entire flow field and the peculiari-
ties of the recorded wellbore pressure permits constraining hydraulic and geometrical
parameters of the subsurface in practice. Using semi-log plots of normalized well pres-15

sure in addition to the common log-log diagrams improves the sensitivity of analyses
in particular for dimensionless fracture conductivities smaller than 3 and hydraulic pa-
rameters of matrix and fracture may be determined after shorter test duration than
necessary for conventional analysis.

Acknowledgements. Generous funding by the German science foundation (DFG) within the20

collaborative research centre “Rheology of the earth” (SFB 526) is gratefully acknowledged.

References

Boonstra, J. and Boehmer, W. K.: Analysis of data from aquifer and well tests in intrusive dikes,
J. Hydrol., 88, 301–317, 1986.

Bourdet, D.: Well Test Analysis: The Use of Advanced Interpretation Models, Elsevier, Amster-25

dam, 2002.

414

http://www.solid-earth-discuss.net
http://www.solid-earth-discuss.net/5/391/2013/sed-5-391-2013-print.pdf
http://www.solid-earth-discuss.net/5/391/2013/sed-5-391-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


SED
5, 391–425, 2013

Two-dimensional
numerical

investigations

A. E. Ortiz R. et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Butler Jr., J. J. and Liu, W. Z.: Pumping tests in non-uniform aquifers – the linear strip case, J.
Hydrol., 128, 69–99, 1991.

Chaudhry, A. U.: Oil Well Testing Handbook, Elsevier, Amsterdam, 2004.
Chen, L. and Talwani, P.: Reservoir-induced seismicity in China, Pure Appl. Geophys., 153,

133–149, 1998.5

Cinco-Ley, H. and Samaniego-V., F.: Transient pressure analysis for fractured wells, J. Pet.
Technol., 33, 1749–1766, 1981.

Cinco-Ley, H., Samaniego-V., F., and Dominguez-A., N.: Transient pressure behavior for a well
with a finite-conductivity vertical fracture, Soc. Petrol. Eng. J., 18, 253–264, 1978.

Dake, L.: The Practice of Reservoir Engineering, vol. 36, Elsevier, Amsterdam, 2001.10

Deichmann, N. and Ernst, J.: Earthquake focal mechanisms of the induced seismicity in 2006
and 2007 below Basel (Switzerland), Swiss J. Geosci., 102, 457–466, 2009.

Du, K. and Stewart, G.: Bilinear flow regime occurring in horizontal wells and other geological
models, in: International Meeting on Petroleum Engineering, Beijing, China, 111–118, 1995.

Earlougher Jr, R. C.: Advances in Well Test Analysis, vol. 5, Society of Petroleum Engineers,15

Richardson, TX, 1977.
Gringarten, A. C.: Interpretation of transient well test data, in: Developments in Petroleum En-

gineering, 133–196, edited by: Dawe, R. A. and Wilson, D. C., Elsevier, London, 1985.
Hainzl, S., Kraft, T., Wassermann, J., Igel, H., and Schmedes, E.: Evidence for rainfall-triggered

earthquake activity, Geophys. Res. Lett., 33, L19303, doi:10.1029/2006GL027642, 2006.20
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Table 1. Values of the master curve for normalized well pressure p∞
wD/2.45τ1/4 (Figs. 2c, 6)

τ p∞
wD/2.45τ1/4 p∞

wD τ p∞
wD/2.45τ1/4 p∞

wD

1.00E-09 1.00E+00 1.38E-02 2.88E-05 9.98E-01 1.79E-01
1.50E-09 1.00E+00 1.52E-02 4.37E-05 9.97E-01 1.99E-01
1.27E-09 1.00E+00 1.46E-02 6.61E-05 9.97E-01 2.20E-01
2.53E-09 1.00E+00 1.74E-02 9.92E-05 9.96E-01 2.43E-01
5.06E-09 1.00E+00 2.07E-02 1.49E-04 9.95E-01 2.69E-01
7.59E-09 1.00E+00 2.29E-02 2.24E-04 9.94E-01 2.98E-01
1.14E-08 1.00E+00 2.53E-02 3.36E-04 9.92E-01 3.29E-01
1.78E-08 1.00E+00 2.83E-02 5.07E-04 9.91E-01 3.64E-01
3.56E-08 1.00E+00 3.36E-02 7.04E-04 9.89E-01 3.95E-01
5.33E-08 1.00E+00 3.72E-02 1.06E-03 9.87E-01 4.36E-01
8.89E-08 1.00E+00 4.23E-02 1.54E-03 9.85E-01 4.78E-01
1.42E-07 1.00E+00 4.76E-02 2.30E-03 9.82E-01 5.27E-01
2.13E-07 1.00E+00 5.27E-02 3.46E-03 9.78E-01 5.81E-01
3.20E-07 1.00E+00 5.83E-02 5.18E-03 9.74E-01 6.40E-01
4.80E-07 1.00E+00 6.45E-02 7.74E-03 9.69E-01 7.04E-01
7.11E-07 1.00E+00 7.11E-02 1.16E-02 9.63E-01 7.74E-01
1.07E-06 1.00E+00 7.87E-02 1.74E-02 9.56E-01 8.51E-01
1.60E-06 1.00E+00 8.71E-02 2.61E-02 9.49E-01 9.34E-01
2.49E-06 1.00E+00 9.73E-02 3.92E-02 9.40E-01 1.02E+00
3.73E-06 9.99E-01 1.08E-01 5.89E-02 9.29E-01 1.12E+00
5.69E-06 9.99E-01 1.20E-01 8.83E-02 9.18E-01 1.23E+00
8.53E-06 9.99E-01 1.32E-01 1.32E-01 9.05E-01 1.34E+00
1.28E-05 9.99E-01 1.46E-01 1.50E-01 9.01E-01 1.37E+00
1.92E-05 9.98E-01 1.62E-01
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Table 2. Nomenclature.

bF fracture width [m]
C constant [–]
Db effective hydraulic diffusivity of fracture during bilinear flow, Eq. (14), [m4 s−1]
DF hydraulic diffusivity of (isolated) fracture, DF = TF/ηfSF [m2 s−1]
Dm hydraulic diffusivity of matrix,
Dm = km/ηfsm [m2 s−1]
h height of the open well section, fracture height, [m]
km matrix permeability [m2]
paD dimensionless pressure at τa
peD dimensionless pressure at τe
pN normalized pressure difference, Eq. (11), [–]
prD dimensionless pressure at τr
pw well pressure, [Pa]
∆pw change in well pressure difference, [Pa]
pwD dimensionless well pressure, Eq. (7), [–]
p∞

wD master curve for dimensionless well pressure (Figs. 2c and 6) [–]
pweD dimensionless well pressure at end time of bilinear flow, [–]
pwN normalized well pressure, i.e. normalized by the 1/4-relation for bilinear flow, [–]
qw flow rate in the well [m3 s−1]
sm specific storage capacity of matrix [Pa−1]
SF storativity of the fracture [mPa−1]
t time, [s]
TF fracture conductivity (transmissibility), [m3]
TD dimensionless fracture conductivity, Eq. (9), [–]
x,y spatial coordinates along, normal to the fracture with origin at the well, [m]
xF fracture half length, [m]
xD,yD dimensionless coordinates (xD = x/xF, yD = y/xF) [–]
xiD,yiD dimensionless distances of normalized isobars from the well (along the xD- and yD-axis respectively) [–]

Greek symbols

αb constant for pressure diffusion in fracture during bilinear flow, Eq. (12), [–]
αm constant for pressure diffusion in matrix, Eq. (15), [–]
Γ gamma function [–]
ηf fluid viscosity, [Pa s]
τ dimensionless time, Eq. (8), [–]
τa dimensionless arrival time (of the normalized isobar at the fracture tip) [–]
τe dimensionless end time of bilinear flow [–]
τr dimensionless reflection time (arrival time of the reflected normalized isobar at the well) [–]
τt dimensionless transition time [–]
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Figure 1: Model geometry and realized mesh for simulations. 695 

 696 

a)                                            b) 

Fig. 1. Model geometry and realized mesh for simulations.
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Figure 2: Type curves of the dimensionless well-pressure (a), its logarithmic derivative (b), 698 

and of the normalized well-pressure (c) as functions of dimensionless time. Note, (c) is actual-699 

ly a restricted zoom of the data presented in (a) and (b). For example, the clockwise bending 700 

of the curve for D 100T =  prominent in (a) is outside of the chosen scale. The red line in (c) 701 

represents the normalized curve 1/4

wD / 2.45p τ∞ where wDp
∞  is the master curve for an infinitely 702 

long fracture (see Table 1). 703 

Fig. 2. Type curves of the dimensionless well-pressure (a), its logarithmic derivative (b), and
of the normalized well-pressure (c) as functions of dimensionless time. Note, (c) is actually a
restricted zoom of the data presented in (a) and (b). For example, the clockwise bending of the
curve for TD = 100 prominent in (a) is outside of the chosen scale. The red line in (c) represents

the normalized curve p∞
wD/2.45τ1/4 where p∞

wD is the master curve for an infinitely long fracture
(see Table 1).
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 704 

Figure 3: Snap-shots of the normalized pressure field Np  for fractures with dimensionless 705 

fracture conductivity of D 0.314T =  (top) and D 5T =  (bottom). 706 

T D= 5

τ τ τ τ = 3.75·10- 4 

Fracture 

Well

pN= 0.05pN= 0.01

TD= 0.314

τ τ τ τ = 4.75·10- 3

Fracture 

Well

pN= 0.05
pN= 0.01

Fig. 3. Snap-shots of the normalized pressure field pN for fractures with dimensionless fracture
conductivity of TD = 0.314 (top) and TD = 5 (bottom).
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Figure 4: Dimensionless distances iDx  and iDy  of isobars of normalized pressure Np  along 708 

the Dx - and Dy -axis as function of dimensionless time for a) D 0.314T = , N 0.01p = , b) 709 

D 0.314T = , N 0.05p = , c) D 5T = , N 0.01p = , and d) D 5T = , N 0.05p = . 710 

Fig. 4. Dimensionless distances xiD and yiD of isobars of normalized pressure pN along the
xD- and yD-axis as function of dimensionless time for (a) TD = 0.314, pN = 0.01, (b) TD = 0.314,
pN = 0.05, (c) TD = 5, pN = 0.01, and (d) TD = 5, pN = 0.05.
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 711 

Figure 5: Evolution of normalized distances 1/4

iD D/x T τ  (a) and 1/4

iD D/y T τ  (b), and of the ratio 712 

iD iD/y x  (c) as functions of dimensionless time τ  for normalized isobars N 0.01p =  and 713 

N 0.05p = . Dimensionless fracture conductivity is D 0.314T =  in all cases. 714 

Fig. 5. Evolution of normalized distances xiD/TDτ
1/4 (a) and yiD/TDτ

1/4 (b), and of the ratio
yiD/xiD (c) as functions of dimensionless time τ for normalized isobars pN = 0.01 and pN = 0.05.
Dimensionless fracture conductivity is TD = 0.314 in all cases.
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 715 

Figure 6: Type curves of the normalized well pressure for indicated values of dimensionless 716 

fracture conductivity DT . The dashed grey lines are the deviation lines representing the end 717 

time using the transition criterion (18), the solid grey lines are the deviation lines representing 718 

the reflection criterion (19).  719 

Fig. 6. Type curves of the normalized well pressure for indicated values of dimensionless frac-
ture conductivity TD. The dashed grey lines are the deviation lines representing the end time
using the transition criterion (Eq. 18), the solid grey lines are the deviation lines representing
the reflection criterion (Eq. 19).

424

http://www.solid-earth-discuss.net
http://www.solid-earth-discuss.net/5/391/2013/sed-5-391-2013-print.pdf
http://www.solid-earth-discuss.net/5/391/2013/sed-5-391-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


SED
5, 391–425, 2013

Two-dimensional
numerical

investigations

A. E. Ortiz R. et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

 720 

Figure 7: Dimensionless end times eτ  according to the transition mechanism ( tτ ) and reflec-721 

tion mechanism ( rτ ), Eqs. (18) and (19), respectively,  and dimensionless arrival time aτ  of 722 

the indicated isobar at the fracture tip for a) N 0.01pε = =  and c) N 0.05pε = = . The dimen-723 

sionless end time reported by Cinco and Samaniego (1981) is represented by thin grey lines. 724 

Fit equations for the calculated end and arrival times are represented with blue lines and blue 725 

dashed lines, respectively. Note that rτ  and aτ  differ by a factor of 16. Dimensionless well 726 

pressure at eτ  and aτ . Note that the dimensionless well pressures for rτ  and aτ  differ by a 727 

factor of 2. Fit equations for the calculated dimensionless well pressure are represented with 728 

blue lines and blue dashed lines for eτ τ=  and aτ τ= , respectively. 729 

Fig. 7. Dimensionless end times τe according to the transition mechanism (τt) and reflection
mechanism (τr), Eqs. (18) and (19), respectively, and dimensionless arrival time τa of the indi-
cated isobar at the fracture tip for (a) ε = pN = 0.01 and (c) ε = pN = 0.05. The dimensionless
end time reported by Cinco and Samaniego (1981) is represented by thin grey lines. Fit equa-
tions for the calculated end and arrival times are represented with blue lines and blue dashed
lines, respectively. Note that τr and τa differ by a factor of 16. Dimensionless well pressure at
τe and τa. Note that the dimensionless well pressures for τr and τa differ by a factor of 2. Fit
equations for the calculated dimensionless well pressure are represented with blue lines and
blue dashed lines for τ = τe and τ = τa, respectively.
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