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Abstract The widespread land degradation in alpine meadow ecosystem would affect ecosystem carbon 12 

(C) balance. Six levels of degraded lands (D1-D6, according to the number of rodent holes and coverage) 13 

were set to investigate effects of rodent-induced land degradation on ecosystem CO2 fluxes, biomass and 14 

soil chemical properties. Soil organic carbon (SOC), labile soil carbon (LC), total nitrogen (TN) and 15 

inorganic nitrogen (N) were obtained by chemical analysis. Soil respiration (Rs), net ecosystem exchange 16 

(NEE) and ecosystem respiration (ER) were measured by Li-Cor 6400 xt. Gross ecosystem production 17 

(GEP) was the sum of NEE and ER. Aboveground biomass (AGB) was based on a linear regression with 18 

coverage and plant height as independent variables. Root biomass (RB) was obtained by using the core 19 

method. Rs, ER, GEP and AGB were significantly higher in slightly degraded (D3 and D6, group I) than 20 

in severely degraded land (D1, D2, D4 and D5, group II). Positive averages of NEE in the growing season 21 

indicate alpine meadow ecosystem is a weak C sink during the growing season. Only significant 22 

difference was observed in ER among different degradation levels. Rs, ER, GEP were 38.2%, 44.3% and 23 

46.5% lower in group I than in group II. The parallel changes of ER and GEP resulted in insignificant 24 

difference of NEE between the two groups. Positive correlations of AGB with ER, NEE and GEP and the 25 

relative small AGB in Group II suggest the control of AGB on ecosystem CO2 fluxes. Correlations of RB 26 

with SOC, LC, TN and inorganic N indicate the regulation of RB on SOC, LC and TN with increasing 27 
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number of rodent holes in alpine meadow ecosystem in permafrost region of QTP.  28 

Keywords: rodent activities, alpine meadow, soil respiration, net ecosystem exchange, ecosystem 29 

respiration 30 

 31 

Introduction 32 

 Soil contains the largest ecosystem carbon (C) stock (Batjes, 1996). The widespread land 33 

degradation (Dregne, 2002) including land use change, soil and vegetation degradation has resulted 34 

in severe soil C and nitrogen (N) loss (Wang et al., 2009; Parras-Alcántara et al., 2013), which is 35 

estimated to be 19-29 Pg worldwide (Lal, 2001). Restoration of the degraded ecosystems, therefore, 36 

had a great potential to sequestrate C from the atmosphere (Lal, 2004), with an annual rate of 0.9 to 37 

1.9 Pg C for a 25 to 50 year period in drylands (Lal, 2001). 38 

Grassland stores about 15.2% of the terrestrial ecosystem C stock that is primarily in the form 39 

of soil C (Ajtay, 1979). Either the aboveground vegetation (Fan et al., 2007) or the top one meter soil 40 

and root C stock (Yang et al., 2008) in alpine meadow in the Qinghai-Tibet Plateau (QTP) account 41 

for a large proportion of those in grassland ecosystem in China (Ni, 2002). However, over one thirds 42 

of grassland in the QTP has been severely degraded due to climate change, grazing and road 43 

constructing in 1990s (Ma et al., 1999), which has led to 1.8 Gg C loss in aboveground C stock from 44 

1986 to 2000 (Wang et al., 2008). In addition to the vegetation C loss, land degradation could also 45 

result in decline in soil C and N (Wang et al., 2008;Wen et al., 2013), and consequently might alter C 46 

role of the alpine meadow (Li et al., 2012).  47 

The primary causing factor for “black soil type” degradation over the QTP is rodent grazing and 48 

burrowing (Ma et al., 1999). Rodent grazing activities trigger decline in biomass, change in 49 
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below-ground biomass distribution, soil structure, microclimate, soil erosion, nutrient loss and 50 

imbalance of nutrient cycling, and finally affect the ecosystem C balance (Li et al., 2011). Current 51 

studies concerning ecosystem C balance in alpine meadow focus on net ecosystem exchange (NEE) 52 

(Kato et al., 2004), inter-annual variation in NEE (Kato et al., 2006), soil respiration (Rs) and 53 

ecosystem respiration (ER) responses to experimental warming (Peng et al., 2014b; Luo et al., 2010; 54 

Lin et al., 2011). Effects of rodent-induced land degradation on ecosystem CO2 fluxes are rarely 55 

investigated. To our knowledge, there are two studies examining the responses of Rs to land 56 

degradation (Zhang et al., 2010; Wang et al., 2007b). However, Rs cannot provide solid evidence for 57 

determining the ecosystem C balance. No field experiment has been conducted in the permafrost 58 

region of the QTP to investigate the effect of land degradation on NEE, a direct measure of the 59 

ecosystem C balance, and on its components: ER and gross ecosystem production (GEP). We 60 

conducted a field study to investigate (1) how the NEE and its components respond to 61 

rodent-induced land degradation, and (2) how biotic and abiotic factors affect those CO2 fluxes with 62 

land degradation process in Kobresia pygmaea dominated alpine meadow in a permafrost area of the 63 

QTP. 64 

 2 Materials and Methods 65 

2.1 Site description 66 

 The study site is situated in the source region of the Yangtze River, inland of the QTP near the 67 

Beiluhe observational station (Fig.1, 34°49′N, 92°56′E) at an altitude of 4635 m. This area has a 68 

typical alpine climate: mean annual temperature is −3.8°C and monthly air temperature ranges from 69 
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−27.9°C in January to 19.2°C in July. Mean annual precipitation is 290.9 mm, of which over 95% 70 

falls during the warm growing season (May to October). Mean annual potential evaporation is 71 

1316.9 mm, mean annual relative humidity is 57%, and mean annual wind velocity is 4.1 m s
-1 

(Lu et 72 

al., 2006). The study site is a winter-grazed range, dominated by alpine meadow vegetation: 73 

Kobresia capillifolia, K. pygmaea, and Carex moorcroftii, with a mean plant height of 5 cm. Plant 74 

roots occur mainly within the 0-20 cm soil layer, and average soil organic carbon (SOC) is 1.5%. 75 

The soil development is weak, and the soil belongs to alpine meadow soil (Chinese soil taxonomy), 76 

or is classified as a Cryosol according to World Reference Base for Soil Resources, 2006, with a 77 

Mattic Epipedon at a depth of approximately 0-10 cm, and an organic-rich layer at a depth of 20-30 78 

cm (Wang et al., 2007a). The parent soil material is of fluvio-glacial origin and is composed of 99% 79 

sand. Permafrost thickness observed near the experimental site is 30-70 m and the depth of the active 80 

layer is 1.5-3.5 m (Wu and Liu, 2004). However, the thickness of the active layer has been 81 

increasing at a rate of 3.1 cm y
-1

 since 1995 due to climatic warming (Wu and Liu, 2004).  82 

2.2 Experimental design and measurement protocol 83 

2.2.1 Experimental design 84 

 We selected six habitats with different number of rodent holes (NRHs) and community 85 

coverage in a mountain slope based on our filed observation. The habitats were sequenced D1-D6 86 

from east to northeast. The distance between each habitat was about 200-300 m. In each site, two 87 

sub-plots (2m×4m) were set up. The NRHS, coverage, plant height and major species in D1-D6 were 88 

shown in Table 1.  89 

2.2.2 Measurement protocol  90 

 Soil temperature: Soil temperature at the depth of 5cm was monitored by a thermo-probe 91 
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attached to Li-Cor 6400 (Lincoln, NE, USA.) when measurements of Rs, NEE and ER were 92 

conducted. 93 

 CO2 fluxes: Rs was measured using 5-cm tall PVC collars, which were permanently inserted 94 

2-3 cm into the soil in the center of each plot. The measuring procedure of Rs was similar to that 95 

reported in former studies (Peng et al., 2014b; Zhou et al., 2007). ER and NEE were measured with a 96 

transparent chamber (0.5 × 0.5 × 0.5 m) attached to an infrared gas analyzer (Li-Cor 6400, Lincoln, 97 

NE, USA). The method used was similar to that reported by (Steduto et al., 2002) and (Niu et al., 98 

2008). GEP was the calculated as the sum of NEE and ER. Rs, NEE and ER were measured once a 99 

month from June to September in each plot. 100 

Soil sampling: One soil sample was collected at the soil depth of 0-30 cm in each plot in June, 101 

2012. 102 

AGB and RB: AGB was obtained from a step-wise linear regression with AGB as the 103 

dependent variable, and coverage and plant height as independent variables (Peng et al., 2014b;Xu et 104 

al., 2015). Coverage of each plot was measured using a 10 cm × 10 cm frame in four diagonally 105 

divided subplots replicated eight times in D1-D6 in June 2012. Plant height was measured 40 times 106 

by a ruler, and averaged for each plot. RB was obtained from soil samples that were air-dried for one 107 

week and passed through a sieve (Φ=2 mm) to remove large particles. Roots were separated from the 108 

soil by washing, and fine roots was retrieved by sieve (Φ=0.25 mm). Living roots were separated 109 

from dead roots by their color and consistency (Yang et al., 2007). And the separated roots were 110 

dried at 75°C for 48 h. 111 

Chemical analysis: SOC was analyzed using the Walkley-Black method (Walkley, 1947). TN 112 
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was measured via the Kjeldahl method. Ammonia and nitrate N were measured colorimetrically 113 

through a spectrometer. Labile soil carbon (LC) measurement was carried out by the procedure 114 

advocated by (Moscatelli et al., 2007). 115 

2.3 Data analysis 116 

  The statistical significance of soil temperature, Rs, NEE, ER and GEP in D1-D6 were tested 117 

by the one way-ANOVA analysis. Monthly data measured in each subplots from June to September 118 

were used in the analysis. Based on the total NHRs, CO2 fluxes in D3 and D6 were ranked as group 119 

Ⅰ and those in D1, D2, D4 and D5 were the group Ⅱ. The statistical significance of CO2 fluxes 120 

between the two groups were also tested by one-way ANOVA analysis. The monthly differences in 121 

CO2 fluxes were analyzed by repeated ANOVA. Relationships of Rs, NEE and ER with soil 122 

temperature, ABG, RB, and TN or inorganic N were analyzed by linear regression analyses. Pearson 123 

correlation analyses were employed to investigate the relationships of NRHs with soil chemical 124 

properties and biomass. The linear regression and Pearson correlation were considered significant 125 

with P<0.05. Rs, NEE and ER data were the averages of four months in each degrade level when 126 

conducting the correlation analyses. All the analyses were conducted in SPSS 16.0 for windows.  127 

3 Results 128 

3.1 Soil temperature 129 

 Soil temperature at the depth of 5 cm maximized in July and monthly average soil temperature 130 

had no significant change (P>0.05) among different degradation levels (Fig. 2). The monthly 131 
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average soil temperature was about 9.6-12.4 
o
C from D1 to D6. Soil temperature also had no 132 

significant difference between group Ⅰand Ⅱ.  133 

3.2 Soil chemical properties and biomass 134 

 SOC, LC, TN, ammonia N and RB were the highest in D2 than in other habitats (Table 3). AGB 135 

was higher in D3 and D6 than in others. SOC, LC, TN, and inorganic N (NH4
+
-N and NO3

-
-N) had 136 

no obvious trend with the increasing NRHs, whereas AGB (r=-0.89, P<0.05) negatively correlated 137 

with the NRHs. 138 

3.3 Rs, NEE, ER and GEP  139 

 Repeated one-way ANOVA showed the significant seasonal change in Rs (P<0.01), ER 140 

(P<0.05), NEE (P<0.01) and GEP (P<0.01). The maximum Rs and ER were in July (Figs. 3a, b), 141 

whereas the maximum NEE and GEP were in June (Figs. 3c, d). Growing seasonal average Rs and 142 

NEE had no significant difference in D1-D6 while ER and GEP were marginally higher in D3 and 143 

D6 than in others (Table 4). Rs, ER and GEP were higher in group Ⅰ than in group Ⅱ (P<0.05). 144 

Insignificant but higher NEE was observed in group Ⅰ (2.13 μ mol m
-2

 s
-1

) than in group Ⅱ (1.09 μ 145 

mol m
-2

 s
-1

).  146 

3.4 Relationship of Rs, ER, NEE and GEP with affecting factors 147 

 Ecosystem CO2 fluxes had no obvious relationship with soil temperature (Fig. 4a), soil 148 

inorganic N (Fig. 4b) and RB (Fig. 4d), while they positively correlated with AGB with the steepest 149 

regression slope in Rs, followed by ER and NEE (Fig. 4c).  150 
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4 Discussion 151 

4.1 C and N loss  152 

 Land degradation would cause the decline in SOC and TN density, and reduction in C and N 153 

stocks either in temperate grassland (Zhang et al., 2010) or in alpine meadow ecosystem (Xue et al., 154 

2009). Insignificant difference of SOC, LC, TN and inorganic N among D1, D3, D4, D5 and D6 155 

indicate (Table 3) nutrient loss associated with land degradation induced by rodent activities differs 156 

with the C and N loss resulted from land degradation caused by other factors, such as desertification 157 

and wind erosion. Soil loses C and N during the degradation process by (1) reducing vegetative 158 

growth and exposing the soil surface to wind and water erosion, and (2) reducing the return of litter 159 

to soil (Nunes et al., 2012). Higher AGB in D3 and D6 (Table 3) suggesting more litter returning to 160 

the soil, but more ecosystem CO2 emission from soil in terms of higher Rs could be the reason for 161 

lower SOC, LC and TN in D3 and D6. Positive correlation between AGB and Rs indicates 162 

decomposition of fresh litter from AGB might be the major component of Rs in alpine meadow. The 163 

highest RB in D2 in spite of lower AGB comparing with that in D3 and D6 (Table 3) proves RB is 164 

the major source of soil C and N in the alpine meadow ecosystem.  165 

4.2 CO2 fluxes 166 

Soil temperature explains most of the temporal (Peng et al., 2014a) but RB determines the 167 

spatial variation in Rs over the QTP (Geng et al., 2012). No obvious relationship between Rs and 168 

soil temperature (Fig. 4a) suggests other factors might involve in controlling the temporal variation 169 

in Rs with land degradation processes. Rs decline is observed with intensification of land 170 
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degradation in an alpine meadow ecosystem, and the significant reduction only appears in severely 171 

degraded level (Zhang et al., 2010). Lower Rs in group Ⅱ than in group Ⅰ (1) supports the above 172 

finding because community coverage in D1, D2, D4 and D5 (Table 1) conforms to the standard of 173 

the severe land degradation for alpine meadow ecosystem (Xue et al., 2009), (2) indicates the 174 

controlling effect of biomass on Rs in degraded land induced by rodent activities. Rs is composed of 175 

autotrophic respiration from plant roots and their symbionts, and heterotrophic respiration from litter 176 

and SOC decomposition (Hanson et al., 2000). AGB and dead roots, the major sources of litter in 177 

alpine meadow all reduce (Sun and Wang, 2008), and SOC also abates due to the shrunk litter input 178 

into soil as a result of lower AGB and plant detritus (Wang et al., 2009;Wen et al., 2013). Lower RB, 179 

SOC and LC yet higher AGB in D3 and D6 than in D1 and D2 (Table 3) implies AGB is the major 180 

controlling factor of Rs with the development of land degradation, which is consolidated by the 181 

positive correlation between Rs and AGB (Fig. 4c). In disturbed ecosystems microorganisms 182 

competition induce the microbes to sue more C energy for cell integrity and maintenance (Moscatelli 183 

et al., 2007), and the consequent higher respiration quotient (Nunes et al., 2012) could contribute to 184 

the insignificant change in Rs with development of land degradation.  185 

ER comprises of respiration of AGB and Rs (Zhang et al., 2009). Higher Rs therefore could be 186 

one reason for the higher ER in D3 and D6. Lower relative difference in Rs (38.2%) than in ER 187 

(44.5%) between the two groups suggests the influence other factors like AGB on ER difference, 188 

which is supported by the positive correlation relationship between ER and AGB (Fig. 4c).  189 

The highest net photosynthesis in June in alpine meadow ecosystem (Yi et al., 2000) justifies 190 

the maximum GEP in June (Fig. 3d). Sedge percentage will decrease, and forbs percentage increase 191 
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with the development of land degradation (Liu et al., 2008). The relative higher net photosynthetic 192 

rate of forbs species (Polygonum viviparum Linn.) than that of sedge species (Carex atrofusca 193 

Schkuhr, our unpublished data) and higher AGB might compensate for the effect of species 194 

composition change on GEP due to the positive correlation between GEP and AGB (Fig. 4c) in the 195 

current study.  196 

The maximum NEE in June is a result of the highest GEP and lower ER in this time (Fig. 2). 197 

Positive seasonal average NEE indicates alpine meadow is weak C sink in the growing season, and 198 

lower NEE in group Ⅱ suggests the decline of C sequestration ability of alpine meadow ecosystem 199 

in degraded land. The non-significant difference of NEE in the two groups might be the result of the 200 

corresponding change of ER (44.5% higher in group Ⅰ than in group Ⅱ) and GEP (46.5% higher in 201 

group Ⅰ than in group Ⅱ).  202 

4.3 Implication of the soil C dynamics 203 

 The non-significant difference in NEE among different degradation levels suggest that SOC 204 

loss (in D1, D4 and D5) with land degradation is not directly resulted from changes in net C uptake 205 

and emission. Higher SOC, LC, TN in D2 with more NRHs, and the positive correlation between RB 206 

and SOC suggests that other dynamics associated with land degradation, like species composition 207 

and C allocation between AGB and RB change might involve in the soil C dynamic in degraded land 208 

in alpine meadow ecosystem. 209 

Conclusion 210 

 Rs, ER and GEP all decreased with increasing NRHs. The corresponding change in ER and 211 
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GEP leads to insignificant change in NEE. All the ecosystem CO2 fluxes are primarily affected by 212 

AGB. SOC and soil nutrients change in degraded land is not directly resulted from response of net 213 

ecosystem C balance to land degradation. Other processes like species composition and above- and 214 

belowground biomass allocation might play a role in the soil C dynamic with development of land 215 

degradation. 216 
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Table 1 Features of different habitats, which are represented by different number of rodents holes 

(NRHs, deep and shallow), coverage, plant height (H) and major plant species 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DD 
NRHs 

(deep) 

NRHs 

(shallow) 
Coverage 

H 

(cm) 
Major species 

D1 19 7 0.18 9.5 Carex Moorcroftii 

D2 5 13 0.35 7 Kobresia Humilis, K. Pygmaea 

D3 0 3 0.8 6.5 K. Pygmaea 

D4 12 15 0.42 8 C. Moorcroftii, K. Pygmaea 

D5 17 13 0.3 7.5 C. Moorcroftii, K. Pygmaea 

D6 2 0 0.6 12 C. Moorcroftii 
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Table 2 Major devices, measuring procedure, specific feature of methods and equipments to 

conduct the measurement of soil chemical properties and ecosystem CO2 fluxes  

Items Devices or procedure Specific feature Literature 

T 6000-09TC, Li-Cor, Utah, USA A thermo-probe  

Rs 6400-09, Li-Cor, Utah, USA A collar 5 cm in depth Zhou et al., 2007 

ER 6400-xt, Li-Cor, Utah, USA A collar 50 cm in depth Steduo et al., 2002, Niu et 

al., 2008 

NEE 6400-xt, Li-Cor, Utah, USA A transparent chamber 

CO2 gradient 

Steduo et al., 2002, Niu et 

al., 2008 

AGB A frame and a ruler Linear regression Xu et al., 2015 

RB An auger  Xu et al., 2015 

SOC Walkley-Black method  Walkley et al., 1947 

TN Kjeldahl nitrogen method   

NH4
+, NO3

- Spectrometer   

LC Spectrometer  Blair et al., 1995 

 T is the soil temperature at 5cm depth; Rs, soil respiration; ER, ecosystem respiration; NEE, net 

ecosystem exchange; AGB, aboveground biomass; RB, root biomass; SOC, soil organic carbon; TN, 

total nitrogen, NH4
+
, NO3

-
, ammonia and nitrate nitrogen; LC, labile carbon. 
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Table 3 Soil organic carbon (SOC), labile soil carbon (LC), total nitrogen (TN), inorganic nitrogen 

(NH4
+
-N and NO3

-
-N), above-ground biomass (AGB) and root biomass (RB) in different sites (D1-D6). 

The values in the table were the average and standard error of soil samples in each site.  

Different letters in each column stands for significant difference of at P<0.05 level. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DD 
SOC 

(g kg-1) 

LC 

(g kg-1) 

TN 

(mg kg-1) 

NH4
+_N 

(mg kg-1) 

NO3
-_N 

(mg kg-1) 

AGB 

(g 

m-2) 

RB 

(kg m-2) 

C:N 

D1 4.91±0.13b 1.21±0.13b 0.44±0.02b 8.21±0.32b 4.16±0.62a 149 3.8±0.06c 11.2±0.7ab 

D2 8.70±1.19a 2.12±0.31a 0.75±0.10a 13.11±1.23a 3.81±0.51ab 145 13.8±3.5a 11.5±0.2ab 

D3 5.02±1.01b 1.23±0.29b 0.46±0.11ab 8.54±1.00b 2.31±0.38bc 272 11.3±1.3a 10.9±0.3a 

D4 3.95±0.62b 1.28±0.34b 0.36±0.05ab 7.56±1.39b 2.62±0.24bc 189 6.0±1.5b 10.8±0.3b 

D5 3.77±0.32b 0.9±0.09b 0.38±0.03b 9.38±1.33b 1.98±0.21c 141 6.1±0.9b 10.1±0.2b 

D6 3.41±0.35b 0.83±0.04b 0.34±0.02b 8.08±0.76b 2.64±0.10bc 336 5.7±0.3b 9.9±0.4b 
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Table 4 Results (F values ) of ANOVA on the effect of land degradation on soil respiration (Rs), ER 

(ecosystem respiration), NEE (net ecosystem exchange) and GEP (gross ecosystem respiration)  

 D1-D6 Group Ⅰand group Ⅱ 

 Rs ER NEE GEP Rs ER NEE GEP 

F  1.69 2.64 1.35 2.27 7.41 8.21 1.59 6.01 

P 0.12 0.04 0.26 0.06 0.01 0.006 0.21 0.02 

Group Ⅰ includes D3 and D6 while group Ⅱ includes D1, D2, D4, and D5 

Numbers in bold stands for the statistical significance at P<0.05 level 
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Figure captions 

Fig. 1. Location of the study area 

Fig. 2. Soil temperature in each degradation level (D1-D6) from June to September. Error bars was the 

standard error for D1-D6 in each month. 

Fig. 3. Monthly soil respiration (Rs, a), ecosystem respiration (ER, b), net ecosystem exchange (NEE, c) 

and gross ecosystem production (GEP, d) among different degradation levels from June to September. 

Values in the bars were the average of four replicates (two replicates in two subplots), and error bars 

are standard errors. 

Fig. 4. Linear regressions of CO2 fluxes (soil respiration [Rs], ecosystem respiration [ER], net ecosystem 

exchange [NEE]) with soil temperature (a), inorganic nitrogen (b), aboveground biomass (c) and root 

biomass (d). Rs, ER and NEE data were the average of four measurements from June to September 

within two subplots; inorganic nitrogen and root biomass (0-30cm) was derived from soil samples at 

the 0-30cm depth in June. 
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Figure 1  
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Figure 2 
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Figure 3 
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Figure 4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


