This addition to the first review is divided into two parts. Short comments/reply to Patrick Wu’s
replies (5, 2389, 2013 / C961 and C970) in an attachment; and revisiting, reviewing, and summarizing
the criticism and after the exchange of points of view following my recommendation (expressed in
C932) that the manuscript cannot be published. Before determining this as the final verdict, | invited
for a rebuttal, and the thematic editor, seconding to this effect, has arranged that the discussion
page has been reopened to accept my — now last — words in the matter.

Apart from language issues, which per se would call for a major revision, the following list of items
enumerates the major problems brought up in the first review report and in the deliberations.

1. Isthe problem linear or (linear enough) in displacement rate versus log-viscosity when a box-
shaped volume of laterally anomalous viscosity is introduced? (Anomalous with respect to
the linear viscosity parameter, yet always staying within the linear Maxwell rheology).

2. Can the effect of a neighbourhood of such boxes with the same viscosity change (w.r.t. the
laterally homogeneous structure) be summed up to equal the effect of a one-box
representation of the anomaly?

3. Isthe rheology for the layer below 70 km realistic for Fennoscandia? Is the structure properly
inferred from the literature cited (including Ivins and Sammis, 1995, see C961).

As the ms is organized with its detailed study of single stations of the Bifrost network, the message
conveyed is that the method laid out ion Wu (2006) is ripe for this specific application and that it can
be ported from the geometry used by Wu (2006) to the (widely different) geometry in the present
ms.

Dealing with rate observations, we know that an increase of viscosity leads to higher or lower rates
depending on the point of time of the observation with respect to the Maxwell time of the matter.
When regions that | normally would associate with the lower lithosphere are brought up as a suspect
of viscous relaxation, I’'m uncertain where on its Maxwell time scale we are located. | maintain that a
low-viscosity zone starting below 70 km, no alternative explored, is not a convincing proposition for
the old craton. Nothing else can | conclude from Ivins and Sammis (1995).

As a side-track since this reference has been brought up in the discussion:

While this study ends its temporal scope at less than one cycle per year, contemplates structures at
350 km depth and in the deep mantle, and absorption band versus composite Maxwell rheology, it’s
second thoughts about a uniform Maxwell rheology are confined to the concept’s failure to
simultaneously explain the time scale of GIA and the earth’s anelastic response to tides. Quote from
the Conclusions:

If positive velocity anomalies beneath continental shields

have a thermal origin, then the glacio-isostatic rebounds of
Laurentia and Fennoscandia sample an anomalously ‘stiff’

upper mantle rheology with respect to global spherically
symmetric average values. Long-wavelength viscosity anomalies
in the shallow upper mantle explain the extremely rapid
post-glacial emergence rates observed along Icelandic beaches.
However, short-wavelength variability might also explain the
observed rate difference.

Note: Iceland, not really notable for thick lithosphere, whereas ... (quote continues right there)



Mantle models with laterally heterogeneous viscosity are a
key factor in properly assessing rheology in the tidal band. A
four-phase Maxwell viscoelastic composite rheological model
provides a simpler physical description of shear modulus
dispersion and attenuation at tidal frequency than do ‘E-power
law’ models. We suggest that laterally heterogeneous Maxwell
viscoelasticity may be a viable constitutive relation for periods
as short as 12 hours and as long as a Milankovich cycle

(~ 100 OO0 yr). Future geodetic solutions for solid-body tidal
Love number dispersion (Sk,) might be used to constrain the
deep mantle lateral variation in viscosity.

Notice: “We suggest...”, and notice that the focus of the paper remains in the mantle and in the tidal
domain. It would be against the fundamental notion of this paper to extrapolate the relaxation
mechanism under investigation to the GIA domain as the authors had pointed out: There is certainly
not a single relaxation mechanism; maybe there’s a generalized Maxwell body with only a few
constitutive parameters, maybe it’s as complicated as rock composition; no, the problem is to fill the
gap between tides+Chandler and GIA (and as the hope: beyond). Subsequently, work has been
presented, e.g. Kaufmann et al. (2005), that employ the temperature-based viscosity scaling law
using seismic v; as a proxy for temperature according to Karato (e.g. 1993). (In Steffen at al., 2006,
the reader is referred to Figure 4 in lvins and Sammis, 1994, which is not only not the right paper to
throw into the discussion, as | try to argue above, nor should it be added to the references in the
present ms; while “Figure 4” is not the correct reference in Steffen et al., 2006, probably a typo. So
you see in what cobwebs you end up when work your way into the past...)

Although | appreciate the logic in the Karato-Kaufmann-Steffen-Wu design of the viscosity law, the
earlier papers make clear that the assumption always is that chemistry does not change laterally. Fair
enough in a convecting mantle. At 70 to, say, 200 km depth below Fennoscandia, this would be
unconvincing (Kaikkonen et al.,2000, arrive at 500 °C Moho-temperatures at typically 50 km depth).
Considering the box volumes in that depth range, narrow as they are, to have anomalous viscosity on
the premise that this would have to be attributed to lateral temperature variations on the same
length scale. P-wave studies rather point towards a structural/mineralogical heterogeneity below the
Baltic Shield (Sandoval et al.,2004). Looking at sheerwaves, Bruneton et al. (2004) points out higher
than normal shear wave velocities, quote:

Our final shear wave velocity model shows lateral
variations at each depth of +3% around the average value.
Heat flow [Kukkonen, 1993] and receiver function analysis
[Alinaghi et al., 2003] require a very homogeneous thermal
pattern for the upper mantle in the region. The lateral
variations of seismic velocities are therefore most probably
due to chemical variations.

[69] The obtained velocities are on average 4% higher

than standard Earth models for the upper mantle down to
200 km. There is no evidence for a substantial low-velocity
zone which would make it possible to define the lithosphere-
asthenosphere boundary. Another criterion for defining

this boundary would be the depth below which the
amplitude of the lateral heterogeneities strongly diminishes,
but our lateral resolution is poor below 150 km depth.

Seems needless to consider low viscosity there, seems inappropriate to neglect chemistry variation there.



Maths.

After having dismissed the concept of the narrow, Bifrost-adapted boxes in such shallow depth as a
well-motivated and well-underpinned starting point--- just adding in passing that the anisotropy
found in Ekstrom and Dziewonski might provide the clue to solving the riddle why GIA models
routinely come up with thin lithospheres, without the detour via viscosity---I shall consider the
mathematical viability of the treatment of linear superposition. I've argued with the diffusion
equation in a homogeneous material and pointed out the nonlinear dependence of the solution on
the diffusion coefficient, appearing in the argument of the erfc-function as its analytical solution. In
Patrick Wu’s reply, anything as nonlinear as the erfc-function wouldn’t appear in the GIA problem,
else he had missed something. Granted, even the erfc-function has locations, ranges, where the
derivative wouldn’t change significantly given not too loose margins. If that’s the case on the branch
of the relaxation curve that the observer is watching, so well. However, the ms should either
demonstrate that or prove that the case has been demonstrated before. Else it is doubtful if the
anomalous viscosity places us before, on, or after the Maxwell time of this volume. It turns out at
least that linear superposition is not automatically warranted by a linear differential equation with an
—-in this case---stress-independent rheology. Take the plate bending problem, four differential
orders in space and, in pure elastic material, none in time, and add a feedback force due to
buoyancy. The homogeneous equation features, ahum, hyperbolic and trigonometric cosines of
location with the flexural rigidity (power of -%) multiplying in the arguments. As for viscosity we hope
for a linear relation between the log of viscosity (which enters flexural rigidity linearly when we are
on the late side of Maxwell time) and the surface displacement (rate), especially when an anomalous
viscosity resides in a limited region. | more than happily admit that | have found almost exactly this
(using Mathematica, not unexpectedly reverting to numerical integration methods in laterally
heterogeneous cases) when | reduced the flexural rigidity at an off-centre location under a wide
load that generously umbrellad the place of the anomaly.

There was also a surprise, a feature observed in the ms but not really
understood/commented/explained/explored further. When the anomaly is safely inside the loaded
area, it does not matter how wide it is. The excess displacement (w.r.t the homogeneous case) stays
almost the same despite the width of the anomaly, stepping it through more than one order of
magnitude, and displacement peaks right on top of the centre of the anomaly. The findings in the ms
are a.o. that an anomaly introduced below one GPS station affects this one station but hardly the
neighbour. A thicker lithosphere placed on top could have spread out the displacement feature a
bit.... There is also a critical interplay with the load at its edge within a surprisingly narrow range.
Only then the size of the rigidity anomaly comes into play.

As contradictory as this might appear at first sight, but if the load spectrum is weak at the
wavelengths of the anomaly, there is little to excite. A narrow zone of weakness is then as efficient
as a wide one. So there’s a rule: To obtain response at the wavelength of a structural anomaly, you
need couplings with the load’s spectrum, i.e. there must be a spectral overlap, places where
derivatives peak must be near each other. Therefore the enhanced sensitivity at the load’s edge.

Thus, a better understanding of the phenomenon based on a simple-case study would have been
helpful here, arguing again in favour of a thicker lithosphere. The method with the fine grid creates
an untenable situation of ambiguity. So if the paper could conclude something, after necessary



recapitulation of the basic properties of the solution and the strategy, it’s the dismissal of high-
resolution grids as a feasible tool.

Finally, what about compounding two neighbour anomalies in one of twice the size? On this item |
could not find a linear relation between size and rebound. The wavelength of the forcing enters
displacement with the fourth power, and 2 times X is not (2X)*, even when X is small and the term is
added to something already big (said with a pinch of irony, but | can demonstrate it, see the
Mathematica notebook). Stresses below the lithosphere relaxing at a specific wavelength or length
scale will, among other, exert tractions on the lithosphere to which it responds rather
discriminatingly on behalf of the scale-to-the-power-of four rule. Again, the 70 km thick lithosphere
is susceptible to 100-500 km wavelengths. So it’s not only inside the relaxing medium that the
spectrum gets filtered.

The test with one-wide-anomaly replaced by the sum of two half-sized anomalies of the same
reduction of flexural rigidity (translate: viscosity (principle of equivalence, Laplace transform of
Maxwell body....) demonstrates quite convincingly for the one who’s mind is trained on the power-
of-four law:

The gray shape produces approximately the same displacement as the sum of the blue and purple
shapes computed separately. The gray shape is twice as wide. 50% reduction of rigidity. Load centre
is at 0, load radius is 2, buoyancy 1/3.

In summary:

You cannot assume that a constitutional parameter acts always linearly on the solution of a higher-
order ordinary or partial differential equation, linear as it might transfer input (traction amplitude)
into output (displacement). Even a pendulum swings with the square root of I/g. | can only hope the
structural engineers that design your double size new office floor know how to dimension the
traverses. The claim that linear superposition holds in the aspect of wavelength / length scales is
outrageous, and worse, calling the matter trivial is a clear indication that something rather essential
has been missed.

Wavelength (scale-size) of perturbations, heterogeneities, and forcing play an intriguing, complicated
game. There is no way around partial derivatives and small steps of iteration.

The question where the current relaxation of the heterogeneities investigated is located on the time
scale with respect to the Maxwell time of the material is not contemplated. A decrease in viscosity



might very well be neutral to or accelerating displacement rate (!) when the reference viscosity is
high.

The manuscript is poorly underpinned as the method is concerned, and assumptions too.

Future work should take the demand for falsifiability of claims and hypotheses more seriously, as a
trait of character of sound science.

If the ms would be published with all the points above perceived as shortcomings somehow
amended/circumnavigated, yet stay with the box approach, the 70 km low viscosity zones, the
pursuit of the linear superposition dismissing the effect of different spatial scales, the dependence of
the vs-to-viscosity conversion on laterally homogenous chemistry, the conclusions would be
somewhat discouraging for the geodesists. Better turn the research question around: What
anomalies in the Bifrost results are you able to perceive and explain? Perhaps not perfectly in line
with other evidence, but hopefully not in a head-on collision; or better still: head-om but with
compelling evidence.

P. Kaikkonen, K. Moisio, M. Heeremans, 2000. Thermomechanical lithospheric structure of the
central Fennoscandian Shield, Phys. Earth Planet. Inter., 119, 209-235
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High-resolution body wave tomography beneath the SVEKALAPKO array: I. A priori 3D crustal model
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Bruneton et al. 2004. Complex lithospheric structure under the central Baltic Shield from surface
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Enclosures:

1. Reply by Patrick Wu, C691, with my comments in the pdf.
2. Mathematica notebook.
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Here are my reply to the 5 main points of Anonymous Referee #1:

#1 The predictions of the 1D reference model are already shown and compared to
older BIFROST results in Figs. 8 & 9 in Steffen et al. (2006).

The relationship between shear wave velocity and viscosity variation has been de-
rived in detail in Ivins & Sammis (1995, GJI 123:304- , Steffen et al. (2006, EPSL
250:358-375) and in Wu et al. (2013, GJI 192:7—17@ere both the effects of har-
monicity and anelasticity are included. Please refer to those papers for detail. We will
provide the references in the revised version.
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the Rheology of Solid Earth, Cambridge Univ. Press, Cambridge,
pp. 463.



Regarding the seismic tomography model, it is taken from the
www.seismology.harvard.edu web site. There, one can find 4 models used in
the paper of Ekstrom & Dziewonski (1998). They are models with variations in
isotropic S velocity, SH velocity, SV velocity, and model with SV/SH anisotropy model.
Normally, we take the isotropic S velocity for the conversion to lateral viscosity
variations. However, the SH variation at a specific location always give the largest
variatio@s SH is used if we want to study the maximum effect of lateral viscosity
variation—However, if we use the SH component instead of the isotropic component
in Fennoscandia, the effect is largest in the lithosphere which is elastic and so does
not matter. Even at the top layer in the upper mantle, the effect on the converted
viscosity is not that large (average factor about 3)! Also, it is important to note that for
the computation of the sensitivity kernel, the magnitude of the viscosity perturbation is
divided out! @even if SH is used, the effect will not significantly affect the conclusions
of this paper-

#2 Unlike the formulation of Peltier (1998) and Mitrovica & Peltier (1991), the formula-
tion of the sensitivity kernel in Wu (2006) does not involve any partial derivatives in the
derivation — no relaxation times nor strength of modes are involved. Unlike the conven-
tional spectral method where perturbations are required to be small for lateral varia-
tions, our FE method can handle large and rapid lateral changes in material properties
— as long as the changes are adequately sampled (with more but smaller elements).

Although not mentioned in the paper of Wu (2006), the sum of variations from each
element has been found to be the same (within numerical accuracies) as the effect as
a whole - provided that nonlinear rheology is n@jed. The reason is that as long as
the problem is linear, the principle of superpositi orks. Such finding was considered
too trivial to be mention in the paper of Wu (2006).

#3 That is a good point and it is something that we plan to publish and clarify in the
future. However, new model suites take time to run and a complete story is better
presented in a separate paper so that the focus of this paper won'’t get distracted.
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assuming that low SH velocity and simultaneous high SV velocity are indicative of viscosity. This choice is subjective and deliberate and does not consider a contrary hypothesis: That large anisotropy would not develop in low viscosity material or a mantle under low shear. If viscosity is high  
instead, SH would apply to toroidal deformation in the first place. GIA is predominantly spheroidal. 
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#4 Please note that the threshold has nothing to do with the current accuracy of
BIFROST/GPS. The threshold is something arbitrarily chosen for visual display only
as the sensitivity kernel is normalized, see p. 2397. The whole discussion by the re-
viewer is something we are well aware @’nd is also something we actually discussed
in Wu et al. (2010, GJI 181: 653-664).

The threshold is set so that it is higher than all sensitivity kernel values for the station of
Brussels as it is by far the station with the lowest values, and also set so that stations
near the ice margin show at least one sensitive block in a layer. If a higher threshold
(e.g. comparable to the BIFROST accuracy as used in Wu et al. 2010) is applied, then
less blocks can show their sensitivities clearly in Figures 4-12. However, we will clarify
this point in the revised manuscript.

#5 Both authors have tried to make the manuscript as clear and readable as possible
before submission. However, there may be something in English that we missed, so
we will try harder in the revised manuscript. Also, the reviewer should note that we do
not put our names lightly on papers — especially we never put our names on papers
that we have not read or have no contributions.

Interactive comment on Solid Earth Discuss., 5, 2389, 2013.

C963

SED
5, C961-C963, 2014

Interactive
Comment

Full Screen / Esc

Printer-friendly Version
Interactive Discussion
Discussion Paper



http://www.solid-earth-discuss.net
http://www.solid-earth-discuss.net/5/C961/2014/sed-5-C961-2014-print.pdf
http://www.solid-earth-discuss.net/5/2389/2013/sed-5-2389-2013-discussion.html
http://www.solid-earth-discuss.net/5/2389/2013/sed-5-2389-2013.pdf
http://creativecommons.org/licenses/by/3.0/
HGs
Sticky Note
Quote:" Figure 6. Sensitivity of radial (a, c) and tangential velocity (b, d) in North America (a, b) and Fennoscandia (c, d) above the observation error for 5 yr of GPS
observation to changes in used ice model (see text, red area, lines from top left to bottom right)"

"5 years", written in year 16-17 of Bifrost. 


in[z40:= SetOptions[$FrontEndSession, FontProperties » {"'ScreenResolution" » Automatic}]

inz41:= Needs["DifferentialEquations NDSolveProblems™'];
Needs["DifferentialEquations NDSolveUtilities™"];
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The differential equation is
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With a little re-arranging:

sol[¢_,B_,0_,0_,A_,¥_]:= NDSoIve[{ @
w" [Rationalize[y]] == V[Rationalize[y]],
v " [Rationalize[y]] == u[Rationalize[y]],
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V[-50] = 0, V[50] == 0, W[-50] == 0, W[50] == o},
{t, u, v, w}, {y, -50, 50},
Method - "StiffnessSwitching', WorkingPrecision » 50]
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ElastAssymBumpFlexrigBeam2.nb | 3

refsol =sol[1, 3, 2,0, 1, 0]

{{t - InterpolatingFunction[ { {-50.000000000000000000000000000000000000000000000000, 50.000000000000000000000000000000000000000000000000} } ,
<>], u- InterpolatingFunction|
{{-50.000000000000000000000000000000000000000000000000, 50.000000000000000000000000000000000000000000000000} }, <>1,
v - InterpolatingFunction| { {-50.000000000000000000000000000000000000000000000000, 50.000000000000000000000000000000000000000000000000} } ,
<>], w- InterpolatingFunction]
{{-50.000000000000000000000000000000000000000000000000, 50.000000000000000000000000000000000000000000000000} }, <>1}}

cbs=sol[1, 3,2, -1/2,1/8, 0];

LogLinearPlot[{w[-X] /- refsol, w[-X] /. cbs, 50 ((w[-X] /- cbs) - (w[-X] /. refsol))}, {x, 0.001, 50}, PlotRange -» All] @
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sbs =sol[1, 3,2, -1/2,1/8, -1];

Printed by Mathematica for Students
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LogLinearPlot[{w[-X] /- refsol, w[-X] /. sbs, 50 ((w[-X] /- sbs) - (w[-X] /. refsol))}, {x, 0.001, 50}, PlotRange -» All]
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Now a suite of perturbations for a range of widths. Is there an obvious scaling relation between displacement and width?

wsbsO =sol [1, 3,2, -1/2,1/8, -1];
wsbsl =sol[1, 3, 2, -1/2,1/4, -1];
wsbs2 =sol[1, 3,2, -1/2,1/2, -1]; wsbs3=sol[1, 3,2, -1/2,1, -1];

Printed by Mathematica for Students



ElastAssymBumpFlexrigBeam2.nb | 5

LogLinearPlot[{
(W[-X] /- wsbs0) - (w[-x] /- refsol),
(W[-X] /- wsbsl) - (w[-x] /. refsol),
(W[-X] /- wsbs2) - (w[-Xx] /- refsol),
(W[-X] /- wsbs3) - (w[-x] /- refsol)}, {x, 0.001, 50}, PlotRange -» All, PlotStyle » {Black, Blue, Purple, Magenta, Cyan}]
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Displacement at the peak (which is not stationary in the maximum of theperturbation) and at the load centre show rather different kinds of scaling.

And twice the load width:

wsbs20 =sol[1, 3,4, -1/2,1/8, -1];
wsbs21 =sol[1, 3,4, -1/2,1/4, -1];
wsbs22 =sol[1, 3,4, -1/2,1/2, -1]; wsbs23 =sol[1, 3, 4, -1/2, 1, -1];

wsbs24 =sol[1, 3, 4, -1/2, 4, -1];
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pwpall = LogLinearPlot[ {

(W[-X] /- wsbs20) - (w[-X] /. refsol),
(W[-X] /- wsbs21) - (w[-x] /. refsol),
(W[-X] /- wsbs22) - (w[-Xx] /. refsol),
(W[-X] /. wsbs23) - (w[-X] /. refsol),
(W[-X] /- wsbs24) - (w[-x] /. refsol)}, {x, 0.001, 50}, PlotRange -» All, PlotStyle » {Blue, Purple, Magenta, Cyan, Gray}];

pwppart = LogLinearPlot[{
(W[-X] /- wsbs20) - (w[-Xx] /. refsol),
(W[-X] /. wsbs21) - (w[-X] /. refsol),
(W[-X] /. wsbs22) - (w[-X] /. refsol),
(W[-X] /- wsbs23) - (w[-x] /. refsol),
(W[-X] /- wsbs24) - (w[-x] /. refsol)}, {x, 0.001, 0.1}, PlotRange » All, PlotStyle » {Blue, Purple, Magenta, Cyan, Gray}];
GraphicsRow[ {pwpall, pwppart}]
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When the load perimeter is much wider than the position of the perturbation, there is little effect of the width of the perturbation.

Now a suite of variations on the theme, load width = 2, shifting the position

Printed by Mathematica for Students
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wsbs30 =sol [1, 3,2, -1/2, 1, 0];
wsbs31 =sol[1, 3,2, -1/2,1, -1/2];
wsbs32 =sol[1, 3,2, -1/2, 1, -17;
wsbs33 =sol[1, 3,2, -1/2,1, -3/2];wsbs34 =sol[1, 3,2, -1/2,1, -2];
LogLinearPlot[{
(W[-X] /- wsbs30) - (w[-X] /. refsol),
(W[-X] /- wsbs31) - (w[-x] /. refsol),
(W[-X] /- wsbs32) - (w[-Xx] /. refsol),
(W[-X] /- wsbs33) - (w[-x] /. refsol)
}, {X, 0.001, 50}, PlotRange - All, PlotStyle » {Blue, Purple, Magenta, Cyan}]
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Next the response of two 1/8-wide perturbations at different positions, 1 and 1/2 (remember: the load width is always 2)

hsbs =sol[1, 3,2,0,1/8, -1/2];

Printed by Mathematica for Students
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LogLinearPlot[{
w[-x] /. refsol,
w[-x] /. sbs,
w[-X] /. hsbs,
50 ((W[-X] /- sbs) - (w[-X] /- refsol)),
50 ((W[-X] /- hsbs) - (w[-X] /. refsol)),
50 ((W[-X] /- hsbs) - (w[-x] /. sbs))}, {x, 0.001, 50}, PlotRange - All, PlotStyle » {Black, Darker[Blue], Darker[Purple], Cyan, Magenta, Gray}]
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Now a series of local relaxations of ¢ using ¢ = -1/2, -3/4..., i.e. ¢, = -1+ (1/2)", so log(¢) decreases linearly. Will y - ys grow linearly too?

hsbsl =sol[1, 3,2, -1/2,1/8, -1/2];
hsbs2 = sol[1, 3, 2, -3/4,1/8, -1/2];
hsbs3 =sol[1, 3,2, -7/8,1/8, -1/2]; hsbs4=so0l[1, 3, 2, -15/16, 1/8, -1/2];
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LogLinearPlot[{
(W[-X] /- hsbs) - (w[-Xx] /- refsol),
(W[-X] /- hsbsl) - (w[-x] /. refsol),
(W[-X] /- hsbs2) - (w[-x] /- refsol),
(W[-X] /- hsbs3) - (w[-x] /. refsol),
(W[-X] /- hsbs4) - (w[-x] /. refsol)},

{x, 0.001, 50}, PlotRange -» All, PlotStyle » {Black, Blue, Cyan, Gray, Green},
AxesLabel » {"Distance from load centre", "Excess displacement'}]

Excess displacement

0.015 -
L /\\
i /o
0.010 - /o
L e // ‘x\
0.005 |- - \
r \
0.000 |
L \ 74
L | | I | Distance from load centre
0.01 0.1 1 10
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tbl = {Join[{1}, (w[-1/5]/-hsbs) - (w[-1/5] /- refsol)],
Join[{1/2}, (w[-1/5]/-hsbsl) - (w[-1/5] /. refsol)],
Join[{1/4}, (w[-1/5] /. hsbs2) - (w[-1/5] /- refsol)],
Join[{1/8}, (W[-1/5]/-hsbs3) - (w[-1/5] /. refsol)],
Join[{1/16}, (w[-1/5] /. hsbs4) - (w[-1/5] /. refsol)]}

1 1
{ {1 , 0. x 10’50} , { > 0. 0021940566885919961412994919690904718610225678644} , { i 0. 0046706028923487735905497429465326448768591814540} ,

1 1
{g , 0. 0073998353896340961883630694777682079450850874222} , { 6" 0. 0102914129246740988177566517479158995321498300940}}
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plolo =

ListLogLogPlot[tbl, PlotRange » {{0.05, 1}, {0.001, 0.012}}, Joined -» True, AxesLabel » {""Rigidity ratio", "Excess displacement at y=0.2"}];
plilo = ListLogLinearPlot[tbl, PlotRange » {{0.05, 1}, {0.0, 0.012}}, Joined - True,

AxesLabel » {"Rigidity ratio", "Excess displacement at y=0.2"}];

GraphicsRow[
{plolo,
plilo}]
Excess displacementat y=0.2 Excess displacementat y=0.2
0.012 -
0.0100 |- I
0.010
0.0070 - r
0.0050 | 0.008 -
0.006
0.0030 - [
0.004
0.0020 |- [
0.0015 - 0.002 F
0.0010 L L L L L L ) Rigidity ratio 0.000 L L L L L L L Rigidity ratio
0.10 0.15 0.20 0.30 0.50 0.70 1.00 0.10 0.15 0.20 0.30 0.50 0.70 1.00

So far, the weakening by power of 1/2 results in a fairly linear relation of the increase of deformation with respect to the homogeneous plate. Now the same exercise with viscosity.

(FIr[l, 1, 17, fir[l, 1/10, 11}

. )
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vrefsol = sol[fIr[l, 1, 1], 3, 2, 0, 1, O]

{{t - InterpolatingFunction[{{-50.000000000000000000000000000000000000000000000000, 50.000000000000000000000000000000000000000000000000} } ,

<>], u- InterpolatingFunction|
{{-50.000000000000000000000000000000000000000000000000, 50.000000000000000000000000000000000000000000000000} }, <>1,
v - InterpolatingFunction[ { {-50.000000000000000000000000000000000000000000000000, 50.000000000000000000000000000000000000000000000000} } ,

<>], w- InterpolatingFunction]

{{-50.000000000000000000000000000000000000000000000000, 50.000000000000000000000000000000000000000000000000} }, <>11}}
vhsbs =sol [fIr[1, 1, 1], 3,2, -1+Fflr[1,1,1]1,1/8, -1/2]; vhsbsl =sol [flr[1, 1, 1],3,2, -1+Flr[1,1/2,1],1/8, -1/2];
vhsbs2 = sol [fIr[1, 1, 1], 3, 2, -1 +Fflr[1, 1/4,1],1/8, -1/2]; vhsbs3 =sol[fIr[l, 1, 1], 3,2, -1+Flr[1,1/8,1]1,1/8, -1/2];
vhsbs4 = sol [fIr[1, 1, 1], 3, 2, -1+ Fflr[1, 1/16, 1], 1/8, -1/2];

vhsbs3 =sol[fIr[l,1,1],3,2, -1+Fflr[1,1/8,1]1,1/8, -1/2];

vtbl = {Join[{1}, (w[-1/5]/-vhsbs) - (w[-1/5] /- refsol)],
Join[{1/2}, (w[-1/5]/-vhsbsl) - (w[-1/5] /. refsol)],
Join[{1/4}, (W[-1/5] /- vhsbs2) - (w[-1/5] /. refsol)],
Join[{1/8}, (W[-1/5] /- vhsbs3) - (w[-1/5] /- refsol)],
Join[{1/16}, (w[-1/5] /- vhsbs4) - (w[-1/5] /- refsol)]}

1 1
{ {1, 0. x 10’50} , { > 0 .0012507340296107797927662044356278321779444407682} , { i 0 .0029604741663963313133263688977067675226925608316} ,

1 1
{g , 0. 0051183500309564112701220872374534032296278218641} , { 6" 0. 0076479569846584631710588584483077567717878749522}}
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plolov = ListLogLogPlot[vtbl, PlotRange -» {{0.05, 1}, {0.001, 0.008}}, Joined - True] ;
plilov = ListLogLinearPlot[vtbl, PlotRange -» {{0.05, 1}, {0.0, 0.008}}, Joined - True];
GraphicsRow[ {plolov, plilov}]

0.008 -
0.0070 - [
0.0050 0.006 -
0.0030 - 0.004 L
0.0020 - L
0.002 -
0.0015 - L
0.0010 | | | | | | ) 0.000 ) ) ) ) ) )
0.10 0.15 0.20 0.30 0.50 0.70 1.00 0.10 0.15 0.20 0.30 0.50 0.70 1.00

So, since the relaxation is not a linear function of log viscosity, there is a slight deviation from linearity of displacement versus log viscosity.

PART 2 - Superposition of two perturbations and the question whether one, a wide perturbation can replace it.

This is not straight forward with the Gaussian bells. By what criterion is one wide bell equivalent to two narrower ones, shapes that may overlap with a certain amount? An amount to be
determined.

We have soultions shs =sol[1, 3, 2,-1/2, 1/8, -1] and hshsl =sol[1, 3, 2, -1/2, 1/8, -1/2]

Is there a bell width that gives the same excess displacement at location y =-3/4? We can produce a succession of 1/8-wide perturbations at different distances from 3/4.
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y-1/2 y-3/4

-1\ 2 2 2
Plot[{l-l/ze'(%) L1-1/2e ) 1o1/2e (5F) }. tv. 0, 23, PlotRange - Al

101

08l
07f
0.6

15 2.0

wsbs =sol[1,3,2,-1/2,1/4, -3/4];

nsbs01 =sol[1, 3,2, -1/2,1/8, -1/2]; nsbs02 = sol[1, 3, 2, -1/2,1/8, -11;

nsbs1l =sol[1, 3,2, -1/2,1/8, -3/4-1/8]; nsbsl2=sol[1l,3,2,-1/2,1/8, -3/4+1/8];
nsbs21 =sol[1, 3,2, -1/2,1/8, -3/4-1/12]; nsbs22=sol[1, 3,2, -1/2,1/8, -3/4+1/12];

nsbs101 =sol[1, 3,2, -1/2,1/8, -3/4-1/6]; nsbsl02=sol[1, 3,2, -1/2,1/8, -3/4+1/6];
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Plot[{1-1/2e'(

10}
0.9F
0.8
0.7

06F

y-3/4+1/8

y-3/4-1/8

2
=), 1-1/2e

y-3/4

) 1-1/2e(55) } {y, 0, 2}, PIotRange-»AII]

Plot[{l-l/ze‘(

10}
0.9
08f
07|

06f

y-3/4+1/12

15 2.0

y-3/4-1/12

2
=) i 1_1/2e‘(1/—s

y-3/4

2 2
)V, 1-1/2e (57) } {y, 0, 23, PIotRange-»All]

15 2.0
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pall = LogLinearPlot[ {
(W[-X] /-wsbs) - (w[-Xx] /- refsol),
(W[-X] /- nsbs01) + (W[-X] /. nsbs02) -2 (w[-x] /. refsol),
(W[-X] /- nsbs101) + (W[-X] /- nsbs102) -2 (w[-X] /- refsol),
(W[-X] /- nsbsl1l) + (W[-X] /. nsbhs12) -2 (w[-Xx] /- refsol),
(W[-X] /. nsbs2l) + (W[-X] /. nsbs22) -2 (w[-X] /. refsol)},
{x, 0.001, 50}, PlotRange -» All, PlotStyle » {Black, Blue, Orange, Cyan, Gray},
AxesLabel » {"Distance from load centre", "Excess displacement'}];
pnear = LogLinearPlot[{
(W[-X] /. wsbs) - (w[-X] /. refsol),
(W[-X] /- nsbs01) + (W[-X] /. nsbs02) -2 (w[-x] /- refsol),
(W[-X] /- nsbs101) + (W[-X] /- nsbs102) -2 (w[-X] /- refsol),
(W[-X] /- nsbsl1l) + (W[-X] /. nsbs12) -2 (w[-x] /- refsol),
(W[-X] /- nsbs2l) + (W[-X] /. nsbs22) -2 (w[-X] /. refsol)},
{x, 0.05, 0.5}, PlotRange -» All, PlotStyle -» {Black, Blue, Orange, Cyan, Gray},
AxesLabel » {""Distance from load centre", "Excess displacement'}];
GraphicsRow[
{pall,
pnear}]

Printed by Mathematica for Students



ElastAssymBumpFlexrigBeam2.nb | 17

Excess displacement Excess displacement
; A i
0.006 M\ 0.0045 |-
0.0040 |-
0.004 F
0.0035 |-
0.0030 -
0.002 F
0.0025 [
0.000 0.0020 ;
0.0015 F
= “‘ Distance from load centre — ! ! ! ! —  Distanci
0.01 0.1 1 10 0.10 0.15 0.20 0.30 0.50

The orange solution has been iterated manually to get near the black solution (the wide-lobe bell). There does not seem to be an optimum overlap, since there are side-effects into the centre
of the area where the different curves are offset w.r.t. each other, and the wide-lobe solution has a different curvature. At the load centre, the smallest difference w.r.t. to the wide-lobe
solution is the one that differs most above the perturbation. (compare gray versus black; see the first and last elements in the following list:)
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Join[
N[(W[-X] /- wsbhs) - (w[-x] /- refsol)],
N[ (W[-X] /- nsbsOl) + (w[-X] /.- nsbs02) -2 (w[-X] /. refsol)],
N[ (W[-X] /- nsbs101) + (w[-X] /- nsbs102) -2 (w[-X] /. refsol)],
N[ (W[-X] /- nsbsll) + (w[-X] /. nsbs12) -2 (w[-X] /- refsol)],
N[(W[-X] /. nsbs21) + (W[-X] /. nshs22) -2 (w[-x] /. refsol)]] /. x- 0

{0.000818403, 0.00142965, 0.00114572, 0.00104521, 0.000973223}

The greatest difference at the load centre is worth 75%.
I won't go further than express my doubts as to the proposition that linear superposition of any, disjoint to abutted, variations of structure parameters would be trivial.

The perturbation in the orange solution:
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06F
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=) , 1—1/2e'(1/_4) } {y, 0, 2}, PIotRange-»All]

15 2.0

What happens for a load-concentric anomaly when we make it wider and wider?

wcbs10 = sol [1,
wcbsl1l = sol [1,
wcbs12 = sol[1,
wcbsl13 = sol [1,
wcbs14 = sol [1,
wcbsl15 = sol [1,
wcbs20 = sol [1,
wcbs21 = sol [1,
wcbs22 = sol [1,
wchs23 = sol [1,
wcbs24 = sol [1,
wcbs25 = sol [1,

2,-1/2,1/8, 0]
2,-1/2,1/4,0]
2,-1/2,1/2, 0]
2,-1/2,1,0];
2,-1/2,2,0];
2,-1/2,4,0];
2,-7/8,1/8, 0]
2,-7/8,1/4,0]
2,-7/8,1/2,0]
2,-7/8,1,0];
2,-7/8,2,01;
2,-7/8,4,0];

W W wWwwwwowwwwowow
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pcbsl = LogLinearPlot[{

(W[-X] /- wcbs10) - (w[-X] /. refsol),
(W[-X] /- wcbsl1l) - (w[-x] /. refsol),
(W[-X] /- wcbs12) - (w[-Xx] /. refsol),
(W[-X] /- wcbsl13) - (w[-X] /. refsol),
(W[-X] /. wcbs14) - (w[-X] /. refsol),
(W[-X] /- wcbs15) - (w[-x] /. refsol)},

{x, 0.05, 20}, PlotRange -» All, PlotStyle -» {Black, Blue, Orange, Gray, Cyan, Red}];
pcbs2 = LogLinearPlot[{

(W[-X] /. wcbs20) - (w[-X] /. refsol),
(W[-X] /- wcbs21) - (w[-x] /. refsol),
(W[-X] /- wcbs22) - (w[-Xx] /. refsol),
(W[-X] /. wcbs23) - (w[-X] /. refsol),
(W[-X] /. wcbs24) - (w[-X] /. refsol),
(W[-X] /- wcbs25) - (w[-x] /. refsol)},

{x, 0.05, 20}, PlotRange -» All, PlotStyle » {Black, Blue, Orange, Gray, Cyan, Red}];
GraphicsRow[ {pcbsl, pcbs2}]

0.010
0.02

0.005
0.01

0.000 0.00

-0.005 -0.01

5.0 10.0 20.0 0.1 0.2 0.5 1.0 2.0 5.0 10.0

The grade ot weakening and the length scale do Interact, see the orange line!
UNFINSHED APPENDIX:
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The following scheme would create more box-like perturbations:

(W[-X] /- wcbsl14) + (w[-X] /- refsol),
(W[-X] /- wcbs24) + (w[-X] /- refsol)

COIIect[ay dy [¢ (1+<pe‘(y»1) ) 8y ayW[yl) » W"[y]]

_ y-y\ —2+2n 7(;

2e n(-1+2n) (T) oo 4de ' -

B + W”[Y} - + ¢ 1+67(T) ©® W(4) [y]
22 22 A

(%2)%"

FullSimplify[-2n (-1+2n) (y%)_annz (y'_*)'zm] @

2n (1en (24 (50)77)) (50)°" 2

>2

(y-v

However, it looks hopeless to me - out of intuition.
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