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Abstract

We describe a novel method implemented in the GPlates plate tectonic reconstruction
software to interactively reconstruct arbitrarily high-resolution raster data to past geo-
logical times using a rotation model. The approach is based on the projection of geo-
referenced raster data into a cube map followed by a reverse projection onto rotated5

tectonic plates on the surface of the globe. This decouples the rendering of a geo-
referenced raster from its reconstruction, providing a number of benefits including a
simple implementation and the ability to combine rasters with different geo-referencing
or inbuilt raster projections. The cube map projection is accelerated by graphics hard-
ware in a wide variety of computer systems manufactured over the last decade. Fur-10

thermore, by integrating a multi-resolution tile partitioning into the cube map we can
provide on-demand tile streaming, level-of-detail rendering and hierarchical visibility
culling enabling researchers to visually explore essentially unlimited resolution geo-
physical raster data attached to tectonic plates and reconstructed through geological
time. This capability forms the basis for interactively building and improving plate re-15

constructions in an iterative fashion, particularly for tectonically complex regions.

1 Introduction

Geospatial Information System (GIS) software enables geoscientists to visually ex-
plore vector and raster geospatial data. In the plate tectonics domain there is also the
need to explore data in their spatial arrangement through geological time, attached to20

moving plates. GPlates (Boyden et al., 2011) is open-source software that combines
familiar GIS functionality with the time dimension enabling visual and analytical ex-
ploration of spatio–temporal relationships within geospatial data. This is achieved by
attaching present day vector geometry and raster data to tectonic plates on the surface
of the globe and reconstructing them to past geological configurations using a plate25

tectonic rotation model. The need for interactive raster reconstruction includes the abil-
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ity to quickly reconstruct high-resolution geophysical raster data within alternative plate
tectonic rotation models in order to build, alter and optimize, or simply visualise and
interrogate those models (Williams et al., 2012). Part of this involves visualizing how
well ancient geological features align at reconstruction times when they were in close
proximity to each other. Here we focus on the implementation of raster reconstruction5

within GPlates. Reconstructing raster data involves correctly positioning a raster on
the globe (geo-referencing), partitioning it into tectonic regions and independently ro-
tating each tectonic region according to its motion through geological time. The vast
majority of desktop graphics hardware manufactured in the last decade is more than
capable of displaying raster data at interactive frame rates provided visibility culling and10

level-of-detail (LOD) techniques are employed to reduce the workload. Firstly, LOD re-
duces the workload by down-sampling the original raster image into successively less-
detailed images and only loading and rendering raster data at a level of detail sufficient
to satisfy the pixel resolution of the display. And secondly, visibility culling reduces the
workload by spatially partitioning each LOD image into tiles and only loading and ren-15

dering those tiles that are visible for a given view position and direction. However, we
also need to integrate LOD and visibility culling with interactive reconstruction of raster
data (attached to independently rotating tectonic blocks). Our approach is based on
a cube map projection of the globe whereby raster pixels are radially projected from
the surface of the globe onto a cube surrounding the globe and where each face of the20

cube is partitioned into a LOD hierarchy of image tiles. With the cube map approach
the rendering of a reconstructed raster follows a decoupled two-stage process. Both
stages take advantage of the ability of graphics hardware to rapidly project and render
a three-dimensional scene into a frame buffer (or target texture). The first stage renders
the geo-referenced raster into one or more tile textures of the cube map. The second25

stage involves un-projecting those cube map tile textures back onto the globe during the
rendering of rotated tectonic surface regions. This separation of rendering stages sim-
plifies the implementation of raster reconstruction on the 3-D globe while also enabling
enhancements such as raster reconstruction in different 2-D map projections and com-
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bining multiple rasters. Virtually all graphics hardware manufactured in the last decade
has dedicated hardware to accelerate transformations using 4×4 matrices. The cube
map approach takes advantage of this since each individual cube map tile has its own
cube map projection transform represented as an off-axis perspective 4×4 matrix. This
enables GPlates to reconstruct and display arbitrary resolution raster data at interactive5

frame rates on a wide variety of computer systems.

2 Multi-resolution raster visualization

GPlates initially uses a multi-resolution raster rending approach when data are loaded
into GPlates, i.e when the user has chosen not or not yet to reconstruct a raster.
Additionally, when the user does choose to reconstruct a raster, this approach is used10

as the first stage of the raster reconstruction process (to render that raster into a cube
map).

2.1 Source raster data

In order to display raster data in GPlates a raster file needs to be imported. The im-
port procedure generates a GPML file with a single raster feature containing a link15

to the original raster image file and raster meta-information including geo-referencing,
coordinate reference system and general raster metadata (Qin et al., 2012). GPlates
uses the Geospatial Data Abstraction Library (GDAL), an open-source library for raster
geospatial data formats (Warmerdam, 2008), for importing raster data. Source raster
data from a variety of colour image formats containing Red Green Blue Alpha (RGBA)20

colour data (including JPEG and PNG) can be imported into GPlates. Also a variety
of numerical image formats containing floating-point or integer data (including NetCDF
and GeoTIFF) can be imported. Both types of raster data can be visualized in RGBA
format – for numerical raster data (which has no colour information) the user also se-
lects a colour palette to translate from numerical pixels to RGBA pixels.25
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2.2 Rationale for multi-resolution raster data

GPlates takes advantage of the power of graphics hardware to achieve raster render-
ing at interactive frame rates. However the raster data still needs to be retrieved from
storage before it can be rendered. Since this is usually a hard drive with mechanical
disk platters this is by far the slowest component in raster visualization. Loading the5

entire raster into system memory is not possible since this can consume an excessive
amount of time and computer memory, especially since GPlates supports arbitrarily
high raster image resolutions (such as one minute global grids and higher) which can
exceed the maximum of 3–4 GB of virtual memory addressable by a 32-bit application
(even if the system has much more physical memory).10

Therefore it is important to only interactively load raster data that is both (i) at a res-
olution closely matching that of the desktop monitor (or visual display screen), and (ii)
that is visible in the view window. This level-of-detail and visibility culling is achieved
with a multi-resolution tiled raster image pyramid that significantly reduces the amount
of raster data streamed from disk and reduces the rendering workload for the graphics15

hardware.

2.3 Multi-resolution tiled raster image pyramid

The raster image pyramid is generated by successively filtering the full resolution raster
image into progressively smaller versions of itself with each pyramid level halving the
dimension of the previous level (for example 4000×2000, 2000×1000, 1000×500, . . . ).20

Since this filtering is generally expensive it is only done once and written to a cache
file (when the raster is first rendered) such that subsequent sessions use the cache file
directly.

During raster rendering GPlates selects the lowest resolution image that achieves
a sharp and crisp visual appearance of the raster (of course when even the highest25

detail resolution of the raster is insufficient the raster cannot appear sharp and crisp).
For example if the entire raster is visible in the view window (when the view is fully
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zoomed out) and the full resolution raster (level 0) has dimensions 21600×10800
(a one minute global grid) and the display screen has dimensions 1650×1050 then the
down-sampled image at level 3 in the pyramid (of dimensions 2700×1350) is sufficient
to display the raster without visual loss of detail.

In the above example the view was fully zoomed out to display the entire globe (or5

raster) requiring only a low-resolution raster pyramid level to be loaded and rendered.
The opposite scenario occurs when the view is fully zoomed in to observe, in detail,
a specific localised geographic region. Here a much higher raster level of detail is
required but a correspondingly smaller area of the globe (or raster) is visible in the view
window – essentially the majority of the raster is not actually visible. To enable visibility10

culling, each image in the pyramid is partitioned into small fixed-size tiles and only the
visible tiles are loaded and rendered. Note that all tiles contain the same number of
pixels regardless of their pyramid level and hence place the same load on the system
(graphics hardware and streaming).

Interactive visualization is then possible because the total number of tiles loaded15

and rendered at any time is essentially bounded regardless of the zoom level. Figure 1
shows the visible tiles of a raster as solid colours to highlight the tile partitioning. The
left side of the figure (showing the more zoomed-out view) exposes a larger area of
the raster but conversely it can use tiles from a lower resolution image in the pyramid.
The right side of the figure (showing the more zoomed-in view) exposes a smaller20

area of the raster but conversely it needs tiles from a higher resolution image in the
pyramid. As can be seen in Fig. 1c this results in both zoom levels requiring roughly
the same number of tiles and hence placing roughly the same load on the graphics
hardware and streaming sub-systems. The yellow wireframe in the figure is the view
frustum used by the “3-D Orthographic” view in GPlates. A frustum, as typically used25

in computer graphics for a perspective projection, is the solid portion of a truncated
pyramid whose top has been cut off by a plane parallel to its base (Neider et al., 1997)
and where the pyramid apex represents the eye, or camera, location (the single point
receiving the converging light rays). However the frustum in an orthographic view is
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a rectangular prism (the light rays are parallel, instead of converging, and hence the
eye/camera location is essentially at infinity). The yellow orthographic view frustum
in Fig. 1 does not include the rear hemisphere of the globe because raster data on
the rear hemisphere are not normally visible through the globe (note that the globe is
normally opaque grey in GPlates but is rendered semi-transparent in the figure in order5

to highlight the yellow wireframe frustum within the interior of the globe).

2.4 Streaming raster data

As the user pans the view across the globe, new raster tiles come into view while old
tiles drop from view. And as the user zooms the view into the globe, each visible tile
is recursively replaced with four higher resolution tiles to enhance the detail and vice10

versa when zooming the view away from the globe. This continual acquiring and releas-
ing of tiles necessitates the streaming of raster data from disk as the user interactively
explores raster datasets.

GPlates uses the open-source, cross-platform graphics library OpenGL to access
hardware-accelerated graphics functionality. For a raster tile to be rendered by the15

Graphics Processing Unit (GPU) its data must first be loaded into an OpenGL texture
resource. The tile texture dimension is fixed at 256×256 pixels since all graphics hard-
ware support this texture dimension and it provides a reasonable granularity for visibility
culling. GPlates maintains a cache of texture resources for each raster that includes the
currently visible tiles plus the most recently released (not visible) tiles. When a new tile20

becomes visible GPlates first searches the texture cache. If the tile is not cached then
the tile data is loaded from disk (the multi-resolution tiled image pyramid cache file) into
the least recently released texture resource. The texture cache and the operating sys-
tem’s physical-memory-backed file cache help to minimize the impact of high-latency
disk accesses. For example panning the view over a new area of a raster can initially25

result in some stuttering but when the user later returns to the same area the panning
tends to be much smoother.
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To further mitigate the cost of high-latency disk accesses, the raster tiles are not
stored on disk as rows of tiles across the raster (storing the entire first row followed
by the second, third, etc). Instead the tiles are arranged on disk in a Hilbert space-
filling curve (Sagan, 1994) in order to minimize the file seek distance between spatially
adjacent tiles. This is not very noticeable for low resolution rasters, but becomes in-5

creasingly important for higher resolution rasters.

2.5 Geo-referencing raster data

The pixels in a raster tile are positioned on the globe (geo-referenced) using either
an affine transform or a sequence of ground control points. The geo-referenced co-
ordinates are specified in the raster’s coordinate reference system, which can include10

a map projection (such as Lambert Conic Conformal). The GDAL library (Warmerdam,
2008) is used to convert geo-referenced coordinates to the default coordinate reference
system WGS 84 (Kumar, 1988) in GPlates.

GPlates uses OpenGL to render a raster tile by first creating a regular surface mesh
containing geo-referenced vertices and attaching the tile’s texture. Each vertex in the15

mesh contains a 3-D position on the globe and a 2-D texture coordinate (location in
the tile texture). Since the geo-referencing cannot be calculated at each raster pixel
it is only accurate at mesh vertices. To help minimize this visual deviation between
vertices, adjacent vertices are separated by no more than 16 pixels. Therefore one
raster tile (256×256 pixels) is represented by a mesh of 17×17 vertices (including tile20

boundary vertices). Figure 2 illustrates how the mesh spacing adapts to the level in
the raster image pyramid such that the number of raster pixels between adjacent mesh
vertices is roughly the same (in Fig. 2a and b).

2.6 Rendering raster data

Rendering a raster involves first determining the resolution level in the multi-resolution25

image pyramid and then finding the visible geo-referenced tiles in that level. To de-
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termine tile visibility, each tile is bounded by an Oriented Bounding Box (OBB) that is
tested for intersection with the view frustum. An OBB is a rectangular 3-D bounding
box at an arbitrary orientation. To improve culling efficiency all tiles in each resolution
level are arranged in an OBB binary tree so that, during rendering, hierarchical visibil-
ity culling can be employed to cull an entire group of tiles with a single OBB-Frustum5

test. The visible raster tiles are then rendered into the view window or, if the raster is
reconstructed, into the cube map.

2.7 Time-dependent rasters

A raster consists of a single raster image typically representing geospatial data obser-
vations on the Earth’s present-day surface. GPlates can also create a time-dependent10

raster by importing a time sequence of raster image files and assigning geological ages
to each image. GPlates renders a time-dependent raster by selecting the image, in its
time sequence, whose age most closely matches the current geological time. Note that
it is also possible to reconstruct a time-dependent raster. In this case both the im-
age and spatial location of the time-dependent raster vary with geological time. Raster15

reconstruction is covered in the next section.

3 Multi-resolution raster reconstruction

This section describes our approach to visualisation of a reconstructed present-day (or
time-dependent) raster by building a multi-resolution cube map framework on top of the
raster rendering framework described so far.20

3.1 Cube map properties

The cube map was first proposed by Ned Greene (Greene, 1986) as an alternative
method of capturing the full projection of the world or environment from a particular
world location. This is useful for applications such as reflection mapping because the
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cube map can be efficiently generated and indexed using common graphics hardware
(compared to spherical and paraboloid mappings). An environment cube map is cre-
ated by placing the cube centre at a particular world location and then projecting the
environment onto the six faces of the cube. This is achieved by separately render-
ing the six views into six square textures each using a 90◦ field-of-view perspective5

frustum. The environment cube map then consists of these six textures arranged as
a single hardware cube map texture (since the GeForce256 GPU was introduced in
1999) whereby a 3-D direction vector can be used to lookup the cube map texture. For
example, in the reflection mapping scenario the 3-D lookup vector is a surface reflec-
tion vector calculated at each point on the reflecting object’s surface such that when10

the entire surface is rendered it will appear to reflect the environment.
For GPlates the cube centre is always positioned at the centre of the globe and the

environment captured by the cube map is the raster data as it appears on the surface
of the globe. Essentially we’re looking from the centre of the globe at the inside of the
globe as if the interior of the globe was empty and the raster was painted on the inside15

surface of the globe. The view direction of each of the six view frustums is aligned
with a coordinate system axis (+x, −x, +y, −y, +z, −z). Figure 3 shows a global raster
captured in an environment cube map.

Once the raster cube map is captured it can then be accessed using a 3-D vector
to lookup a raster pixel. The 3-D lookup vector is simply the direction from the centre20

of the globe to a point on the surface of the globe. For a unit sphere centred at the
coordinate system origin this is the same as the 3-D position on the surface of the
globe. The raster pixel retrieved from the cube map is the value of the geo-referenced
raster at the specified surface position on the globe.

A cube map has a higher sampling density near the face corners compared with25

the face centres resulting in a non-uniform sampling of the cube map pixels across
the surface of the globe. However the non-uniformity is much less than the common
rectangular (latitude/longitude) projection and avoids the projection singularity at the
North and South Poles.
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3.2 A multi-resolution cube map

Essentially a cube map raster and a geo-referenced raster are different representations
of the same raster data. So, as with the geo-referenced raster, the cube map raster is
extended to include multi-resolution capabilities. That is, to enable matching the cube
map raster resolution to the display (or render target) resolution and to enable visibility5

culling by partitioning each face of the cube into tiles.
A multi-resolution cube map hierarchically partitions each face of a cube into tiles us-

ing a quadtree data structure (Finkel and Bentley, 1974) whereby the two-dimensional
surface of each cube face is divided into four quadrants and each quadrant further di-
vided into four sub-quadrants and so on. Each node in the quadtree represents a fixed-10

dimension tile. Each level, or depth, in the quadtree represents a different resolution
of the cube map raster since each level contains, relative to its parent level, four times
the number of tiles (and hence four times the pixels). For example if the tile dimension
is 256 then quadtree level 0 is one tile (or 256×256 pixels), level 1 is 2×2 tiles (or
512×512 pixels), level 2 is 4×4 tiles (or 1024×1024 pixels), etc. Figure 4 shows the15

association between the quadtree data structure, the hierarchy of tile images and the
tile frustums within a single cube face. Also note that there are six quadtrees in total
since each cube face has its own quad tree.

3.3 Generating a cube map raster

A cube map raster is generated by rendering a geo-referenced raster into it. This uses20

the same rendering procedure that was used to render a geo-referenced raster into
the view window, as described in Sect. 2, with the exception that the view frustum
and target frame buffer differ for the cube map. Each tile in a multi-resolution cube
map has its own view frustum and target texture resource. A cube map tile texture
is generated by rendering only those geo-referenced tiles that are visible in its view25

frustum. During rendering, the geo-referenced tile vertices are transformed by the 4×
4 off-axis perspective (pyramid) projection transformation (Neider et al., 1997) defined
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by the frustum of that cube map tile. Figure 5 shows the geo-referenced tiles, as solid
colours, visible in the view frustum of a single cube map tile.

A cube map raster contains all such cube map tiles whose frusta intersect the geo-
referenced raster (for a global raster this includes all cube map tiles). Figure 6 shows
these cube map tiles for a regional geo-referenced raster at three different resolution5

levels. Only those cube map tiles that actually cover the raster’s region are required.
Note that the solid colours in Fig. 6 highlight the cube map tiles as opposed to Fig. 5
which highlights the geo-referenced tiles (for a single cube map tile).

For graphics hardware supporting non-power-of-two texture dimensions the tile di-
mension of the cube map is optimally adapted for each geo-referenced raster in order10

to minimize texture memory usage.

3.4 Rendering reconstructed raster data

Raster data are reconstructed by combining a raster cube map, a tectonic polygon
dataset and a rotation model. A tectonic polygon represents the boundary of a tectonic
plate – a region of the Earth’s crust that is typically rigid throughout geological time.15

The rotation model determines the motion of each tectonic plate across the globe over
geological time. Each tectonic polygon is linked to the rotation model using a tectonic
plate ID which provides access to a time sequence of finite Euler rotations (Boyden
et al., 2011; Greiner, 1999) that rotate the tectonic plate from its present day position to
its position at a time in the geological past relative to another tectonic plate (with a dif-20

ferent plate ID). These plate-relative rotations are then accumulated by traversing the
plate circuit from the tectonic plate back to the global reference frame to obtain the ab-
solute rotation of the tectonic plate (Cox and Hart, 1986). Any geospatial data, including
rasters, attached to a tectonic plate will inherit that plate’s motion over geological time.
Vector geometry such as points, polylines and polygons can be reconstructed once25

they are partitioned into tectonic plates (and assigned associated plate IDs). Raster
data is conceptually reconstructed in a similar manner whereby raster pixels are at-
tached to (or partitioned into) tectonic plates and then rotated using the motion of the
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attached plates. In GPlates the user attaches raster data to tectonic plates by connect-
ing a polygon layer to a raster layer. Although the tectonic plates can rotate across the
globe, their polygon shapes are static (don’t change over time). While GPlates does
support dynamic plate polygons (Gurnis et al., 2012) to handle the changing shape of
oceanic plates over geological time, they are not currently used to reconstruct rasters.5

A future extension of GPlates functionality will be designed to use dynamic plate poly-
gons, along with deforming plates, to reconstruct and deform rasters.

A raster is efficiently reconstructed by mapping the tile textures of the raster cube
map onto the tectonic plate polygons and compositing the rotated polygon-tile intersec-
tions into the scene. The level-of-detail selected for rendering is the lowest resolution10

of the raster cube map that maintains a crisp visual appearance of the reconstructed
raster. Figure 7 shows the pseudocode for rendering a reconstructed raster.

The function render_reconstructed_raster iterates over the six faces of the raster
cube map and, for each tectonic polygon, renders those cube map tiles (at the ap-
propriate level-of-detail) that overlap the polygon. Each face of the cube map contains15

a quadtree hierarchy of tiles that, beginning with the root tile of a face, is recursively vis-
ited using the function render_raster_tile. Each level of recursion visits one level deeper
in the quadtree and expands the number of tiles visited by up to four. If a visited tile is
at the appropriate level of the quadtree for rendering then the tile is mapped onto the
polygon and then rotated and composited into the scene. Otherwise the four child tiles20

at the next deeper level are visited recursively. Tiles that do not overlap the polygon are
culled, and rotated tiles that are not visible are also culled.

Figure 8 shows the accumulated rendering of a single rotated polygon mesh. The
rendering level-of-detail is quadtree level 1. At this detail level there are three tiles
overlapping the polygon. Those same three tiles are also shown in their present day25

locations in Fig. 6b.
This process is repeated for all tectonic polygons until the reconstructed raster is

fully composed into the scene. Figure 9 shows a raster reconstructed with two tectonic
plates.
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The following sections cover the most important details in this process.

3.4.1 Generating tectonic polygon triangulation meshes

Each tectonic polygon is rendered as a spherical mesh that is triangulated within the
interior surface region of the polygon. The Computational Geometry Algorithms Library
(CGAL) (Fabri and Pion, 2009) is used to generate a surface polygon mesh of sufficient5

tessellation to give a spherical appearance when rendering into the “3-D Orthographic”
view in GPlates. This is a time-consuming process and as such it only occurs when
a raster layer is first connected to a polygon layer in GPlates. Figure 8b, d, and f show
the wireframe of continental Australia. Since the cube map decouples geo-referenced
raster rendering (Sect. 2) from tectonic polygon rendering, the same tectonic polygon10

mesh dataset can be shared by all raster layers attached to it.

3.4.2 Mapping a raster cube map onto polygon meshes

In the pseudocode in Fig. 7 each atomic rendering operation submitted to OpenGL
consists of a rotated polygon mesh rendered with a cube map tile texture. In most appli-
cations a texture is usually mapped onto a mesh by assigning a 2-D texture coordinate15

to each mesh vertex. An advantage of the cube map approach is the tectonic polygon
meshes can be rendered without requiring explicit texture coordinates. Instead the sur-
face positions in the mesh vertices are transformed to texture coordinates directly by
the graphics hardware during polygon mesh rendering. Automatic texture coordinate
generation dates back to base OpenGL 1.1 and supports matrix transformation of ver-20

tex positions for use as texture coordinates. GPlates uses this functionality to project
the 3-D position of each polygon mesh vertex into the 2-D texture space of a cube map
tile. This 4×4 texture matrix transformation is identical to the matrix used to render
the geo-referenced raster into the cube map tile texture. This has the same effect as
un-projecting the pre-rendered cube map tile texture back onto the globe during ren-25

dering of the surface polygon mesh. Note that the graphics hardware uses perspective-
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correct texture coordinate interpolation when rasterizing pixels (of the polygon mesh)
and hence there is no texture projection deviation or mismatch between generating
a cube map tile texture (Sect. 3.3) and un-projecting it back onto the globe.

In addition to transforming the 3-D positions of mesh vertices to generate 2-D texture
coordinates, the 3-D positions are transformed to generate the final rotated polygon5

mesh positions on the surface of the globe using the Euler rotation of the tectonic
polygon. The combined effect of these two transformations is to project a raster onto
a polygon mesh and then rotate it across the globe. Both 4×4 transformations are
accelerated by the graphics hardware.

3.4.3 Clipping polygon meshes to cube map tiles10

Graphics hardware can apply a limited number of textures when rendering a mesh
(with older hardware supporting a maximum of four textures). Each cube map tile is
rendered using up to four textures in some cases, including the source tile texture
itself, the clip texture (see below) and an optional age grid mask and age grid coverage
texture (age grids are described in Sect. 4.3). So even though a single polygon mesh15

can overlap multiple cube map tiles, it must be rendered separately for each tile. In this
case only the intersection of a polygon mesh with each cube map tile can be rendered.
This is achieved by rendering the entire polygon mesh for each cube map tile but only
rasterizing pixels that map to a tile’s interior. Pixels that map to a tile’s exterior are
rejected by modulating the tile’s texture with a clip texture and using the Alpha Test20

functionality of OpenGL 1.1 to discard transparent pixels (alpha equal to zero). The
clip texture is a small 4×4 pixel texture containing opaque inner pixels and transparent
outer pixels. The boundary around the inner 2×2 pixels maps to the tile boundary such
that polygon mesh regions outside the tile become transparent. Figure 8b, d, and f
illustrates the clipping of a single rotated polygon mesh by the three tiles that overlap25

it.
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3.4.4 Intersections between cube map tiles and tectonic polygons

The pseudocode in Fig. 7 includes a test for the intersection of a present-day (un-
rotated) tectonic polygon with an un-rotated cube map tile. These intersections are
independent of the geological time of reconstruction since they do not involve rotations
and hence their boolean results can be pre-computed for all tile-polygon pairs. And5

since the tile partitioning spatial configuration is the same for all raster cube maps,
regardless of their individual geo-referencing, the intersection results can be shared by
all rasters that are attached to the same tectonic polygon dataset.

3.4.5 Visibility culling of cube map tiles

The pseudocode in Fig. 7 includes a test to determine if a rotated tile is visible in10

the scene’s view frustum when rendering a tectonic polygon. Each cube map tile is
bounded by an Oriented Bounding Box (OBB) in much the same way as geo-referenced
tiles are bounded (Sect. 2.6). Visibility culling involves rotating the OBB of each cube
map tile that overlaps a tectonic polygon (using the Euler rotation of the tectonic poly-
gon). A rotated tile is then only rendered if its rotated OBB intersects the scene’s view15

frustum. Figure 8a, c, and e show the rotated tile OBBs in red wireframe and the scene’s
view frustum in yellow wireframe. As with geo-referenced tiles the visibility culling is hi-
erarchical since a single OBB-Frustum test can cull an entire sub-tree of quadtree tiles.
Also it turns out that, instead of rotating each tile OBB, it is actually more efficient to
reverse-rotate the scene view frustum once (per tectonic polygon) and hierarchically20

test against the un-rotated OBBs. A single polygon typically has multiple overlapping
tiles. Conversely a single tile can be covered by multiple (adjacent) polygons.

3.4.6 Removing texture seams between cube map tiles

Cube map tile textures are rendered using hardware bilinear filtering to reduce the
texture sampling artifacts of nearest-neighbour filtering. However this introduces visi-25
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ble raster seams or discontinuities across tile boundaries because the filtered texture
samples of two adjacent tiles do not match along the shared tile boundary. To remove
these seams each cube map tile frustum is expanded by half a pixel such that adjacent
tile frusta overlap slightly. Note that this does not introduce a half-pixel error because
the geo-referenced raster is also rendered into the adjusted frusta when generating5

the cube map tiles.
Since GPlates adapts the raster cube map resolution to the display (or render tar-

get), hardware texture mipmaps (Williams, 1983) are not required to reduce frequency
aliasing artifacts. This also avoids the problem of the half pixel frusta overlap solution
not always working with hardware texture mipmaps (due to pixel size varying across10

mipmap levels). However hardware anisotropic texture filtering is used to reduce alias-
ing in highly anisotropic regions of the globe where the surface normal is almost per-
pendicular to the view direction (such as near the horizon).

4 Raster reconstruction enhancements

This section describes enhancements to raster reconstruction that build on the ap-15

proach described in Sect. 3. These include visualising reconstructed rasters in the 2-D
map projection views, improved raster reconstruction using age grids, revealing raster
detail with surface normal maps and reconstructing raw numerical raster data.

4.1 Visualising reconstructed rasters in 2-D map projection views

The default view in GPlates is the 3-D Orthographic Globe view that uses an ortho-20

graphic view projection commonly used in Computer-aided Design (CAD) software
where the lines of projection are parallel. GPlates also supports a variety of 2-D map
projection views including the Rectangular, Mercator, Mollweide and Robinson projec-
tions that un-wrap the globe onto a 2-D plane.
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Rendering reconstructed raster data to a 2-D map view requires an extra rendering
phase above that required for the 3-D globe view. Instead of rendering directly to the
computer screen (as done for the 3-D globe view) the reconstructed raster is rendered
into a reconstructed cube map which is, in turn, rendered to the 2-D map view. This
also serves to demonstrate that a cube map can capture any surface representation on5

the globe. The cube map in Sect. 3.3 captures the un-reconstructed, geo-referenced
raster. Here the reconstructed cube map captures the final reconstructed raster (the
output of Sect. 3.4). The 3-D globe view does not need a reconstructed cube map
because the 3-D orthographic view projection and each tectonic polygon Euler rota-
tion can be combined into a single 4×4 matrix that can be accelerated by graphics10

hardware dating back to OpenGL 1.1. For the 2-D map views the surface positions
on the globe are converted into 2-D map coordinates using the Proj4 library (Evenden
and Warmerdam, 1990) and this library cannot be offloaded to the graphics hardware.
Even if that were possible the graphics hardware would still need to clip the rotated
tectonic polygons across the 2-D map boundary and this is not something that most15

graphics hardware can do. While this could all be done on the Central Processing Unit
(CPU) it would be significantly slower. Instead the alternate solution of rendering to
a reconstructed cube map keeps the 2-D map views interactive by decoupling raster
reconstruction from map projection. This removes the need to perform expensive per-
vertex map projections for each rendered frame and removes the need to clip rotated20

tectonic polygon meshes to the 2-D map boundary (the reconstructed cube map is
aligned with the central meridian of the map projection). The contents of the recon-
structed cube map are rendered to the 2-D map view using a static latitude/longitude
mesh with each vertex containing a 2-D map view position and its associated 3-D po-
sition on the globe. To access the reconstructed raster data the graphics hardware25

projects the 3-D position, in each vertex, into a reconstructed cube map tile texture.
The mesh tessellation is dense enough to provide a visually accurate sampling of the
map projection. And tile LOD determination and visibility culling for a 2-D map view
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is done using the hierarchical partitioning of the reconstructed cube map (in a similar
manner to that described in Sect. 3).

Figure 10 shows a raster reconstructed with two tectonic plates in a 2-D map pro-
jection view (similar to Fig. 9 which instead uses the 3-D orthographic view). Note that,
unlike Fig. 9c, the cube map tiles in Fig. 10c do not retain their shape after rotation.5

This is due to the 2-D map projection and is particularly noticeable with Antarctica.

4.2 Combining multiple rasters

So far we have dealt with a single reconstructed source raster. In Sects. 4.3 and 4.4
new rasters are introduced that are combined with the source raster in different ways.
However two rasters cannot easily be combined if they have different geo-referencing10

or different raster inbuilt map projections. This is because the geo-referenced tiles of
two different rasters will not, in general, be aligned across the two rasters or projected
in the same way and hence cannot be paired or associated. But since all rasters have
the same cube map spatial partitioning, regardless of their individual geo-referencing,
they can be combined after their cube maps have been generated. And this procedure15

is used for age grids and surface normal maps in the following sections.

4.3 Enhancing raster reconstruction with a crustal age grid

Each tectonic polygon has a time of appearance and disappearance corresponding to
the geological time period over which the crust, contained within the interior of the poly-
gon, existed on the Earth’s surface. The pseudocode in Fig. 7 renders only the subset20

of tectonic polygons that exist at a particular reconstruction time. In order to simulate
the gradual generation of oceanic crust at mid-ocean ridges, many long, thin oceanic
polygons with varying times of appearance have been digitised along these ridges.
These oceanic polygons progressively appear as GPlates animates the reconstruction
time forward in time. However the granularity of this transition is still quite coarse with25
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regions (the size of polygons) continually popping into view. A finer per-pixel granularity
is achieved by using an age grid raster.

The age grid is a separate raster that contains the time of appearance in each pixel
(Müller et al., 2008). It follows the same principle as polygons but reduced in spatial
extent to pixel size regions of crust. The tectonic polygons are still used during raster5

reconstruction, but now the per-polygon age comparison is replaced with a per-pixel
age comparison effectively removing the polygon popping. This per-pixel comparison
is efficiently performed using the graphics hardware. For OpenGL 2.0 hardware this
test is simply a floating-point comparison in an OpenGL Shading Language (OpenGL
Architecture Review Board, 2014) shader program. For older hardware some render-10

ing trickery is required to simulate this comparison using fixed-point hardware and four
texture units. Figure 11 shows the reconstruction of a raster with and without the as-
sistance of an age grid.

4.4 Enhancing visual detail with surface normal maps

A raster can be visually transposed onto another raster by combining the colour of the15

first raster with the surface lighting of the second. The second raster is treated like
a height-field from which surface relief shading is generated. The colour of the first
raster is then modulated with the surface lighting (intensity) of the second raster to get
the final output colour. Figure 12 shows two rasters that source lighting from themselves
and from each other. Figure 12d uses the age grid for surface relief (height-field) – the20

regions near the mid-ocean ridge (between Africa and South America) appear to have
a lower elevation than surrounding regions due to the lower age grid values.

Surface lighting is recalculated and combined as the raster is reconstructed to geo-
logical times. In other words surface relief shading is not pre-baked into the raster but
calculated interactively as diffuse lighting using the light direction and rotated surface25

normals. The surface normal tiles are generated on-the-fly from raw numerical (height)
raster data as an extension of the streaming process (Sect. 2.4). This is done on the
GPU to enhance performance when floating-point textures and OpenGL Shading Lan-
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guage (OpenGL Architecture Review Board, 2014) are supported. However these gen-
erated surface normals are in the tangent space of the geo-referencing (aligned with
the raster). When the geo-referenced surface normal raster is rendered into a cube
map the surface normals are converted to world space (aligned with the global Carte-
sian coordinate system). This enables a surface lighting cube map to be combined5

with another raster cube map (since the raster-specific geo-referencing dependency
has been removed).

4.5 Analyzing reconstructed numerical raster data

The GPU is typically a separate processor with its own high-speed memory for stor-
ing working data (such as textures and rendered images). GPlates visualizes recon-10

structed numerical (floating-point) raster data by first translating it to colour data before
uploading to the GPU as 8-bit-per-channel RGBA textures (supported by all graphics
hardware). The reconstructed RGBA raster data is then scanned straight from GPU
memory to the display screen. In this case the original (un-translated) floating-point
raster data is not reconstructed. This is fine for visualization however there are situa-15

tions where GPlates needs to access the reconstructed floating-point raster data itself.
Reconstructed raw numerical raster data is needed when GPlates exports to numeri-

cal image file formats (such as NetCDF) for analysis by other software. It is also needed
in the data-mining front-end of GPlates (Landgrebe and Muller, 2011) where raster data
is co-registered with seed geometries by applying operations (such as mean and stan-20

dard deviation) to the reconstructed numerical raster pixels within a region-of-interest
of the seed geometries (the details of which are beyond the scope of this article).

GPlates can reconstruct raw numerical raster data (as opposed to RGBA raster
data) provided the graphics hardware has support for floating-point textures. In this
case numerical raster data is first uploaded to the GPU as two-channel floating-25

point textures. One channel is used for the floating-point raster data and the other
is for the raster coverage or opacity. The numerical raster data is then reconstructed
on the GPU and rendered into floating-point target textures. This reconstructed
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raster data is then asynchronously downloaded from the GPU using pixel buffers
(GL_ARB_pixel_buffer_object OpenGL extension) to avoid stalling the Central Pro-
cessing Unit (CPU) thereby allowing it to keep the GPU busy with subsequent recon-
struction tasks.

5 OpenGL in GPlates5

GPlates can visualize reconstructed raster data on any graphics hardware manufac-
tured in the last decade. This is because raster reconstruction visualization requires
only base OpenGL 1.1 functionality plus support for destination-alpha (for writing raster
opacity to target textures) and four texture units, which is well supported by all graphics
hardware in that time period.10

However some remote desktop software (where GPlates runs on the remote sys-
tem) lack support for hardware-accelerated graphics and fall back to OpenGL software
rendering. This can be problematic if the software rendering is either too slow or lacks
support for destination-alpha and four texture units. An example of the latter case is
Microsoft’s OpenGL 1.1 software renderer written in 1996 (and essentially unchanged15

since).
In general GPlates takes advantage of more advanced graphics functionality when it

is available but does not require it. For example the OpenGL Shading Language (GLSL)
(OpenGL Architecture Review Board, 2014), based on the syntax of the C programming
language, affords GPlates more flexibility and performance in rendering and also en-20

ables normal map surface lighting. GPlates also makes heavy use of render-to-texture
during raster reconstruction and the well-supported GL_EXT_framebuffer_object ca-
pability improves performance by enabling direct rendering to textures – with GPlates
falling back to indirect rendering, via the main frame buffer, when this is not supported.

Reconstructing raw numerical (floating-point) raster data, for non-visualization pur-25

poses such as raster export or analysis, requires graphics hardware supporting the
GL_ARB_texture_float and GL_ARB_pixel_buffer_object OpenGL capabilities as well
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as GLSL (roughly equivalent to the functionality of OpenGL version 2.1) which, while
not as ubiquitous as support for OpenGL 1.1, is still well supported by most graphics
hardware in use today.

6 Discussion and conclusions

The main advantage of cube maps in a GPlates context is a simplified implementa-5

tion of raster reconstruction. The cube map approach decouples the rendering of the
geo-referenced raster from its reconstruction thereby avoiding the need to find the spa-
tial intersections of tectonic regions within the hierarchy of geo-referenced tile regions
which would, in turn, require polygon-on-the-sphere intersection and triangulation al-
gorithms that are numerically robust in the presence of self-intersecting polygons (with10

interior holes).
Another advantage of cube map rasters is the ability to combine multiple rasters

that have different geo-referencing, such as enhancing reconstruction with an age grid
(Fig. 11) and visually transposing two rasters using surface relief lighting (Fig. 12).

Although only briefly mentioned before, a cube map raster also enables efficient co-15

registration of a raster with seed geometries (points, polylines and polygons). This is
because the seed geometries are inserted into a spatial partition that follows a hier-
archical cube map structure analogous to that of the raster’s cube map. This enables
spatial associations between the raster and seed geometries to be quickly found.

A potential disadvantage of the cube map approach is that the intermediate cube20

map generation phase results in an additional re-sampling stage that can reduce the
quality of the raster data due to the bilinear filtering. And for the 2-D map views there
is a further cube map generation phase (Sect. 4.1) resulting in another re-sampling
stage.

Another disadvantage is the non-uniform sampling of the cube map pixels that varies25

by a factor of approximately two, or more accurately 3/
√

(2), from a cube face centre to
one of its corners. For some cube map tiles this can result in up to four (2×2) times as
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many pixels rendered than is necessary for no loss of visual detail. This disadvantage
does lessen for the higher resolution LODs (since those tiles cover less area of each
cube face). However the flexibility gained by having a raster in cube map form is very
advantageous.

This paper describes a method of reconstructing raster data that integrates a cube5

environment map with multi-resolution tile partitioning. This enables on-demand tile
streaming, level-of-detail rendering and hierarchical visibility culling to be applied to
rasters reconstructed by tectonic plate polygons. Furthermore the partitioned cube map
tiles require only 4×4 matrix transformations which are extremely well supported by
graphics hardware. With this implementation GPlates can reconstruct raster data on10

a wide variety of desktop and laptop computers manufactured over the last decade
enabling users to interactively visualise and analyse arbitrarily high-resolution geo-
physical raster data for geological times in the past. This capability forms the basis
for interactively building and improving plate reconstructions in an iterative fashion, for
tectonically complex regions as well as for ancient supercontinent assemblies, which15

can easily be analysed using GPlates by assigning geophysical grids and geological
data to individual tectonic elements and interactively testing their alignment in alterna-
tive reconstructions (Williams et al., 2012).
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 6 

 1 

Figure 1. Visible geo-referenced tiles of the ETOPO1 global raster (Amante and Eakins, 2009) highlighted 2 
with solid colours. The left and right sides show two different zoom levels. The yellow wireframe is the 3 
orthographic (rectangular prism) view frustum used by the “3D Orthographic” view in GPlates. Note that 4 
(A-B) on left side shows the same zoomed-out view (yellow frustum) but from different angles - similarly 5 
for (A-B) on the right with the zoomed-in view. (A) More clearly shows that the yellow frustum contains 6 
only the front surface of the globe, rejecting the rear surface; (B) More clearly shows which geo-7 
referenced tiles overlap the view frustum (yellow frustum) – note that tiles outside the frustum are culled; 8 
(C) The view as seen by the user of GPlates (the region inside the yellow frustum). 9 

2.4 Streaming raster data 10 

As the user pans the view across the globe, new raster tiles come into view while old tiles 11 

drop from view. And as the user zooms the view into the globe, each visible tile is recursively 12 

replaced with four higher resolution tiles to enhance the detail and vice versa when zooming 13 

Fig. 1. Visible geo-referenced tiles of the ETOPO1 global raster (Amante and Eakins, 2009)
highlighted with solid colours. The left and right sides show two different zoom levels. The yellow
wireframe is the orthographic (rectangular prism) view frustum used by the “3-D Orthographic”
view in GPlates. Note that (A–B) on left side show the same zoomed-out view (yellow frustum)
but from different angles – similarly for (A–B) on the right with the zoomed-in view. (A) More
clearly shows that the yellow frustum contains only the front surface of the globe, rejecting
the rear surface; (B) More clearly shows which geo-referenced tiles overlap the view frustum
(yellow frustum) – note that tiles outside the frustum are culled; (C) The view as seen by the
user of GPlates (the region inside the yellow frustum).
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 9 

 1 

Figure 2. A regional (non-global) raster overlaid with colour-coded wireframe geo-reference tile meshes at 2 
two different tile resolutions (zoom levels). There are more tiles in (B) than in (A), covering the same 3 
geographic region, because the next higher resolution of the image pyramid (four times the pixels) is 4 
required for the zoomed-in view (B) compared to the zoomed-out view (A). 5 

Fig. 2. A regional (non-global) raster overlaid with colour-coded wireframe geo-reference tile
meshes at two different tile resolutions (zoom levels). There are more tiles in (B) than in (A),
covering the same geographic region, because the next higher resolution of the image pyramid
(four times the pixels) is required for the zoomed-in view (B) compared to the zoomed-out view
(A).
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 12 

 1 

Figure 3. A global free air gravity raster (Andersen et al., 2010) highlighted with solid colours 2 
representing the faces of a cube. Each cube face and the globe centre represent a perspective (pyramid) 3 
frustum.  The yellow wireframe represents the cube and the green wireframe represents the edges of the 4 
six pyramid frusta. (A) Coloured raster regions captured by the pyramid frusta of the cube faces; (B) 5 
coloured raster regions radially projected onto the cube faces (from the globe centre). 6 

3.2 A multi-resolution cube map 7 

Essentially a cube map raster and a geo-referenced raster are different representations of the 8 

same raster data. So, as with the geo-referenced raster, the cube map raster is extended to 9 

include multi-resolution capabilities. That is, to enable matching the cube map raster 10 

resolution to the display (or render target) resolution and to enable visibility culling by 11 

partitioning each face of the cube into tiles. 12 

A multi-resolution cube map hierarchically partitions each face of a cube into tiles using a 13 

quadtree data structure (Finkel and Bentley, 1974) whereby the two-dimensional surface of 14 

each cube face is divided into four quadrants and each quadrant further divided into four sub-15 

quadrants and so on. Each node in the quadtree represents a fixed-dimension tile. Each level, 16 

or depth, in the quadtree represents a different resolution of the cube map raster since each 17 

level contains, relative to its parent level, four times the number of tiles (and hence four times 18 

the pixels). For example if the tile dimension is 256 then quadtree level 0 is one tile (or 256 x 19 

256 pixels), level 1 is 2 x 2 tiles (or 512 x 512 pixels), level 2 is 4 x 4 tiles (or 1024 x 1024 20 

pixels), etc. Figure 4 shows the association between the quadtree data structure, the hierarchy 21 

Fig. 3. A global free air gravity raster (Andersen et al., 2010) highlighted with solid colours
representing the faces of a cube. Each cube face and the globe centre represent a perspective
(pyramid) frustum. The yellow wireframe represents the cube and the green wireframe repre-
sents the edges of the six pyramid frusta. (A) Coloured raster regions captured by the pyramid
frusta of the cube faces; (B) coloured raster regions radially projected onto the cube faces (from
the globe centre).
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 13 

of tile images and the tile frustums within a single cube face. Also note that there are six 1 

quadtrees in total since each cube face has its own quad tree. 2 

 3 

Figure 4. Quadtree partitioning of a single cube face of the ETOPO1 global raster (Amante and Eakins, 4 
2009). The yellow wireframe represents the cube. The red wireframe represents the perspective (pyramid) 5 
frustum containing the highlighted raster tile – note that these can be off-axis pyramids (in B, C, E and F). 6 
(A) The tile at level 0 of the quadtree covering the entire cube face; (B) The four tiles at quadtree level 1 7 
(cyan wireframe). These are the children of the tile in A; (C) Four (out of sixteen) tiles at quadtree level 2 8 
(blue wireframe). These are the children of the tile rendered in B; (D-F) Same as A-C except the rendered 9 
tiles are radially projected onto the cube face to show the actual tile textures (square 2D images). 10 

3.3 Generating a cube map raster 11 

A cube map raster is generated by rendering a geo-referenced raster into it. This uses the same 12 

rendering procedure that was used to render a geo-referenced raster into the view window, as 13 

described in Sect. 2, with the exception that the view frustum and target frame buffer differ 14 

for the cube map. Each tile in a multi-resolution cube map has its own view frustum and 15 

target texture resource. A cube map tile texture is generated by rendering only those geo-16 

referenced tiles that are visible in its view frustum. During rendering, the geo-referenced tile 17 

vertices are transformed by the 4x4 off-axis perspective (pyramid) projection transformation 18 

Fig. 4. Quadtree partitioning of a single cube face of the ETOPO1 global raster (Amante and
Eakins, 2009). The yellow wireframe represents the cube. The red wireframe represents the
perspective (pyramid) frustum containing the highlighted raster tile – note that these can be
off-axis pyramids (in B, C, E and F). (A) The tile at level 0 of the quadtree covering the entire
cube face; (B) The four tiles at quadtree level 1 (cyan wireframe). These are the children of
the tile in (A); (C) Four (out of sixteen) tiles at quadtree level 2 (blue wireframe). These are the
children of the tile rendered in (B); (D–F) Same as (A–C) except the rendered tiles are radially
projected onto the cube face to show the actual tile textures (square 2-D images).
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(Neider et al., 1997) defined by the frustum of that cube map tile. Figure 5 shows the geo-1 

referenced tiles, as solid colours, visible in the view frustum of a single cube map tile. 2 

 3 

Figure 5. Rendering geo-referenced tiles into a single cube map tile of the ETOPO1 global raster (Amante 4 
and Eakins, 2009). The geo-referenced tiles are highlighted with different colours. The yellow wireframe 5 
represents the cube. (A) The red wireframe represents the perspective, off-axis pyramid frustum of the 6 
single cube tile. The pyramid apex is at the globe centre; (B); The subset of geo-referenced tiles that 7 
overlap the frustum of the single cube tile – note that tiles outside the frustum are culled; (C) The cube tile 8 
rendered on the sphere. This is the intersection of the geo-referenced tiles and the cube tile frustum; (D) 9 
The cube tile projected onto the cube face to show the actual cube tile texture (square 2D image) and the 10 
contributions from the geo-referenced tiles. 11 

Fig. 5. Rendering geo-referenced tiles into a single cube map tile of the ETOPO1 global raster
(Amante and Eakins, 2009). The geo-referenced tiles are highlighted with different colours. The
yellow wireframe represents the cube. (A) The red wireframe represents the perspective, off-
axis pyramid frustum of the single cube tile. The pyramid apex is at the globe centre; (B); The
subset of geo-referenced tiles that overlap the frustum of the single cube tile – note that tiles
outside the frustum are culled; (C) The cube tile rendered on the sphere. This is the intersection
of the geo-referenced tiles and the cube tile frustum; (D) The cube tile projected onto the cube
face to show the actual cube tile texture (square 2-D image) and the contributions from the
geo-referenced tiles.
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A cube map raster contains all such cube map tiles whose frusta intersect the geo-referenced 1 

raster (for a global raster this includes all cube map tiles). Figure 6 shows these cube map tiles 2 

for a regional geo-referenced raster at three different resolution levels. Only those cube map 3 

tiles that actually cover the raster’s region are required. Note that the solid colours in Fig. 6 4 

highlight the cube map tiles as opposed to Fig. 5 which highlights the geo-referenced tiles (for 5 

a single cube map tile). 6 

 7 

Figure 6. The cube map tiles (highlighted in different colours) of a regional raster at three different 8 
resolution levels. Since the raster is regional, not all cube map tiles are required – only those that actually 9 
cover the raster’s region. This highlights the partial nature of quadtrees of regional rasters. (A) Only 10 
three cube faces (and hence three quadtrees) are required to provide coverage of the regional raster at 11 
quadtree level 0; (B) For each of the three cube face tiles in A only one of four possible child tiles 12 
(quadtree level 1) are required to cover the raster; (C) The cube map tiles at quadtree level 2 (children of 13 
the tiles in B) that cover the raster. 14 

For graphics hardware supporting non-power-of-two texture dimensions the tile dimension of 15 

the cube map is optimally adapted for each geo-referenced raster in order to minimize texture 16 

memory usage. 17 

3.4 Rendering reconstructed raster data 18 

Raster data are reconstructed by combining a raster cube map, a tectonic polygon dataset and 19 

a rotation model. A tectonic polygon represents the boundary of a tectonic plate - a region of 20 

the Earth’s crust that is typically rigid throughout geological time. The rotation model 21 

determines the motion of each tectonic plate across the globe over geological time. Each 22 

tectonic polygon is linked to the rotation model using a tectonic plate ID which provides 23 

access to a time sequence of finite Euler rotations (Boyden et al., 2011;Greiner, 1999) that 24 

rotate the tectonic plate from its present day position to its position at a time in the geological 25 

Fig. 6. The cube map tiles (highlighted in different colours) of a regional raster at three different
resolution levels. Since the raster is regional, not all cube map tiles are required – only those
that actually cover the raster’s region. This highlights the partial nature of quadtrees of regional
rasters. (A) Only three cube faces (and hence three quadtrees) are required to provide cov-
erage of the regional raster at quadtree level 0; (B) For each of the three cube face tiles in
(A) only one of four possible child tiles (quadtree level 1) are required to cover the raster; (C)
The cube map tiles at quadtree level 2 (children of the tiles in B) that cover the raster.
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past relative to another tectonic plate (with a different plate ID). These plate-relative rotations 1 

are then accumulated by traversing the plate circuit from the tectonic plate back to the global 2 

reference frame to obtain the absolute rotation of the tectonic plate (Cox and Hart, 1986). Any 3 

geospatial data, including rasters, attached to a tectonic plate will inherit that plate’s motion 4 

over geological time. Vector geometry such as points, polylines and polygons can be 5 

reconstructed once they are partitioned into tectonic plates (and assigned associated plate 6 

IDs). Raster data is conceptually reconstructed in a similar manner whereby raster pixels are 7 

attached to (or partitioned into) tectonic plates and then rotated using the motion of the 8 

attached plates. In GPlates the user attaches raster data to tectonic plates by connecting a 9 

polygon layer to a raster layer. Although the tectonic plates can rotate across the globe, their 10 

polygon shapes are static (not change over time). While GPlates does support dynamic plate 11 

polygons (Gurnis et al., 2012) to handle the changing shape of oceanic plates over geological 12 

time, they are not currently used to reconstruct rasters. A future extension of GPlates 13 

functionality will be designed to use dynamic plate polygons, along with deforming plates, to 14 

reconstruct and deform rasters. 15 

A raster is efficiently reconstructed by mapping the tile textures of the raster cube map onto 16 

the tectonic plate polygons and compositing the rotated polygon-tile intersections into the 17 

scene. The level-of-detail selected for rendering is the lowest resolution of the raster cube map 18 

that maintains a crisp visual appearance of the reconstructed raster. Figure 7 shows the 19 

pseudocode for rendering a reconstructed raster. 20 
 render_reconstructed_raster(raster, tectonic polygons) 21 
    for each face in raster cube map 22 
    if raster covers cube face then 23 
    for each polygon in tectonic polygons 24 
    render_raster_tile(root tile of face, polygon) 25 
 26 
 render_raster_tile(tile, polygon) 27 
    if polygon’s present-day geometry intersects tile then 28 
    if rotated tile bounding box is visible then 29 
    if reached level-of-detail to render then 30 
    render rotated polygon clipped to tile texture 31 
    else 32 
    for each child tile in current tile 33 
       if raster covers child tile then 34 
       render_raster_tile(child tile, polygon) 35 
Figure 7. Pseudocode for the rendering traversal of a reconstructed multi-resolution cube map raster. 36 

The function render_reconstructed_raster iterates over the six faces of the raster 37 

cube map and, for each tectonic polygon, renders those cube map tiles (at the appropriate 38 

level-of-detail) that overlap the polygon. Each face of the cube map contains a quadtree 39 

Fig. 7. Pseudocode for the rendering traversal of a reconstructed multi-resolution cube map
raster.

825

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

 17 

hierarchy of tiles that, beginning with the root tile of a face, is recursively visited using the 1 

function render_raster_tile. Each level of recursion visits one level deeper in the 2 

quadtree and expands the number of tiles visited by up to four. If a visited tile is at the 3 

appropriate level of the quadtree for rendering then the tile is mapped onto the polygon and 4 

then rotated and composited into the scene. Otherwise the four child tiles at the next deeper 5 

level are visited recursively. Tiles that do not overlap the polygon are culled, and rotated tiles 6 

that are not visible are also culled.  7 

Figure 8 shows the accumulated rendering of a single rotated polygon mesh. The rendering 8 

level-of-detail is quadtree level 1. At this detail level there are three tiles overlapping the 9 

polygon. Those same three tiles are also shown in their present day locations in Fig. 6B. 10 

 11 

Figure 8. Accumulated tile rendering of single rotated polygon mesh (continental crust on the Australian 12 
plate) overlapping three cube map raster tiles (at quadtree level 1) . The rotation (illustrated by the white 13 
curved arrow) is from present day (0Ma) to 140Ma. The yellow wireframe is the orthographic 14 

Fig. 8. Accumulated tile rendering of single rotated polygon mesh (continental crust on the
Australian plate) overlapping three cube map raster tiles (at quadtree level 1). The rotation
(illustrated by the white curved arrow) is from present day (0 Ma) to 140 Ma. The yellow wire-
frame is the orthographic (rectangular prism) view frustum used by the “3-D Orthographic” view
in GPlates. The three tiles are also shown in Fig. 6b in their present day locations. (A, C, E)
Shows the un-rotated and rotated cube map tiles. Also shown are the rotated tile OBBs in red
wireframe. All three OBBs intersect the orthographic view frustum and therefore are visible; (B,
D, F) Shows the un-rotated and rotated polygon mesh, in white wireframe, clipped to each tile.
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 1 

Fig. 9. The GPlates “3-D Orthographic” view of the ETOPO1 global raster (Amante and Eakins,
2009) reconstructed to 140 Ma using the Australian and Antarctic continents. The cube map
tiles are highlighted in different colours. (A) The entire un-reconstructed raster with the tectonic
polygon meshes overlaid on top. Note the cube-like arrangement of tiles – two cube corners
are noticeable in the pattern of tiles; (B) The tectonic polygon meshes in their present day
(0 Ma) locations essentially cut out polygon-shaped blocks in the global raster and its tiles; (C)
The tectonic polygon meshes in their reconstructed locations at 140 Ma. Each plate rotation is
illustrated by a curved arrow. The raster and its tiles rotate independently with each tectonic
polygon mesh.
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 1 

Fig. 10. The GPlates “Robinson” 2-D map projection view of the ETOPO1 global raster (Amante
and Eakins, 2009) reconstructed to 140 Ma for continental Australia and Antarctica. The cube
map tiles are highlighted in different colours. This is the equivalent of Fig. 9 but with a 2-D map
projection view instead of the 3-D orthographic view. (A) The entire un-reconstructed raster
with raster tiles following a cube-like arrangement; (B) The tectonic polygons in their present
day (0 Ma) locations; (C) The tectonic polygons in their reconstructed locations at 140 Ma. Each
plate rotation is illustrated by a curved arrow.

828



D
iscussion

P
a

per
|

D
iscussion

P
a

per
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

 27 

 1 

Figure 11. The global free air gravity raster (Andersen et al., 2010) reconstructed to 21Ma. Overlaid on 2 
top is the static polygon dataset (Seton et al., 2012) used to reconstruct the raster. Note the many long, thin 3 
oceanic polygons. (A) Reconstructed without using an age grid. The gap between Africa and South 4 
America is a result of the per-polygon age test; (B) Reconstructed using an age grid. The gap is no longer 5 
present because the age test is now per-pixel. 6 

Fig. 11. The global free air gravity raster (Andersen et al., 2010) reconstructed to 21 Ma. Over-
laid on top is the static polygon dataset (Seton et al., 2012) used to reconstruct the raster. Note
the many long, thin oceanic polygons. (A) Reconstructed without using an age grid. The gap
between Africa and South America is a result of the per-polygon age test; (B) Reconstructed
using an age grid. The gap is no longer present because the age test is now per-pixel.
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4.4 Enhancing visual detail with surface normal maps 1 

A raster can be visually transposed onto another raster by combining the colour of the first 2 

raster with the surface lighting of the second. The second raster is treated like a height-field 3 

from which surface relief shading is generated. The colour of the first raster is then modulated 4 

with the surface lighting (intensity) of the second raster to get the final output colour. Figure 5 

12 shows two rasters that source lighting from themselves and from each other. Figure 12D 6 

uses the age grid for surface relief (height-field) - the regions near the mid-ocean ridge 7 

(between Africa and South America) appear to have a lower elevation than surrounding 8 

regions due to the lower age grid values. 9 

 10 

Figure 12. The left side shows the oceanic crustal age grid raster (Müller et al., 2008). The right side shows 11 
the GEBCO raster (Goodwillie, 2003). (A) Age grid colour only; (B) GEBCO colour only; (C) Age grid 12 Fig. 12. The left side shows the oceanic crustal age grid raster (Müller et al., 2008). The right

side shows the GEBCO raster (Goodwillie, 2003). (A) Age grid colour only; (B) GEBCO colour
only; (C) Age grid colour with age grid relief; (D) GEBCO colour with age grid relief; (E) Age
grid colour with GEBCO relief; (F) GEBCO colour with GEBCO relief.
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