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We would like to thank Anonymous Referee #1 for a very detailed evaluation of our paper “Is 
there a layer deep in the Earth that uncouples heat from mechanical work?”  The reviewer 
implies the answer to our query is “no” based on simulations from density function theory, DFT, 
which shows no negative thermal expansion in the data sets evaluated.  If you were to use our 
linear elastic data in the same volume range as DFT the answer would also be “no”.  DFT data 
(for MgSiO3 as described by Z. Zhang et. al.) has volumes that are much larger than the zero 

thermal expansion, regression curve volume discussed in our manuscript.  We prefer volume 
over pressure because it describes the atomic space in the unit cell.  This is discussed in some 
detail below but first we would like to answer the other comments from this Referee.   

We used a linear elastic theory, well-established at several GPa of pressure and extrapolated our 
findings to pressures to near 50 GPa.  As pointed out by Referee #1 this is a long extrapolation.  
We agree that non-linear terms should be introduced into our linear theory at pressures well 
below 50 GPa and thus the pressure values we find for creating near zero thermal expansion as 
predicted by our model may have substantial errors.  That however is not the point: the major 
conclusion from our linear EOS is that some pressure can be found that will suppress expansivity 
for terrestrial constituents to have near zero thermal expansion coefficients.  These pressures are 
close to Earth-mantle pressures especially in perovskite minerals, including MgSiO3.  We cite 

about 25 references related to several aspects of negative thermal expansion coefficients in broad 
classes of materials but especially the perovskites.   

This Referee also suggested that we review Helffrich and Connolly who conclude that the 
thermal expansion coefficient can never be zero.  In fact, the authors in this reference add terms 
to a modified Murnaghan equation of state, EOS, so as to mandate their thermodynamic 
expressions to explicitly avoid all zero thermal expansion coefficients.  The justification for 
modifying the EOS is that zero thermal expansion is “non-physical behavior.”  The references 
cited in our manuscript on negative thermal expansion do they describe “non-physical 
behavior”?  We don’t think so.  These authors also show how to calculate the pressures that 
result in zero thermal expansion coefficients including a non-linear pressure dependent term in 
the bulk modulus; the pressures found from our linear regression curve which we use to predict 
zero thermal expansion is a just a special case of their non-linear analysis: their value for P* is 

that pressure where the thermal expansion coefficients are zero.  They have * / ( )TP B K  

where B is the bulk modulus, T  is Anderson-Gruneisen parameter and K   is the first derivative 

of the pressure dependence of the bulk modulus, typically taken as 4.  Our linear theory, which 
leaves out all the pressure dependence of the bulk modulus (that is why it is called linear), i.e., 

0K   , predicts a regression curve where the thermal expansion coefficients are zero from 

which we approximate * / ( )TP B   as shown in our equation 16.   



There is an additional point from the reference to Helffrich and Connolly it can be seen in their 
equation 1 which is:  
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G is the Gibb’s free energy; P and T are the pressure and temperature respectively.  The subscript 
variables are reference states.  The derivative of equation 1 with respect to P first and then T 
yields 

 ( , ) (P) ( )dG P T V dP S T dT        (2) 

Our equation 3 for incremental Gibbs free energy is written with ( , )V P T  and ( , )S T P  in 

equation 2.  The thermal expansion coefficient is the temperature dependence of the volume or 
equivalently the negative of the pressure dependence of the entropy.  (See equation 10 in our 
manuscript.)  Their equation 1 formally precludes thermal expansion coefficients because 
thermodynamic interactions are not correctly represented in their Gibbs energy function.  
However, this early Gibbs function is somehow not a major description used latter in their text; 
this paper goes on to show that a Murnaghan and Birch-Murnaghan EOS including the pressure 
dependence of the bulk modulus gives rise to zero thermal expansion coefficients.  Zero thermal 
expansion behavior is considered unrealistic by Helffrich and Connolly so they have arbitrarily 
modified Murnaghan and Birch-Murnaghan EOS so as to purposely exclude all zero thermal 
expansion coefficient behavior.  The modified EOS is to us arbitrary.  They have excluded 
exactly what we are interested in.   

Returning to simulations using DFT and Anonymous Referee #1 reference to the work of Z. 
Zhang, L. Stixrude and J. Brodholt (Z. Zhang et. al. lists 10 other references that also cover this 
topic; the paper by Z. Zhang et. al. seems to us to be very carefully done and quite complete so it 
is representative of our response on DFT descriptions of solids.)  The DFT simulation finds a 
local energy minimum from imposed conditions at each prescribed volume and temperature 
using exchange-correlation functionals on the orbital electrons.  The simulation cell size 
typically contains 20 atoms in a 4x4x4 mesh about the k point in the reciprocal lattice; the 
authors also investigated a super-cell with 1280 atoms at reference or ambient conditions and 
report only minor differences from the smaller cell.  These results should also predict in phase 
space all reconstructive and isostructural phase changes in MgSiO3 and give all the 

thermophysical properties of this material.  Our linear elastic model purposely excludes all first 
and second order phase changes which alter the linear elastic constants and thus the temperature 
dependence of the compressibility we used.  The volume values used in the DFT simulations are 
always much larger than the volumes where we would look for a zero thermal expansivity on our 
regression curve.  The cell volume is important as it changes the local environment of the 
electrons and the atoms.  Linear theory predicts zero thermal expansion coefficients on the 



regression curve when 0n(v/ v )  is between -0.50 and -1.20 but DFT’s volumes (combining data 

from all 10 references) is larger than -0.288 in all their data sets; in our figure 1 the very first 
point on our regression curve is at -0.50 and we go from there to -1.2 indicating significantly 
smaller volumes.  Thus, DFT is very far away from the volume region where we expect to find 
major reductions in thermal expansion coefficients.  We believe that volume is more important 
than temperature or pressure although thermodynamics will have only two independent variables 
connected by the EOS.  

The entropy on our regression line is at a minimum as explained in the text; entropy reduction to 
get to our regression line is very significant so higher pressures with lower temperatures 
including reduced entropy is the region where we encourage DFT investigations.  In this state of 
volume and pressure, we predict thermal expansions coefficients will be very near zero.  The 
reviewer asks how a material can have a zero thermal expansion coefficient.  The material on an 
atomic level will act as an auxetic material: the overbearing pressure causes thermal excursions 
sideways between atoms.  Cora Lind (see our references) in her review of negative thermal 
expansion materials attributes transverse vibrations to these materials.  Large pressures restrict 
the motion of atoms so they move in the transverse direction hence our reference to auxetic 
solids.   

Further investigation of DFT data from Table 1 in Z. Zhang, L. Stixrude and J. Brodholt can be 
checked using our equation 12.  Equation 12 a thermodynamic identity that relates the 

temperature dependence of the isothermal compressibility, κT, to the pressure dependence of the 

thermal expansion coefficient, β as given by 

T

TPT P

  


 
.      (3) 

Equation 3 assumes Gibbs equilibrium while DFT uses Helmholtz equilibrium.  Choosing T = 
2500 K and P = 112.2 GPa in Table 1 and Figure 3(a) in Z. Zhang et. al. gives an evaluation of 
the slopes found in the left and right sides respectively of:  

   8 83.81 10 / 6.39 10 /x GPa K x GPa K         (4) 

The values seen in equation 4 differ by about 50% and seem somewhat larger than the scatter 
from the slopes taken using their data.  Use has been made of the temperature dependence of the 
adiabatic bulk modulus (not the isothermal bulk modulus) since it is listed in their paper.   

The last point that we will comment on is that thermodynamics in most geophysical work uses 
strain energy found from 6 stresses and 6 strains plus temperature and entropy for a total of 14 
variables with 7 independent.  The energy per unit volume is converted to energy per atom by 
multiplying by the volume per atom, V(P, T).  This conversion introduces an additional variable 
into the thermodynamic analysis; V(P, T) has no conjugate variable in a thermodynamic sense 



and its use introduces errors when finding thermophysical properties.  There a simple check see 
if the Gibbs Function used has addition energy terms: let the stress tensor be a matrix that is fully 
hydrostatic (with no shear terms) and calculate ( , )dG P T  does it include extra terms?  Or is it 

just                 ( , ) (P,T) (P,T)dG P T S dT V dP        (5) 

as it should be.  If there are extra incremental energy terms then this energy will have 
consequences in finding the thermo-physical properties of the material studied.  It will change 
physical properties hopefully in some minor way.   

 


