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Abstract  10 

The aim of this work was to investigate the effect of an experimental fire, used for grassland management, 11 

on soil organic carbon (SOC) stocks. The study was carried out on Hyparrhenia hirta (L.) Stapf (Hh) 12 

grassland and Ampelodesmos mauritanicus (Desf.) T. Durand & Schinz (Am) grasslands, located in the north 13 

of Sicily. Soil samples were collected at 0-5 cm before and after experimental fire and SOC was measured. 14 

During grassland fire soil surface temperature was monitored. Biomass of both grasses was analyzed in order 15 

to determine dry weight and its chemical composition. The results showed that SOC varied significantly with 16 

vegetation type, while it is not affected in the short period by grassland fire. Am grassland stored more SOC 17 

compared with Hh grassland thanks to lower content in biomass of labile carbon pool. No significant 18 

difference was observed in SOC before and after fire which could be caused by several factors: first, in both 19 

grassland types the measured soil temperature during fire was low due to thin litter layers; second, in 20 

semiarid environment higher mineralization rate results in lower soil carbon labile pool; and third, the SOC 21 

stored in the finest soil fractions, physically protected, is not affected by fire. 22 
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Introduction 25 

Fire is part of the Earth System and has been for millennia a tool for many societies (Pyne, 2001). Fire is 26 

regarded as an active ecological agent able to mobilize nutrients and restore soil fertility (Snyman, 2003) but, 27 

also as a primary cause of soil degradation due to nutrients loss for volatilization, leaching and erosion, 28 

especially in severe wildfires. It is, in fact, considered a major disturbance in many ecosystems, which lead 29 

to important shifts in the soil properties and vegetation (Certini, 2005; Granged et al., 2011a). One of the 30 

most common effects of fire is the alteration in composition and amount of soil organic matter (Knicker, 31 

2007, Terefe et al., 2008). Several studies recorded a decrease (Fernández et al., 1997; Novara et al., 2011) in 32 

soil organic carbon (SOC) after fire, while results of other studies showed no significantly changing or even 33 

increase of previous SOC content (Kavdir et al., 2005). These discrepancies occur due to the large amount of 34 

controlling factors and therefore the effect of fire is highly variable in space and time. Among these factors, 35 

fire intensity, fire severity, fire regimen, type of burned vegetation, connectivity, distribution of fuel on soil 36 

surface, type of ash produced and dispersion, topography, soil properties, aspect, regional climate and 37 

meteorological conditions in the immediate period after the fire play a key role to determine SOC alteration 38 

and accumulation in soils (Certini, 2005; Pereira et al. 2010; Pereira et al., 2013). 39 

In semiarid areas fire is one of the common management tools used by shepherds to enhance pasture 40 

regrowth. In fact, the recovery of vegetation canopy after fire in the Mediterranean area can be quite rapid 41 

due to adaption of plant communities to the disturbances caused by fire as observed in several studies 42 

(Trabaud, 1981; Oba, 1990; Woube, 1998; Barberis et al., 2003; Pausas and Verdú 2005). It is known, 43 

moreover, that fire is considered an important factor for arid and semiarid grasslands because it avoids 44 

invasion of trees and shrubs with implications on soil carbon storage (Briggs et al., 2005). Despite the 45 

importance of fire on grassland ecosystems (Bond et al., 2005), its impact on SOC is not well understood in 46 

the immediate period after the fire in the Mediterranean grasslands (Snyman, 2003). The aim of this work is 47 

to quantify SOC stock change as a result of an experimental fire of two of the most widespread types of 48 

Mediterranean grasslands (Brullo et al., 2010; Díez-Garretas and Asensi, 1999) and, therefore, to establish if 49 

this practice could be used as a sustainably management tool for grazing recovery (Álvarez-Martínez et al., 50 

2013). 51 
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Materials and Methods 52 

The field studies were carried out in the province of Palermo, Sicily (Italy) (350 m a.s.l.) (Fig. 1). Local soil 53 

type is an Eutric Cambisol according to WRB (WRB, 2006) with sand and clay contents of 18% and 46%, 54 

respectively. The climate is Mediterranean, with mean annual rainfall of 580 mm and yearly average 55 

temperature of 16 °C.  56 

An experimental fire was conducted on July and September 2009 on five (replicas) delimited square areas 57 

(50×50 cm) in two different grassland types, dominated by Hyparrhenia hirta (L.) Stapf (Hh) and 58 

Ampelodesmos mauritanicus (Desf.) T. Durand & Schinz (Am). Each sampling square was about 2m distant 59 

from the neighbor square. In order to simulate a natural wildfire, burning was allowed to take its natural 60 

course until it extinguished itself. The fire was generated with a match, starting from leeward in each plot. 61 

Soil surface temperature during the burning was measured using a thermocouple system (type K Inconel 600 62 

insulated). In each selected area three soil samples were collected at 0-5 cm depth before and immediately 63 

after fire. On three one meter square in both grasslands (dominated by Hyparrhenia hirta or Ampelodesmos 64 

mauritanicus) all plants were cut, oven dried for 3-4 days at 60-65 °C, and weighted. SOC content was 65 

measured using a CHN-Elemental Analyzer. For the δ13C analysis, an EA-IRMS (elemental analyzer 66 

isotope ratio mass spectrometry) was used. The International Atomic Energy Agency (IAEA), Vienna, 67 

distribute IAEA-CH-6 as a reference standard material. The results of the isotope analysis are expressed as a 68 

δ value (‰) relative to the international Pee Dee Belemnite standard as follows: 69 

 70 

 71 

where δ = δ 13C, R = 13C/12C, s = sample, and st = standard. 72 

Dry biomass weight and its chemical composition (ADF acid detergent fiber, NDF neutral detergent fiber, 73 

Cellulose, Hemicellulose, Lignin, Ash) were determined on three 0.5 m
2
 square area subsamples for each 74 

grassland types. 75 

Data analysis was conducted using the SAS statistical package (SAS Inst., 2002). Normal distribution of data 76 

was verified previously to statistical data comparisons and analysis of variance (ANOVA) was conducted. 77 

Significant differences were considered at a p<0.05. 78 
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 79 

Results and discussion 80 

 81 

SOC ranged from 20.3 to 37.0g kg
-1

 and from 15.4 to 32.5 g kg
-1

 before and after experimental fire, 82 

respectively, in soil covered by Hh, and from 32.5 to 38.2 g kg
-1

 and from 38.3 to 49.1 g kg
-1

 before and after 83 

experimental fire, respectively, in soil covered by Am. The experimental fire did not have significant 84 

differences in SOC in both grassland types (Fig. 2). Similarly to SOC results, δ 
13

C was not affected 85 

significantly by fire. The average by time of δ 
13

C values measured in Hh grassland were -25.418 ± 0.25‰ 86 

and -25.161 ± 0.40‰ in soil sampled before and after fire, respectively; while in Am grassland were -26.873 87 

± 0.16‰ and -26.98 ± 0.31‰ before and after fire, respectively. Our results are in agreement with similar 88 

observations reported by other authors (Granged et al., 2011b) who found no change in SOC content before 89 

and after prescribed fire. The experimental fire has a moderate fire severity, similar to prescribed fire 90 

described by Granged et al. (2011b). The time of combustion was 12±2 minutes and 7±1 minutes for Hh and 91 

Am, respectively (Fig. 3). The maximum temperature measured at soil surface was around 480 °C in both 92 

grasslands. Temperatures over 200 °C persisted for 5 minutes and 3 minutes for Hh and Am, respectively. 93 

The burning time and intensity was low due to low amount of fuel in both grasslands. Mediterranean 94 

environmental conditions involve high organic matter mineralization rates and, thus, negligible amounts of 95 

litter biomass stock. The low temperatures registered during low severity fires does not have important 96 

effects on SOC stock (Úbeda et al., 2005). The loss of organic carbon by burning can occur even at relatively 97 

low temperatures such as 200 °C, but total combustion is only observed at high temperatures 450-500°C (De 98 

Bano et al., 1998). When comparing the two grasslands, the SOC amount and the effect of fire on SOC stock 99 

was contrasted. The lower SOC content was measured under Hh grassland, which also recorded the lower 100 

biomass yield. The above ground biomass estimated is 4.76 Mg ha
-1

 and 11.60 Mg ha
-1

 of dry matter for Hh 101 

and Am grassland, respectively. 102 

Even if the SOC change before and after fire was not statistically significant, after fire SOC content 103 

decreased of 11.5% in Hh and increased of 27.9 % in Am grassland. The increase of SOC after fire could 104 

occur due to external inputs of charred material and ash, as commonly is observed in low severity fires due 105 

fuel and organic matter incomplete combustion. In particular, the burned material returns to soil as particles 106 
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smaller than 2 mm in the form of ash, which are mixed in the top horizon, and which cause a net increase of 107 

SOC content (González-Pérez et al., 2004). The reason for the slight SOC increase after fire only in Am 108 

grassland may depend on different characteristics of the two considered grasses. Firstly, Am biomass 109 

contains more lignin and cellulose than Hh biomass (Table 1), and, thus, more recalcitrant compounds that 110 

under low temperature do not completely volatilize. Secondly, Am has a densely caespitose habit: this feature 111 

impedes a complete burning and favors the retention of not completely burnt plant residues. The ash of Hh 112 

is, instead, lighter and quickly eroded by wind (Cerdà and Doerr, 2007). This is clear evidence that Hh 113 

grassland burned at higher severity, despite the similar temperatures observed. Previous studies observed that 114 

fire severity is different according the burned specie (Pereira et al., 2011). Thirdly, biomass of Am contains 115 

siliceous compounds that obstruct burning. 116 

Conclusions 117 

Data here reported confirm that the use of experimental fire to favour plant recovery in Hh and Am grassland 118 

does not affect SOC stock, even if these grasslands did not burn for many years. Our study shows that it is 119 

possible to adopt the system of controlled burning to maintain grassland formations, however, this 120 

management tool must be adopted only after thorough phytosociological analyses of local vegetation patterns 121 

and dynamics and after detailed planning of grazing after fire. 122 
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Table caption  199 

Table 1. Biomass composition (% of dry biomass) of Hyparrhenia Hirta (Hh) and Ampelodesmos 200 

mauritanicus (Am). Values in parenthesis are standard deviations. Abbreviations: ADF = acid detergent 201 

fiber, NDF = neutral detergent fiber. 202 

 203 

Grassland ADF Cellulose  NDF Hemicellulose Ash Aboveground 

biomass 

(Mg ha
-1

) 

C 

Biomass 

(g kg
-1

) 

Am 6.91 

((0.58) 

37.72 

(1.58) 

73.03 

(2.65) 

23.99  

(1.32) 

4.02 

(1.10) 

4.76 43.8 

Hh 5.98 

(0.68) 

34.00 

(1.20) 

72.01 

(1.53) 

28.26  

(1.76) 

4.34 

(1.49) 

11.60 45.8 

 204 
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Figure Caption  206 

Fig.. Localization of the study area (black point) in Sicily (rectangle in inset) and with respect to the next 207 

urban settlement Cefalù. Grey scale represents altitudinal gradient (1 shade of grey = 200 m). 208 
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Fig. 2. Soil organic carbon before and after fire in Hyparrhenia Hirta (Hh) and Ampelodesmos mauritanicus 214 

(Am) grassland. 215 

 216 

  217 
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Figure 3- Soil temperature during fire under Hyparrhenia Hirta (Hh) (blu line) and Ampelodesmos 218 

mauritanicus (Am) (red line) grassland 219 
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