

Title: EFFECTS OF RODENT-INDUCED LAND DEGRADATION ON ECOSYSTEM CARBON FLUXES IN ALPINE MEADOW IN THE QINGHAI-TIBET PLATEAU, CHINA

Short title: EFFECTS OF LAND DEGRADATION ON ECOSYSTEM CARBON BALANCE

Authors: Fei Peng, You Quangang, Xian Xue, Jian Guo, Tao Wang.

Affiliation of authors: Key laboratory of desert and desertification, Cold and Arid Regions Environmental and Engineering Research Institute (CAREERI), Chinese Academy of Sciences (CAS)

Corresponding author: Xian Xue, xianxue@lzb.ac.cn

Author who is to check the proofs: Name: Fei Peng

Address:320 West Donggang Road, Lanzhou, 73000

Email: pengguy02@yahoo.com

Phone: 86-931-4967484

12 **Abstract** The widespread land degradation in alpine meadow ecosystem would affect ecosystem carbon

13 (C) balance. Six levels of degraded lands (D1-D6, according to the number of rodent holes and coverage)

were set to investigate effects of rodent-induced land degradation on ecosystem CO₂ fluxes, biomass and

15 soil chemical properties. Soil organic carbon (SOC), labile soil carbon (LC), total nitrogen (TN) and

16 inorganic nitrogen (N) were obtained by chemical analysis. Soil respiration (Rs), net ecosystem exchange

17 (NEE) and ecosystem respiration (ER) were measured by Li-Cor 6400 *xt*. Gross ecosystem production

18 (GEP) was the sum of NEE and ER. Aboveground biomass (AGB) was based on a linear regression with

19 coverage and plant height as independent variables. Root biomass (RB) was obtained by using the core

method, Rs, ER, GEP and AGB were significantly higher in slightly degraded (D3 and D6, group I) than

21 in severely degraded land (D1, D2, D4 and D5, group II). Positive averages of NEE in the growing season

22 indicate alpine meadow ecosystem is a weak C sink during the growing season. Only significant

23 difference was observed in ER among different degradation levels. R_s , ER, GFP were 38.2%, 44.3% and

24 16.5% lower in group I than in group II. The parallel changes of ER and GFR resulted in insignificant

²⁵ Differences of NEE between the two positions and the positions of AGP with ER, NEE = 1 GEP, and 1

²⁶ See also the excellent AGR in *Green Hell* and the analysis of AGR in *Green Hell* in CO. See also CO's analysis of PDR.

²⁷ See also the discussion of the relationship between the SDR and the SIS in the section on the SIS.

28 number of rodent holes in alpine meadow ecosystem in permafrost region of QTP.
29 **Keywords:** rodent activities, alpine meadow, soil respiration, net ecosystem exchange, ecosystem
30 respiration

31
32 **Introduction**

33 Soil contains the largest ecosystem carbon (C) stock (Batjes, 1996). The widespread land
34 degradation (Dregne, 2002) including land use change, soil and vegetation degradation has resulted
35 in severe soil C and nitrogen (N) loss (Wang et al., 2009; Parras-Alcántara et al., 2013), which is
36 estimated to be 19-29 Pg worldwide (Lal, 2001). Restoration of the degraded ecosystems, therefore,
37 had a great potential to sequester C from the atmosphere (Lal, 2004), with an annual rate of 0.9 to
38 1.9 Pg C for a 25 to 50 year period in drylands (Lal, 2001).

39 Grassland stores about 15.2% of the terrestrial ecosystem C stock that is primarily in the form
40 of soil C (Ajtay, 1979). Either the aboveground vegetation (Fan et al., 2007) or the top one meter soil
41 and root C stock (Yang et al., 2008) in alpine meadow in the Qinghai-Tibet Plateau (QTP) account
42 for a large proportion of those in grassland ecosystem in China (Ni, 2002). However, over one thirds
43 of grassland in the QTP has been severely degraded due to climate change, grazing and road
44 constructing in 1990s (Ma et al., 1999), which has led to 1.8 Gg C loss in aboveground C stock from
45 1986 to 2000 (Wang et al., 2008). In addition to the vegetation C loss, land degradation could also
46 result in decline in soil C and N (Wang et al., 2008; Wen et al., 2013), and consequently might alter C
47 role of the alpine meadow (Li et al., 2012).

48 The primary causing factor for “black soil type” degradation over the QTP is rodent grazing and
49 burrowing (Ma et al., 1999). Rodent grazing activities trigger decline in biomass, change in

50 below-ground biomass distribution, soil structure, microclimate, soil erosion, nutrient loss and
51 imbalance of nutrient cycling, and finally affect the ecosystem C balance (Li et al., 2011). Current
52 studies concerning ecosystem C balance in alpine meadow focus on net ecosystem exchange (NEE)
53 (Kato et al., 2004), inter-annual variation in NEE (Kato et al., 2006), soil respiration (Rs) and
54 ecosystem respiration (ER) responses to experimental warming (Peng et al., 2014b; Luo et al., 2010;
55 Lin et al., 2011). Effects of rodent-induced land degradation on ecosystem CO₂ fluxes are rarely
56 investigated. To our knowledge, there are two studies examining the responses of Rs to land
57 degradation (Zhang et al., 2010; Wang et al., 2007b). However, Rs cannot provide solid evidence for
58 determining the ecosystem C balance. No field experiment has been conducted in the permafrost
59 region of the QTP to investigate the effect of land degradation on NEE, a direct measure of the
60 ecosystem C balance, and on its components: ER and gross ecosystem production (GEP). We
61 conducted a field study to investigate (1) how the NEE and its components respond to
62 rodent-induced land degradation, and (2) how biotic and abiotic factors affect those CO₂ fluxes with
63 land degradation process in *Kobresia pygmaea* dominated alpine meadow in a permafrost area of the
64 QTP.

65 **2 Materials and Methods**

66 **2.1 Site description**

67 The study site is situated in the source region of the Yangtze River, inland of the QTP near the
68 Beiluhe observational station (Fig.1, 34°49'N, 92°56'E) at an altitude of 4635 m. This area has a
69 typical alpine climate: mean annual temperature is -3.8°C and monthly air temperature ranges from

70 -27.9°C in January to 19.2°C in July. Mean annual precipitation is 290.9 mm, of which over 95%
71 falls during the warm growing season (May to October). Mean annual potential evaporation is
72 1316.9 mm, mean annual relative humidity is 57%, and mean annual wind velocity is 4.1 m s^{-1} (Lu et
73 al., 2006). The study site is a winter-grazed range, dominated by alpine meadow vegetation:
74 *Kobresia capillifolia*, *K. pygmaea*, and *Carex moorcroftii*, with a mean plant height of 5 cm. Plant
75 roots occur mainly within the 0-20 cm soil layer, and average soil organic carbon (SOC) is 1.5%.
76 The soil development is weak, and the soil belongs to alpine meadow soil (Chinese soil taxonomy),
77 or is classified as a Cryosol according to World Reference Base for Soil Resources, 2006, with a
78 Mattic Epipedon at a depth of approximately 0-10 cm, and an organic-rich layer at a depth of 20-30
79 cm (Wang et al., 2007a). The parent soil material is of fluvio-glacial origin and is composed of 99%
80 sand. Permafrost thickness observed near the experimental site is 30-70 m and the depth of the active
81 layer is 1.5-3.5 m (Wu and Liu, 2004). However, the thickness of the active layer has been
82 increasing at a rate of 3.1 cm y^{-1} since 1995 due to climatic warming (Wu and Liu, 2004).

83 **2.2 Experimental design and measurement protocol**

84 *2.2.1 Experimental design*

85 We selected six habitats with different number of rodent holes (NRHs) and community
86 coverage in a mountain slope based on our field observation. The habitats were sequenced D1-D6
87 from east to northeast. The distance between each habitat was about 200-300 m. In each site, two
88 sub-plots (2m \times 4m) were set up. The NRHS, coverage, plant height and major species in D1-D6 were
89 shown in Table 1.

90 *2.2.2 Measurement protocol*

91 **Soil temperature:** Soil temperature at the depth of 5cm was monitored by a thermo-probe

92 attached to Li-Cor 6400 (Lincoln, NE, USA.) when measurements of Rs, NEE and ER were
93 conducted.

94 **CO₂ fluxes:** Rs was measured using 5-cm tall PVC collars, which were permanently inserted
95 2-3 cm into the soil in the center of each plot. The measuring procedure of Rs was similar to that
96 reported in former studies (Peng et al., 2014b; Zhou et al., 2007). ER and NEE were measured with a
97 transparent chamber (0.5 × 0.5 × 0.5 m) attached to an infrared gas analyzer (Li-Cor 6400, Lincoln,
98 NE, USA). The method used was similar to that reported by (Steduto et al., 2002) and (Niu et al.,
99 2008). GEP was the calculated as the sum of NEE and ER. Rs, NEE and ER were measured once a
100 month from June to September in each plot.

101 **Soil sampling:** One soil sample was collected at the soil depth of 0-30 cm in each plot in June,
102 2012.

103 **AGB and RB:** AGB was obtained from a step-wise linear regression with AGB as the
104 dependent variable, and coverage and plant height as independent variables (Peng et al., 2014b; Xu et
105 al., 2015). Coverage of each plot was measured using a 10 cm × 10 cm frame in four diagonally
106 divided subplots replicated eight times in D1-D6 in June 2012. Plant height was measured 40 times
107 by a ruler, and averaged for each plot. RB was obtained from soil samples that were air-dried for one
108 week and passed through a sieve ($\Phi=2$ mm) to remove large particles. Roots were separated from the
109 soil by washing, and fine roots was retrieved by sieve ($\Phi=0.25$ mm). Living roots were separated
110 from dead roots by their color and consistency (Yang et al., 2007). And the separated roots were
111 dried at 75 °C for 48 h.

112 **Chemical analysis:** SOC was analyzed using the Walkley-Black method (Walkley, 1947). TN

113 was measured via the Kjeldahl method. Ammonia and nitrate N were measured colorimetrically
114 through a spectrometer. Labile soil carbon (LC) measurement was carried out by the procedure
115 advocated by (Moscatelli et al., 2007).

116 **2.3 Data analysis**

117 The statistical significance of soil temperature, Rs, NEE, ER and GEP in D1-D6 were tested
118 by the one way-ANOVA analysis. Monthly data measured in each subplots from June to September
119 were used in the analysis. Based on the total NHRs, CO₂ fluxes in D3 and D6 were ranked as group
120 I and those in D1, D2, D4 and D5 were the group II. The statistical significance of CO₂ fluxes
121 between the two groups were also tested by one-way ANOVA analysis. The monthly differences in
122 CO₂ fluxes were analyzed by repeated ANOVA. Relationships of Rs, NEE and ER with soil
123 temperature, ABG, RB, and TN or inorganic N were analyzed by linear regression analyses. Pearson
124 correlation analyses were employed to investigate the relationships of NRHs with soil chemical
125 properties and biomass. The linear regression and Pearson correlation were considered significant
126 with $P<0.05$. Rs, NEE and ER data were the averages of four months in each degrade level when
127 conducting the correlation analyses. All the analyses were conducted in SPSS 16.0 for windows.

128 **3 Results**

129 **3.1 Soil temperature**

130 Soil temperature at the depth of 5 cm maximized in July and monthly average soil temperature
131 had no significant change ($P>0.05$) among different degradation levels (Fig. 2). The monthly

132 average soil temperature was about 9.6-12.4 °C from D1 to D6. Soil temperature also had no
133 significant difference between group I and II.

134 **3.2 Soil chemical properties and biomass**

135 SOC, LC, TN, ammonia N and RB were the highest in D2 than in other habitats (Table 3). AGB
136 was higher in D3 and D6 than in others. SOC, LC, TN, and inorganic N (NH_4^+ -N and NO_3^- -N) had
137 no obvious trend with the increasing NRHs, whereas AGB ($r=-0.89$, $P<0.05$) negatively correlated
138 with the NRHs.

139 **3.3 Rs, NEE, ER and GEP**

140 Repeated one-way ANOVA showed the significant seasonal change in Rs ($P<0.01$), ER
141 ($P<0.05$), NEE ($P<0.01$) and GEP ($P<0.01$). The maximum Rs and ER were in July (Figs. 3a, b),
142 whereas the maximum NEE and GEP were in June (Figs. 3c, d). Growing seasonal average Rs and
143 NEE had no significant difference in D1-D6 while ER and GEP were marginally higher in D3 and
144 D6 than in others (Table 4). Rs, ER and GEP were higher in group I than in group II ($P<0.05$).
145 Insignificant but higher NEE was observed in group I ($2.13 \mu \text{ mol m}^{-2} \text{ s}^{-1}$) than in group II (1.09μ
146 $\text{mol m}^{-2} \text{ s}^{-1}$).

147 **3.4 Relationship of Rs, ER, NEE and GEP with affecting factors**

148 Ecosystem CO_2 fluxes had no obvious relationship with soil temperature (Fig. 4a), soil
149 inorganic N (Fig. 4b) and RB (Fig. 4d), while they positively correlated with AGB with the steepest
150 regression slope in Rs, followed by ER and NEE (Fig. 4c).

151 **4 Discussion**

152 **4.1 C and N loss**

153 Land degradation would cause the decline in SOC and TN density, and reduction in C and N
154 stocks either in temperate grassland (Zhang et al., 2010) or in alpine meadow ecosystem (Xue et al.,
155 2009). Insignificant difference of SOC, LC, TN and inorganic N among D1, D3, D4, D5 and D6
156 indicate (Table 3) nutrient loss associated with land degradation induced by rodent activities differs
157 with the C and N loss resulted from land degradation caused by other factors, such as desertification
158 and wind erosion. Soil loses C and N during the degradation process by (1) reducing vegetative
159 growth and exposing the soil surface to wind and water erosion, and (2) reducing the return of litter
160 to soil (Nunes et al., 2012). Higher AGB in D3 and D6 (Table 3) suggesting more litter returning to
161 the soil, but more ecosystem CO₂ emission from soil in terms of higher Rs could be the reason for
162 lower SOC, LC and TN in D3 and D6. Positive correlation between AGB and Rs indicates
163 decomposition of fresh litter from AGB might be the major component of Rs in alpine meadow. The
164 highest RB in D2 in spite of lower AGB comparing with that in D3 and D6 (Table 3) proves RB is
165 the major source of soil C and N in the alpine meadow ecosystem.

166 **4.2 CO₂ fluxes**

167 Soil temperature explains most of the temporal (Peng et al., 2014a) but RB determines the
168 spatial variation in Rs over the QTP (Geng et al., 2012). No obvious relationship between Rs and
169 soil temperature (Fig. 4a) suggests other factors might involve in controlling the temporal variation
170 in Rs with land degradation processes. Rs decline is observed with intensification of land

171 degradation in an alpine meadow ecosystem, and the significant reduction only appears in severely
172 degraded level (Zhang et al., 2010). Lower Rs in group II than in group I (1) supports the above
173 finding because community coverage in D1, D2, D4 and D5 (Table 1) conforms to the standard of
174 the severe land degradation for alpine meadow ecosystem (Xue et al., 2009), (2) indicates the
175 controlling effect of biomass on Rs in degraded land induced by rodent activities. Rs is composed of
176 autotrophic respiration from plant roots and their symbionts, and heterotrophic respiration from litter
177 and SOC decomposition (Hanson et al., 2000). AGB and dead roots, the major sources of litter in
178 alpine meadow all reduce (Sun and Wang, 2008), and SOC also abates due to the shrunk litter input
179 into soil as a result of lower AGB and plant detritus (Wang et al., 2009; Wen et al., 2013). Lower RB,
180 SOC and LC yet higher AGB in D3 and D6 than in D1 and D2 (Table 3) implies AGB is the major
181 controlling factor of Rs with the development of land degradation, which is consolidated by the
182 positive correlation between Rs and AGB (Fig. 4c). In disturbed ecosystems microorganisms
183 competition induce the microbes to sue more C energy for cell integrity and maintenance (Moscatelli
184 et al., 2007), and the consequent higher respiration quotient (Nunes et al., 2012) could contribute to
185 the insignificant change in Rs with development of land degradation.

186 ER comprises of respiration of AGB and Rs (Zhang et al., 2009). Higher Rs therefore could be
187 one reason for the higher ER in D3 and D6. Lower relative difference in Rs (38.2%) than in ER
188 (44.5%) between the two groups suggests the influence other factors like AGB on ER difference,
189 which is supported by the positive correlation relationship between ER and AGB (Fig. 4c).

190 The highest net photosynthesis in June in alpine meadow ecosystem (Yi et al., 2000) justifies
191 the maximum GEP in June (Fig. 3d). Sedge percentage will decrease, and forbs percentage increase

192 with the development of land degradation (Liu et al., 2008). The relative higher net photosynthetic
193 rate of forbs species (*Polygonum viviparum Linn.*) than that of sedge species (*Carex atrofusca*
194 *Schkuhr*, our unpublished data) and higher AGB might compensate for the effect of species
195 composition change on GEP due to the positive correlation between GEP and AGB (Fig. 4c) in the
196 current study.

197 The maximum NEE in June is a result of the highest GEP and lower ER in this time (Fig. 2).
198 Positive seasonal average NEE indicates alpine meadow is weak C sink in the growing season, and
199 lower NEE in group II suggests the decline of C sequestration ability of alpine meadow ecosystem
200 in degraded land. The non-significant difference of NEE in the two groups might be the result of the
201 corresponding change of ER (44.5% higher in group I than in group II) and GEP (46.5% higher in
202 group I than in group II).

203 **4.3 Implication of the soil C dynamics**

204 The non-significant difference in NEE among different degradation levels suggest that SOC
205 loss (in D1, D4 and D5) with land degradation is not directly resulted from changes in net C uptake
206 and emission. Higher SOC, LC, TN in D2 with more NRHs, and the positive correlation between RB
207 and SOC suggests that other dynamics associated with land degradation, like species composition
208 and C allocation between AGB and RB change might involve in the soil C dynamic in degraded land
209 in alpine meadow ecosystem.

210 **Conclusion**

211 Rs, ER and GEP all decreased with increasing NRHs. The corresponding change in ER and

212 GEP leads to insignificant change in NEE. All the ecosystem CO₂ fluxes are primarily affected by
213 AGB. SOC and soil nutrients change in degraded land is not directly resulted from response of net
214 ecosystem C balance to land degradation. Other processes like species composition and above- and
215 belowground biomass allocation might play a role in the soil C dynamic with development of land
216 degradation.

217

218 **Acknowledgments:**

219 Authors thank Prof. Yongzhi, Liu, Hanbo Yun, Guilong Wu, and Yuanwu Yang for their help in
220 setting up the field experiment. Financial support came from National Natural Science Foundation of
221 China (41301211, 41201195 and 41301211), the Foundation for Excellent Youth Scholars of
222 CAREERI, CAS (351191001), and Chinese Academy of Sciences (Hundred Talents Program)

223

224 **References:**

225 Ajtay, G. L.: Terrestrial primary production and phytomass: The global carbon cycle, John wiley sons,
226 Chichester, 1979.

227 Batjes, N. H.: Total carbon and nitrogen in the soils of the world, European Journal of Soil Science,
228 47, 151-163, 1996.

229 Dregne, H. E.: Land degradation in the drylands, Arid Land Research and Management, 16, 99-132,
230 2002.

231 Fan, J. W., Zhong, H. P., Harris, W., Yu, G. R., Wang, S. Q., Hu, Z. M., and Yue, Y. Z.: Carbon
232 storage in the grasslands of China based on field measurements of above- and below-ground
233 biomass, Climate Change, 10.1007/s10584-007-9316-6, 2007.

234 Geng, Y., Wang, Y., Yang, K., Wang, S., Zeng, H., Baumann, F., Kuehn, P., Scholten, T., and He, J.S.:
235 Soil Respiration in Tibetan Alpine Grasslands: Belowground Biomass and Soil Moisture, but
236 Not Soil Temperature, Best Explain the Large-Scale Patterns, PLoS ONE, 7, e34968,
237 10.1371/journal.pone.0034968, 2012.

238 Hanson, P. J., Edwards, N. T., Garten, C. T., and Andrews, J. A.: Separating root and soil microbial
239 contributions to soil respiration: a review of methods and observations, *Biogeochemistry*, 48,
240 115-146, 2000.

241 Kato, T., Tang, Y., Gu, S., Cui, X., Hirota, M., Du, M., Li, Y., Zhao, X., and Oikawa, T.: Carbon
242 dioxide exchange between the atmosphere and an alpine meadow ecosystem on the
243 Qinghai-Tibetan Plateau, *China, Agricultural and Forest Meteorology*, 124, 121-134,
244 <http://dx.doi.org/10.1016/j.agrformet.2003.12.008>, 2004.

245 Kato, T., Tang, Y., Gu, S., Hirota, M., Du, M., Li, Y., and Zhao, X.: Temperature and biomass
246 influences on interannual changes in CO₂ exchange in an alpine meadow on the
247 Qinghai-Tibetan Plateau, *Global Change Biology*, 12, 1285-1298,
248 10.1111/j.1365-2486.2006.01153.x, 2006.

249 Lal, R.: Potential of desertification control to sequester carbon and mitigate the greenhouse effect,
250 *Climate Change*, 51, 35-72, 2001.

251 Lal, R.: Soil carbon sequestration impacts on global climate change and food security, *Science*, 304,
252 1623-1626, 2004.

253 Li, G., Liu, Y., Frelich, L. E., and Sun, S.: Experimental warming induces degradation of a Tibetan
254 alpine meadow through trophic interactions, *Journal of Applied Ecology*, 48, 659-667,
255 10.1111/j.1365-2664.2011.01965.x, 2011.

256 Lin, X. W., Zhang, Z. H., Wang, S. P., Hu, Y. G., Xu, G. P., Luo, C. Y., Chang, X. F., Duan, J. C., Lin,
257 Q. Y., Xu, B., Wang, Y. F., Zhao, X. Q., and Xie, Z. B.: Response of ecosystem respiration to
258 warming and grazing during the growing seasons in the alpine meadow on the Tibetan plateau,
259 *Agricultural and Forest Meteorology*, 151, 792-802, 10.1016/j.agrformet.2011.01.009, 2011.

260 Liu, X. N., Sun, J. L., Sun, D. G., Pu, X. P., and Xu, G. P.: A study on the community structure and
261 plant diversity of alpine meadow under different degrees of degradation in the Eastern Qilian
262 Mountains, *Acta Prataculturae Sinica*, 17, 1-11, 2008.

263 Lu, Z., Wu, Q., Yu, S., and Zhang, L.: Heat and water difference of active layers beneath different
264 surface conditions near Beiluhe in Qinghai-Xizang Plateau, *Journal of Glaciology and*
265 *Geography*, 28, 642-647, 2006.

266 Luo, C. Y., Xu, G. P., Chao, Z. G., Wang, S. P., Lin, X. W., Hu, Y. G., Zhang, Z. H., Duan, J. C.,
267 Chang, X. F., Su, A. L., Li, Y. N., Zhao, X. Q., Du, M. Y., Tang, Y. H., and Kimball, B. A.:
268 Effect of warming and grazing on litter mass loss and temperature sensitivity of litter and dung
269 mass loss on the Tibetan plateau, *Global Change Biology*, 16, 1606-1617,
270 10.1111/j.1365-2486.2009.02026.x, 2010.

271 Ma, Y. S., Lang, B. N., and Wang, Q. J.: Review and prospect of the study on black soil type
272 deteriorated grassland, *Pratacultural Sciences*, 16, 5-9, 1999.

273 Moscatelli, M. C., Tizio, D., Marinari, A., and Grego.S: Microbial indicators related to soil carbon in
274 Mediterranean land use systems., *Soil Tillage Research*, 97, 51-59, 2007.

275 Ni, J.: Carbon storage in grasslands of China, *Journal of Arid Environments*, 20, 205-211, 2002.

276 Niu, S., Wu, M., Han, Y., Xia, J., LI, L., and Wan, S.: Water-mediated responses of ecosystem carbon
277 fluxes to climatic change in a temperate steppe, *New phytologist*, 177, 209-219, 2008.

278 Nunes, J. S., Araujo, A. S. F., Nunes, L. A. P. L., Lima, L. M., Carneiro, R. F. V., Salviano, A. A. C.,
279 and Tsai, S. M.: Impact of land degradation on soil microbial biomass and activity in Northeast
280 Brazil, *Pedosphere*, 22, 88-95, 2012.

281 Parras-Alcántara, L., Martí-Carrillo, M., and Lozano-García, B.: Impacts of land use change in soil
282 carbon and nitrogen in a Mediterranean agricultural area (Southern Spain), *Solid Earth*, 4,
283 167-177, 2013.

284 Peng, F., Xue, X., You, Q. G., Zhou, X. H., and Wang, T.: Warming effects on carbon release in a
285 permafrost area of Qinghai-Tibet Plateau, *Environmental Earth Sciences*,
286 10.1007/s12665-014-3394-3, 2014a.

287 Peng, F., You, Q., Xu, M., Guo, J., Wang, T., and Xue, X.: Effects of Warming and Clipping on
288 Ecosystem Carbon Fluxes across Two Hydrologically Contrasting Years in an Alpine Meadow
289 of the Qinghai-Tibet Plateau, *PLoS ONE*, 9, e109319, 10.1371/journal.pone.0109319, 2014b.

290 Steduto, P., Çetinkaya, Ö., Albrizio, R., and Kanber, R.: Automated closed-system canopy-chamber
291 for continuous field-crop monitoring of CO₂ and H₂O fluxes, *Agricultural and Forest
292 Meteorology*, 111, 171-186, 10.1016/s0168-1923(02)00023-0, 2002.

293 Sun, X. D., and Wang, Y. L.: Difference of biomass and soil nutrition in alpine cold meadow of

294 different degraded degree, Chinese Qinghai Journal of Animal and Veterinary Sciences, 38, 6-8,
295 2008.

296 Walkley, A.: A critical examination of a rapid method for determining organic carbon in soils-effect
297 of variations in digestion conditions and of inorganic soil constituents, Soil Science, 63,
298 251-264, 1947.

299 Wang, G., Wang, Y., Li, Y., and Cheng, H.: Influences of alpine ecosystem responses to climatic
300 change on soil properties on the Qinghai-Tibet Plateau, China, CATENA, 70, 506-514,
301 10.1016/j.catena.2007.01.001, 2007a.

302 Wang, G., Li, Y., Wang, Y., and Wu, Q.: Effects of permafrost thawing on vegetation and soil carbon
303 losses on the Qinghai-Tibet Plateau, China, Geoderma, 143, 143-152, 2008.

304 Wang, J., Wang, G., Wang, Y., and Li, Y.: Influences of the degradation of swamp and alpine
305 meadows on CO₂ emission during growing season on the Qinghai-Tibet plateau, Chinese
306 Science Bulletin, 52, 2565-2574, 2007b.

307 Wang, W. Y., Wang, Q. J., and Lu, Z. Y.: Soil organic carbon and nitrogen content of density
308 fractions and effect of meadow degradation to soil carbon and nitrogen of fractions in alpine
309 Kobresia meadow, Sciences in China Series D-Earth Science, 52, 660-668, 2009.

310 Wen, L., Dong, S., Li, Y., Wang, X., Li, X., Shi, J., and Dong, Q.: The impact of land degradation on
311 the C pools in alpine grasslands of the Qinghai-Tibet Plateau, Plant and Soil, 368, 329-340,
312 10.1007/s11104-012-1500-4, 2013.

313 Wu, Q. B., and Liu, Y. Z.: Ground temperature monitoring and its recent change in Qinghai-Tibet
314 Plateau, Cold Regions Science and Technology, 38, 85-92, 10.1016/s0165-232x(03)00064-8,
315 2004.

316 Xu, M. H., Peng, F., You, Q. G., Guo, J., Tian, X. F., Xue, X., and Liu, M.: Year-round warming and
317 autumnal clipping lead to downward transport of root biomass, carbon and total nitrogen in soil
318 of an alpine meadow, Environmental and Experimental Botany, 109, 54-62, 2015.

319 Xue, X., Guo, J., Han, B. S., Sun, Q. W., and Liu, L.C: The effect of warming and permafrost thaw
320 on desertification in the Qinghai-Tibet Plateau, Geomorphology, 108, 182-190, 2009.

321 Yang, Y., Ma, W., Mohammat, A., and Fang, J.: Storage, patterns and controls of soil nitrogen in

322 China, *Pedosphere*, 17, 776-785, 2007.

323 Yang, Y. H., Fang, J. Y., Tang, Y. H., Ji, C. J., Zheng, C. Y., He, J. S., and Zhu, B.: Storage, patterns
324 and controls of soil organic carbon in the Tibetan grasslands, *Global Change Biology*, 14,
325 1592-1599, 10.1111/j.1365-2486.2008.01591.x, 2008.

326 Yi, X. F., Pen, G. Y., Shi, S. B., and Han, F.: Seasonal variation in photosynthesis of *Kobresia*
327 *humilis* population and community at Haibei alpine meadow, *Grassland of China*, 1, 12-15,
328 2000.

329 Zhang, F., Wang, T., Xue, X., Han, B. S., Peng, F., and You, Q. G.: The responses of soil CO₂ to
330 desertification on alpine meadow in the Qinghai-Tibet Plateau, *Environmental Earth Sciences*,
331 60, 349-358, 2010.

332 Zhou, X. H., Wan, S. Q., and Luo, Y. Q.: Source components and interannual variability of soil CO₂
333 efflux under experimental warming and clipping in a grassland ecosystem, *Global Change
334 Biology*, 13, 761-775, 2007.

335

336

Table 1 Features of different habitats, which are represented by different number of rodents holes (NRHs, deep and shallow), coverage, plant height (H) and major plant species

DD	NRHs (deep)	NRHs (shallow)	Coverage	H (cm)	Major species
D1	19	7	0.18	9.5	<i>Carex Moorcroftii</i>
D2	5	13	0.35	7	<i>Kobresia Humilis, K. Pygmaea</i>
D3	0	3	0.8	6.5	<i>K. Pygmaea</i>
D4	12	15	0.42	8	<i>C. Moorcroftii, K. Pygmaea</i>
D5	17	13	0.3	7.5	<i>C. Moorcroftii, K. Pygmaea</i>
D6	2	0	0.6	12	<i>C. Moorcroftii</i>

Table 2 Major devices, measuring procedure, specific feature of methods and equipments to conduct the measurement of soil chemical properties and ecosystem CO₂ fluxes

Items	Devices or procedure	Specific feature	Literature
T	6000-09TC, Li-Cor, Utah, USA	A thermo-probe	
Rs	6400-09, Li-Cor, Utah, USA	A collar 5 cm in depth	Zhou et al., 2007
ER	6400-xt, Li-Cor, Utah, USA	A collar 50 cm in depth	Steduo et al., 2002, Niu et al., 2008
NEE	6400-xt, Li-Cor, Utah, USA	A transparent chamber CO ₂ gradient	Steduo et al., 2002, Niu et al., 2008
AGB	A frame and a ruler	Linear regression	Xu et al., 2015
RB	An auger		Xu et al., 2015
SOC	Walkley-Black method		Walkley et al., 1947
TN	Kjeldahl nitrogen method		
NH ₄ ⁺ , NO ₃ ⁻	Spectrometer		
LC	Spectrometer		Blair et al., 1995

T is the soil temperature at 5cm depth; Rs, soil respiration; ER, ecosystem respiration; NEE, net ecosystem exchange; AGB, aboveground biomass; RB, root biomass; SOC, soil organic carbon; TN, total nitrogen, NH₄⁺, NO₃⁻, ammonia and nitrate nitrogen; LC, labile carbon.

Table 3 Soil organic carbon (SOC), labile soil carbon (LC), total nitrogen (TN), inorganic nitrogen (NH_4^+ -N and NO_3^- -N), above-ground biomass (AGB) and root biomass (RB) in different sites (D1-D6). The values in the table were the average and standard error of soil samples in each site.

DD	SOC (g kg ⁻¹)	LC (g kg ⁻¹)	TN (mg kg ⁻¹)	NH_4^+ _N (mg kg ⁻¹)	NO_3^- _N (mg kg ⁻¹)	AGB (g m ⁻²)	RB (kg m ⁻²)	C:N
D1	4.91 \pm 0.13b	1.21 \pm 0.13b	0.44 \pm 0.02b	8.21 \pm 0.32b	4.16 \pm 0.62a	149	3.8 \pm 0.06c	11.2 \pm 0.7ab
D2	8.70 \pm 1.19a	2.12 \pm 0.31a	0.75 \pm 0.10a	13.11 \pm 1.23a	3.81 \pm 0.51ab	145	13.8 \pm 3.5a	11.5 \pm 0.2ab
D3	5.02 \pm 1.01b	1.23 \pm 0.29b	0.46 \pm 0.11ab	8.54 \pm 1.00b	2.31 \pm 0.38bc	272	11.3 \pm 1.3a	10.9 \pm 0.3a
D4	3.95 \pm 0.62b	1.28 \pm 0.34b	0.36 \pm 0.05ab	7.56 \pm 1.39b	2.62 \pm 0.24bc	189	6.0 \pm 1.5b	10.8 \pm 0.3b
D5	3.77 \pm 0.32b	0.9 \pm 0.09b	0.38 \pm 0.03b	9.38 \pm 1.33b	1.98 \pm 0.21c	141	6.1 \pm 0.9b	10.1 \pm 0.2b
D6	3.41 \pm 0.35b	0.83 \pm 0.04b	0.34 \pm 0.02b	8.08 \pm 0.76b	2.64 \pm 0.10bc	336	5.7 \pm 0.3b	9.9 \pm 0.4b

Different letters in each column stands for significant difference of at $P < 0.05$ level.

Table 4 Results (F values) of ANOVA on the effect of land degradation on soil respiration (Rs), ER (ecosystem respiration), NEE (net ecosystem exchange) and GEP (gross ecosystem respiration)

	D1-D6				Group I and group II			
	Rs	ER	NEE	GEP	Rs	ER	NEE	GEP
F	1.69	2.64	1.35	2.27	7.41	8.21	1.59	6.01
P	0.12	0.04	0.26	0.06	0.01	0.006	0.21	0.02

Group I includes D3 and D6 while group II includes D1, D2, D4, and D5

Numbers in bold stands for the statistical significance at $P<0.05$ level

Figure captions

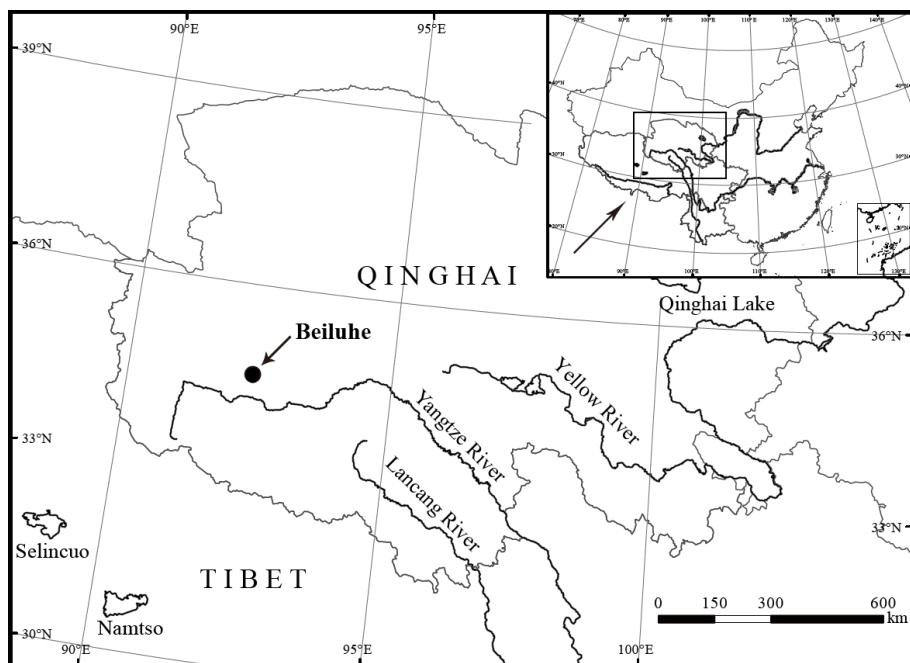

Fig. 1. Location of the study area

Fig. 2. Soil temperature in each degradation level (D1-D6) from June to September. Error bars was the standard error for D1-D6 in each month.

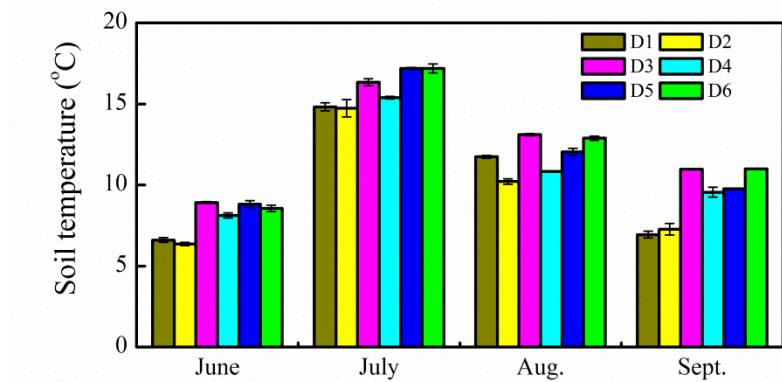
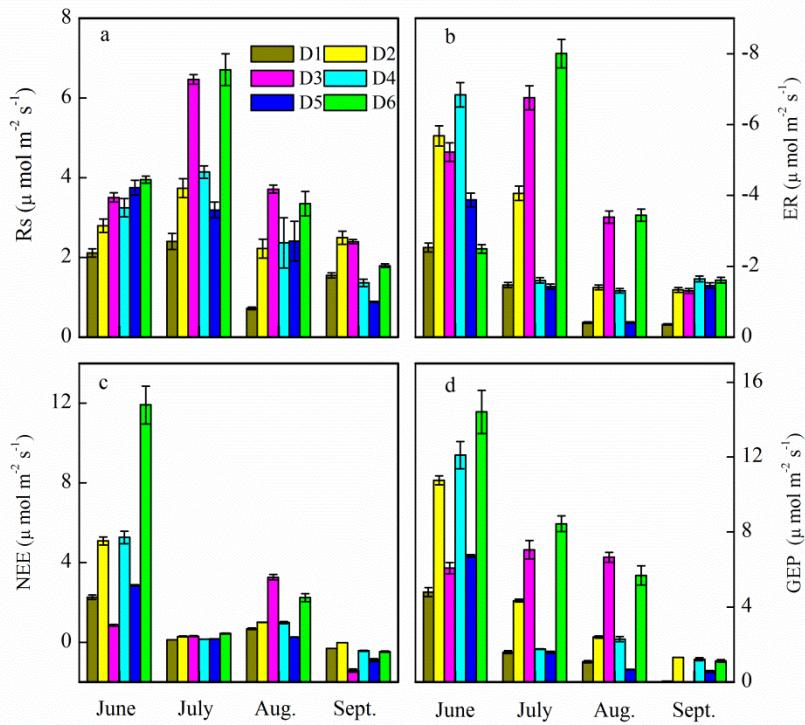

Fig. 3. Monthly soil respiration (Rs, a), ecosystem respiration (ER, b), net ecosystem exchange (NEE, c) and gross ecosystem production (GEP, d) among different degradation levels from June to September. Values in the bars were the average of four replicates (two replicates in two subplots), and error bars are standard errors.

Fig. 4. Linear regressions of CO_2 fluxes (soil respiration [Rs], ecosystem respiration [ER], net ecosystem exchange [NEE]) with soil temperature (a), inorganic nitrogen (b), aboveground biomass (c) and root biomass (d). Rs, ER and NEE data were the average of four measurements from June to September within two subplots; inorganic nitrogen and root biomass (0-30cm) was derived from soil samples at the 0-30cm depth in June.


Figure 1

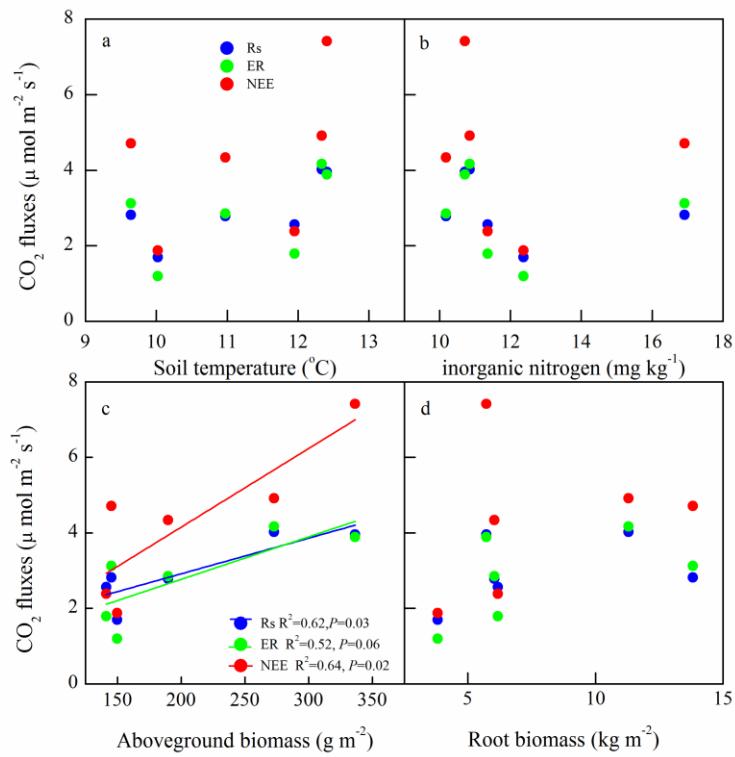

Figure 2

Figure 3

Figure 4

