
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

www.elsevier.com/locate/rgg

Self-consistent pressure scales based on the equations of state 
for ruby, diamond, MgO, B2–NaCl, as well as Au, Pt, and other metals 

to 4 Mbar and 3000 K

T.S. Sokolova a,*, P.I. Dorogokupets a, K.D. Litasov b,c

 a Institute of the Earth’s Crust, Siberian Branch of the Russian Academy of Sciences, ul. Lermontova 128, Irkutsk, 664033, Russia
b Novosibirsk State University, ul. Pirogova 2, Novosibirsk, 630090, Russia

c V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences,
pr. Akademika Koptyuga 3, Novosibirsk, 630090, Russia

Received 17 April 2012; accepted 14 August 2012

Abstract

Based on the modified formalism of Dorogokupets and Oganov (2007), we calculated the equation of state for diamond, MgO, Ag, Al,
Au, Cu, Mo, Nb, Pt, Ta, and W by simultaneous optimization of the data of shock-wave experiments and ultrasonic, X-ray diffraction,
dilatometric, and thermochemical measurements in the temperature range from ~100 K to the melting points and pressures of up to several
Mbar, depending on the material. The obtained room-temperature isotherms were adjusted with a shift of the R1 luminescence line of ruby,
which was measured simultaneously with the unit cell parameters of metals in the helium and argon pressure media. The new ruby scale is
expressed as P(GPa) = 1870⋅∆λ / λ0(1 + 6⋅∆λ / λ0). It can be used for correction of room-pressure isotherms of metals, diamond, and periclase.
New simultaneous measurements of the volumes of Au, Pt, MgO, and B2-NaCl were used for interrelated test of obtained equations of state
and calculation of the room-pressure isotherm for B2-NaCl. Therefore, the constructed equations of state for nine metals, diamond, periclase,
and B2-NaCl can be considered self-consistent and consistent with the ruby scale and are close to a thermodynamic equilibrium. The calculated
PVT relations can be used as self-consistent pressure scales in the study of the PVT properties of minerals using diamond anvil cell in a wide
range of temperatures and pressures.
© 2013, V.S. Sobolev IGM, Siberian Branch of the RAS. Published by Elsevier B.V. All rights reserved.
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Introduction

Significant progress in study of the PVT properties of
minerals and other materials as applied to the investigation of
the Earth’s core and mantle has been achieved in recent
decades (Bassett, 2009; Hemley and Percy, 2010). For exam-
ple, in study of perovskite to postperovskite transition and iron
structures in the Earth’s core, which was carried out in
diamond anvil cell with laser heating, the measured tempera-
tures exceeded 3000–5000 K at 150–350 GPa (Hirose et al.,
2008; Komabayashi et al., 2008; Tateno et al., 2009, 2010).
On the room-temperature isotherm, the measured pressures
exceeded 560 GPa (Dubrovinsky et al., 2012; Ruoff et al.,
1992). Sakai et al. (2011b) presented the results of numerous
measurements of the Fe, Ni, Mo, and NaCl compressibility at

>300 GPa. One of the most crucial problems in such studies
is correct measurement of pressure. Unfortunately, there are
no barometers for direct measurements in this pressure region.
Therefore, pressure in diamond anvil cells is calibrated using
special scales, proposed based on the equations of state (EOSs)
for materials with a known dependence of pressure on volume
and temperature. The EOSs for Au, Pt, MgO, and NaCl and
the ruby pressure scale are most commonly used for this
purpose.

Most of the EOSs for Au, Pt, MgO, and NaCl that are used
as pressure scales were constructed based on the shock
compression data (Al’tshuler et al., 1987; Anderson et al.,
1989; Carter et al., 1971; Decker, 1971; Hixson and Fritz,
1992; Holmes et al., 1989; Jamieson et al., 1982), using the
Mie–Grüneisen–Debye formalism. In this case, however, the
difference in pressures determined by different scales reaches
10 GPa in the region of >100 GPa at ~2000 K (Dorogokupets
and Oganov, 2007; Fei et al., 2007; Hirose et al., 2008; Shim

Russian Geology and Geophysics 54 (2013) 181–199

* Corresponding author.
E-mail address: sokolovats@crust.irk.ru (T.S. Sokolova)

Available online at www.sciencedirect.com

ed.

+
1068-7971/$ - see front matter D 201 IGM, Siberian Branch of the RAS. Published by Elsevier B.V. All rights reservV.S. S bolevo

http://dx.doi.org/10.1016/j.rgg.201 .0 .00
3,

3 1 5



Author's personal copy

et al., 2002). A choice of pressure scales depends on the
experimental conditions and is determined not by strict
thermodynamic approaches but by the individual preference
of the research team. For example, Sakai et al. (2011a), who
studied the EOS for B2-NaCl at ≤304 GPa, chose the EOS
for Pt as a pressure scale. They compared the pressures
calculated with four EOSs for Pt by Holmes et al. (1989), Fei
et al. (2007), Dorogokupets and Oganov (2007), and Matsui
et al. (2009) and concluded that the EOS with room-tempera-
ture isotherm (Matsui et al., 2009) specified by the Birch–
Murnaghan equation is the best pressure scale. At the same
time, Matsui et al. (2009) constructed this EOS by analysis of
shock compression data and their own measurements of the
platinum cell parameters at ≤1600 K and ≤42 GPa, calibrated
against pressure scale based on the EOS for MgO (Matsui et
al., 2000). The EOS for MgO (Matsui et al., 2000) was
constructed by the methods of molecular dynamics and
presented only as a table of the values of x = V/V0 as a
function of pressure and temperature, up to 100 GPa and
3000 K. Its parameterization was not published, which does
not permit it to be used as a pressure scale, though the pressure
can be calculated from the table data, if necessary. Neverthe-
less, the EOSs for Pt and MgO in this case can be considered
consistent with each other, but this gives rise to the question
whether the EOS for MgO theoretically obtained by Matsui
et al. (2000) is valid.

There are many EOSs for MgO calculated by different
methods. Some of them are based only on shock compression
data (Jamieson et al., 1982; Jin et al., 2010, 2011; Molodets
et al., 2006); others, on results of shock wave, thermochemical,
X-ray diffraction, and ultrasonic measurements (Brosh et al.,
2008; Dorogokupets and Dewaele, 2007; Dorogokupets and
Oganov, 2007; Garai et al., 2009; Gerya et al., 1998, 2004;
Hama and Suito, 1999; Jacobs and de Jong, 2003; Jacobs and
Oonk, 2000; Kennett and Jackson, 2009; Kuskov et al., 1982;
Pan’kov and Kalinin, 1974; Polyakov and Kuskov, 1994;
Speziale et al., 2001; Stamenkovic et al., 2012; Stixrude and
Lithgow-Bertelloni, 2005; Tange et al., 2009); and in the rest,
results of theoretical calculations are corrected using experi-
mental data (Anderson and Zou, 1989; Inbar and Cohen, 1995;
Isaak et al., 1990; Otero-de-la-Rosa and Luana, 2011a,b; Wu
et al., 2008; Zhang and Bukowinski, 1991). There is also an
EOS for MgO that was constructed only by the results of
ultrasonic measurements (Spetzler, 1970). Several EOSs for
MgO were obtained by X-ray diffraction (Dewaele et al.,
2000; Fei, 1999; Martinez-Garcia et al., 2000; Utsumi et al.,
1998). Recently, an independent EOS for MgO has been
constructed (Kono et al., 2010) (i.e., without using other
scales) by simultaneous measurement of sound velocity and
X-ray diffraction measurements of the cell parameters at
≤1650 K and ≤23.6 GPa.

Almost all from the above-mentioned EOSs for MgO can
be used as a pressure scale for measurements in diamond anvil
cells or in multianvil apparatuses. However, here, as in the
case of the EOS presented by Matsui et al. (2000), the question
arises of which of them yields the most reliable pressure
estimate. Moreover, though periclase in the B1 structure is

stable up to multimegabar pressures and temperatures of
several thousand degrees (Belonoshko et al., 2010; Oganov
and Dorogokupets, 2003), its single crystals and polycrystal-
line samples differ in experimentally measured properties, as
evidenced from shock compression data (Carter et al., 1971;
Duffy and Ahrens, 1995; Zhang et al., 2008), results of
ultrasonic measurements (Chung and Simmons, 1969; Fukui
et al., 2008; Spetzler, 1970), and X-ray diffraction measure-
ments in diamond anvil cells in the helium pressure medium
ensuring quasi-hydrostatic conditions (Jacobsen et al., 2008;
Speziale et al., 2001) (see Fig. 5 in (Dorogokupets, 2010)).
Therefore, the EOSs for MgO cannot be chosen as a primary
pressure scale.

Thus, a question arises: What can serve as a basis for
constructing pressure scales? In the megabar pressure region,
this is shock adiabats of metals, which can be used to calculate
(with particular approximations) the metal isotherms at 0 or
300 K and correlate them with each other. At lower tempera-
tures, the pressure can be calculated from results of simulta-
neous measurement of the sound velocity and X-ray dif-
fraction. Such procedures were performed for MgO on the
room-temperature isotherm (Li et al., 2006) and at higher
temperatures (Kono et al., 2010). As yet, similar measurements
for metals that are commonly used as pressure scales have not
been carried out.

Therefore, the most logical way to obtain internally con-
sistent pressure scales is to calculate metal isotherms at
room-temperature from results of shock-wave measurements
and compare them with results of independent measurements
in diamond anvil cells in the same pressure region. At the
same time, an opposite viewpoint was suggested by Holzapfel
(2010): The EOSs for metals should be constructed on the
basis of low-temperature ultrasonic measurements. In recent
time, the EOSs based on thermochemical, ultrasonic, and
X-ray diffraction measurements at zero pressure and on shock
compression experiments at high pressures (Tange et al., 2009;
Yokoo et al., 2009), i.e., without using secondary pressure
scales, have again attracted considerable interest. Tange et al.
(2009) argue that such EOSs solve the problem of measuring
absolute pressure in diamond anvil cells at high temperatures
and pressures. 

Such isotherms, taken individually, do not solve the
problem of consistent pressure scales. First of all, they must
be compared with each other at least on the room-temperature
isotherm, as was made earlier (Chijioke et al., 2005b; Dewaele
et al., 2004b, 2008; Dorogokupets and Oganov, 2006, 2007),
to obtain a sufficient number of statistical data. We also
showed (Sokolova and Dorogokupets, 2011) that the same
shock compression data (Yokoo et al., 2008, 2009) can be
used to obtain several EOSs for Au, which almost do not differ
in formal features but yield different pressures on isotherms.

We propose the following scheme of obtaining near-abso-
lute (in this work we use the term “optimized”) pressure scales
for quasi-hydrostatic conditions (such conditions exist in
diamond anvil cells with noble gases as a pressure medium
as well as in high-temperature experiments with laser anneal-
ing to reduce deviatoric stress): (1) using results of thermo-
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chemical, ultrasonic, and X-ray diffraction measurements at
zero pressure and of high-pressure shock wave experiments,
the EOSs for diamond, periclase, Al, Cu, Nb, Mo, Ag, Ta, W,
Pt, and Au are constructed by the formalism (Sokolova and
Dorogokupets, 2011) with the minimum set of fitting parame-
ters; (2) with the room-temperature isotherms obtained in the
measurements (Dewaele et al., 2004a,b, 2008; Jacobsen et al.,
2008; Occelli et al., 2003; Speziale et al., 2001; Takemura
and Dewaele, 2008; Takemura and Singh, 2006; Tang et al.,
2010), a pressure dependence of the shift of the R1 lumines-
cence line of ruby is constructed; (3) using this calibration
plot for ruby, the room-temperature isotherms of other mate-
rials are corrected; (4) new EOSs based on the corrected
isotherms are constructed; and (5) the obtained EOSs are
tested by independent methods.

Thermodynamic model

The Helmholtz free energy of metals in its classical form
(Zharkov and Kalinin, 1968) is expressed as:

F = Ur + Er (V) + Fth (V, T) − Fth (V, Tr)  
+ Fe (V, T) − Fe (V, Tr) + Fanh (V, T) − Fanh (V, Tr) , (1)

where Ur is reference energy, Er(V) is the potential (cold) part
of free energy on the reference isotherm Tr (which depends
only on volume V), Fth(V, T) is the thermal part of Helmholtz
free energy (which depends on volume and temperature), and
Fe(V, T) and Fanh(V, T) are the contributions of free electrons
and intrinsic anharmonicity to the free energy, respectively
(which depend on V and T).

The pressure on the room-temperature isotherm is deter-
mined from the equation proposed by Holzapfel (2001, 2010):

Pr (V) = 3K0 X
−5 (1 − X) exp [c0 (1 − X)] ⋅ [1 + c2 ⋅ X (1 − X)], (2)

where X = (V/V0)1/3, c0 = –ln(3K0/PFG0), PFG0 = 1003.6 ×
(nZ/V0)5/3, K′ = 3 + 2(c0 + c2)/3, V is volume (cm3/mol), V0
is volume under standard conditions (T = 298.15 K, P =
1 bar), n is the number of atoms in the chemical formula,
K0 = –V(∂P/∂V)T is the isothermal bulk modulus (GPa) under
standard conditions, K′ = dK0/dP, and Z is the atomic number.

The atomic number of elements in compounds is deter-
mined from (Knopoff, 1965):

Z 2 / 3 = 
Σ ni Zi

 5 / 3

Σ ni Zi

, (3)

where ni is the number of atoms i with atomic number Zi,
according to the chemical formula.

Equation (2) is used because it is interpolation between low
pressure (x ≥ 1) and infinite-compression range (x = 0) cor-
responding to the Thomas–Fermi model. Therefore, it is an
analog of the Debye and Einstein models, which interpolate
thermodynamic functions from 0 K to high temperatures.
Differentiating Eq. (2) with respect to volume yields isother-
mal bulk modulus KT = –V(∂ P/∂ V)T. Differentiating Eq. (2)

with respect to volume (using numerical methods) yields
energy Er(V) in Eq. (1).

In the physics of metals, an equation proposed by Vinet et
al. (1987) is widely used, which determines Er(V), Pr(V),
KTr 

(V), and K′ as

E (V) = 9K0 V0 η
−2 {1 − [1 − η (1 − y)] exp [(1 − y) η]}, (4.1)

P (V) = 3K0 y
−2 (1 − y) exp [(1 − y) η], (4.2)

KT (V) = K0 y
−2 [1 + (η y + 1) (1 − y)] exp [(1 − y) η], (4.3)

K′ = 
1
3

 






2+ y η + 

y (1 − η) + 2y 
2η

1+ (1 − y) (1 + y η)







, (4.4)

where y = x1/3 and η = 1.5(K′ – 1). 
As shown earlier (Dorogokupets, 2010; Dorogokupets and

Dewaele, 2007), thermodynamic functions at >300 K can be
calculated using the Debye or Einstein model. For a more
precise calculation of entropy, let us apply the Einstein model
with two characteristic temperatures and write the thermal part
of Helmholtz free energy as

Fth (V, T) = m1 R T ln 



1 − exp 

−θ1

T




  

+ m2 R T ln 



1 − exp 

−θ2

T




 − 

3
2

 n R e0 x
g T 2,  (5)

where θ1 and θ2 are characteristic temperatures depending on

volume and temperature, which permits the intrinsic anhar-
monicity to be taken into account; x = V/V0; n is the number
of atoms in the chemical formula of compound; m1 + m2 = 3n;
e0 determines the contribution of electrons to the free energy;
g is an electronic analog of the Grüneisen parameter; and R
is the gas constant.

The dependence of characteristic temperatures on volume
and temperature can be expressed (Dorogokupets and Oganov,
2004) as:

θ = θ (V, T) = θ (V) exp 



1
2

 aT



 = θ (V) exp 




1
2

 a0 x
m T




 , (6)

where a = 




∂ ln θ (V, T)
∂T



V

 and m = 
d ln a

d ln V
.

For simplicity, we use one characteristic temperature in the
next equations. Differentiating Eq. (5) with respect to tem-
perature at constant volume, we obtain entropy and the thermal
part of free energy:

S = − 



∂F
∂T



V

 = 3nR 



−ln 




1 − exp 

−θ
T




 + 

θ / T

exp (θ / T) − 1
 × 




1 − 

1
2

 a0 x
m T







 + 3n R e0 x

g T, (7)

Eth = Fth + TS = 3n R 




θ
exp (θ / T) − 1

 × 



1 − 

1
2

 a0 x
m T







  

+ 
3
2

 n R e0 x
g T 2. (8)
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Differentiating Eg. (5) with respect to volume at constant
temperature, we obtain thermal pressure:

Pth = −




∂Fth

∂V



T

 = 3n R 
γ − 

m
2

 a0 x
m T

V
 




θ
exp (θ / T) − 1




  

+ 
3
2

 n R e0 x
g T 2 

g
V

 . (9)

Thus, using only the first derivatives, we obtained pressure
and entropy. Differentiating Eq. (8) with respect to tempera-
ture at constant volume and Eq. (9) with respect to volume at
constant temperature, we obtain isochoric heat capacity and
isothermal bulk modulus:

CV = 



∂E
∂T



V

 = 3n
 
R 










θ
T





2
exp (θ / T)

[exp (θ / T) − 1]2 × 



1 − 

1
2

 a0 x
m T





2

 

− 
(1 / 4) (a0 x

m)2 T θ
exp (θ / T) − 1







 + 3n

 
R e0 x

g T, (10)

KTth
 = −V 





∂Pth

∂V



T

 = −3n
 
R 





θ
exp (θ / T) − 1

 × 
q γ − γ

V
  

− 
γ θ

V (exp (θ / T) − 1) 



γ − 

m
2

 a0 x
m T




  

+ 
γ θ

2 exp (θ / T)

V T (exp (θ / T) − 1)2 



γ − 

m
2

 a0 x
m T




  

+ 
m
2

 a0 x
m T 

θ
V (exp (θ / T) − 1) 




γ − 

m
2

 a0 x
m T




  

− 
m
2

 a0 x
m 

θ2 exp (θ / T)

V (exp (θ / T) − 1)2
 



γ − 

m
2

 a0 x
m T




 

− 
m
2

 a0 x
m T 

θ (m − 1)
V (exp (θ / T) − 1) − 

1
2

 e0 x
g T 2 (1 − g) g

V




 . (11)

Differentiating Eq. (11) with respect to temperature at
constant volume, we obtain

(∂P / ∂T)V = 3nR 








1
2

 a0 x
m θ (γ − m − 

1
2

 a0 x
m m T

V (exp (θ / T) − 1)   

+ 
θ 

2(γ − 
1
2

 a0 x
m m T) (1 − 

1
2

 a0 x
m T) exp (θ / T)

T 2 V (exp (θ / T) − 1)2   

+ e0 x
g T 

g
V






 .    (12)

Now it is easy to calculate the coefficient of thermal
expansion, α = (∂P/∂T)V/KT; heat capacity at constant pres-

sure, CP = CV + α2TVKT, and adiabatic bulk modulus KS =
KT + VT(αKT)2/CV, which can also be obtained by direct

experimental methods. Enthalpy and Gibbs free energy are
determined from the formulas H = E + PV and G = F + PV.

The pressure on the shock adiabat is calculated by the
equation from (Zharkov and Kalinin, 1968):

PH = 
P (V) − 

γ
V

 [E (V) − E (V0)]

1 − γ (1 − x) / (2x) . (13)

As seen from Eqs. (9), (11), (12), and (13), two new

parameters have appeared: γ = − 




∂ ln θ
∂ ln V



T

 and q = 




∂ ln γ
∂ ln V



T

,

whose dependence on volume has not been determined yet.
In the previous works (Dorogokupets, 2002, 2007, 2010;
Dorogokupets and Dewaele, 2007; Dorogokupets and Or-
ganov, 2003, 2006, 2007) we used the dependence γ = γ∞ +
(γ0 − γ∞) x

β (Al’tshuler et al., 1987), where γ0 is the Grüneisen
parameter under standard conditions, γ∞ is the Grüneisen
parameter on infinite compression (x = 0), and β is the fitting
parameter. However, this equation is rather flexible. There are
direct equations relating the Grüneisen parameter to volume
on isotherms at 0 or 300 K. The relation on the 0 K isotherm
is expressed (Burakovsky and Preston, 2004; Zharkov and
Kalinin; 1968) as

γ = 

K′
2

 − 
1
6

 − 
t
3




1 − 

P
2K





1 − 
2tP
3K

 + δ, (14)

where t can be equal to 0, 1, and 2, which corresponds to the
Slater, Dugdale–MacDonald, and Zubarev–Vashchenko mod-
els, respectively, and δ is the additive normalizing constant.

Zharkov and Kalinin (1968) obtained three variants of the
EOS for metals and other materials with three fixed values of
t, but we will use the latter as an fitting parameter. If t does
not depend on volume and δ = 0, then, the characteristic
temperature, depending on volume, can be calculated from the
simple equation:

θ = θ0 x
1 / 6K0

−1 /2 (K − 2tP / 3)1 / 2 ,  (15)

or by the numerical integration of Eq. (14), if δ ≠ 0. Thus, we
determined all thermodynamic functions necessary to con-
struct the EOSs. The procedure of optimization of fitting
parameters is described in our previous work (Dorogokupets
and Oganov, 2007).

Let us consider in more detail the correlation between the
obtained relations and the shock compression data. The
classical methods for calculating isotherms at 0 or 300 K and
normal adiabats (isentropes) from shock-wave data are well
known (Al’tshuler et al., 1987; Fortov and Lomonosov, 2010;
Ruoff, 1967; Zharkov and Kalinin, 1968). The velocity of
shock wave, US (km/s), and mass velocity of material behind
the shock front, UP (km/s), are in linear or quadratic relations:

US = a0 + a1 UP or US = a0 + a1 UP + a2 UP
 2.  (16)
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The pressure (GPa) and volume on the shock adiabat are
determined from the equations (c0 in g/cm3):

PH = ρ0 UP US, x = ρ0 / ρ = V / V0 = (US − UP) / US. (17)

Coefficients a0 and a1 in Eq. (13) are related to adiabatic
bulk modulus KSo and its pressure derivative (Al’tshuler et al.,
1987; Ruoff, 1967; Zharkov and Kalinin, 1968) as follows:

KS = ρ0 a0
2, (∂KS 

/ ∂P)S = 4a1 − 1. (18)

Here the problem arises: How can we find parameters K0
and K′ determining the room-temperature isotherm from the
known shock adiabat parameters under standard conditions,
Eq. (16)? Parameters K0 and KSo are related to each other by
the equation KS = KT + VT(αKT)2/CV, which can also be

expressed as 
1

KS
 = 

1
KT

 − 
α2 VT

CP
. The coefficient of thermal

expansion, volume, and heat capacity at constant pressure
under standard conditions are known for most materials;
therefore, it is not difficult to calculate K0 from KS, which can
be obtained from ultrasonic measurements.

To obtain K′ consistent with (∂ KS/∂ P)S from the shock
compression data, let us use the relation (Ruoff, 1967)

(∂KS / ∂P)S = (∂KS / ∂P)T + γ (∂ ln KS / ∂ ln T)P. (19)

All the above relations can be calculated from our EOS.
Earlier we optimized the above system of equations so that
the shock pressure and calculated value of (∂ KS/∂ P)S would
be consistent with shock adiabat in Eq. (13) and Eqs. (16)–(18)
(Dorogokupets and Sokolova, 2011; Sokolova and Dorogoku-
pets, 2011). But this approximation is too strict because the
shock adiabat can also be expressed via quadratic relation in
Eq. (16). Therefore, in this work we refused this approxima-
tion and used a smooth adiabat calculated from Eqs. (16) and
(17) and a shock pressure estimated from Eq. (13).

The equations of state based on results 
of thermochemical, ultrasonic, and X-ray diffraction
measurements and shock compression data

Parameter a0 in Eq. (16) was calculated based on the most
reliable and generally accepted values of KS0

 obtained in

ultrasonic measurements (Table 1), which made it possible to
correlate them with the shock compression data for standard
conditions. Using the shock compression database (Levashov
et al., 2004) and data of later measurements (Yokoo et al.,
2008, 2009; Zhang et al., 2008), we again calculated a1 in
Eq. (16). Both parameters were invoked to calculate the
smooth adiabats used for optimization. The accepted values
of a0 and a1, adiabatic bulk modulus, and its pressure
derivative as well as the reference values of volume, density,
and atomic number are listed in Table 1.

The optimization parameters of the EOSs in thermochemi-
cal, ultrasonic, and X-ray diffraction measurements and the
shock compression data are listed in Tables 2 and 3. Optimi-
zation was made by two models. In the first model, the
room-temperature isotherm was specified by Eq. (2) (Holzap-
fel, 2001, 2010) (Table 2), and in the second, by Eq. (4.2)
(Vinet et al., 1987) (Table 3). The models show no significant
difference, but the second yields higher values of K′. Both
models smooth the measured isobaric heat capacity at ≥100 K;
therefore, the calculated standard entropy is close to the
reference values. It is remarkable that one of the characteristic
temperatures is close to the Debye temperature, whereas the
other is usually twice as low. The tables present the values of
parameters (∂ KS/∂ P)T and (∂ KS/∂ P)S calculated from our

EOSs. They are not always close to the values obtained from
the shock compression data (Table 1). This evidences that the
velocities are usually related to each other by quadratic rather
than linear equations. The degree of consistence of the
calculated thermodynamic functions with the experimental
data obtained for the studied materials by the first model using
Eq. (2) (Holzapfel, 2001, 2010) was considered by Dorogoku-
pets et al. (2012). Figure 1 shows the calculated thermody-
namic functions of periclase in comparison with the results of
direct experimental measurements. The second model using
Eq. (4.2) (Vinet et al., 1987) yields nearly the same degree of
consistence.

As seen from the example with periclase (Fig. 1), we
described rather accurately all major thermodynamic func-
tions, using a simple EOS with the minimum set of fitting
parameters. Now it is necessary to reduce the EOSs for metals
and compounds, otherwise any of them can be considered
absolute. We will do this first of all on the room-temperature

Table 1. Input parameters of shock adiabats of studied materials  

Parameters C MgO Al Cu Nb Mo Ag Ta W Pt Au

V0, cm3/mole 3.414 11.248 9.98 7.112 10.828 9.369 10.25 10.861 9.552 9.091 10.215

ρ0, g/cm3 3.518 3.583 2.704 8.935 8.58 10.240 10.524 16.66 19.25 21.46 19.282

a0, km/s 11.21 6.733 5.295 3.923 4.48 5.05 3.14 3.40 4.01 3.62 2.995

a1 1.20 1.30 1.361 1.506 1.18 1.27 1.645 1.25 1.262 1.543 1.653

a2, km/s – – – – – – – – – – –0.013

KS0, GPa 442.0 162.5 75.9 137.4 172.1 261.7 103.9 193.0 309.7 281.2 173.0

(∂KS / ∂P)S 3.80 4.20 4.44 5.02 3.74 4.08 5.58 4.0 4.05 5.17 5.61

Z 6 10.34 13 29 41 42 47 73 74 78 79
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isotherm by calibrating the ruby pressure scale against the
room-temperature isotherms from Tables 2 and 3.

Calibration of the ruby pressure scale against 
the equations of state for other materials

In recent decade, the cell parameters of the considered
materials and the shift of the R1 luminescence line of ruby
have been measured in diamond anvil cells in the helium
pressure medium. As shown by Takemura (2001), using
helium as a pressure medium ensures a hydrostatic pressure

of at least 50 GPa, and at higher pressures, helium ensures
quasi-hydrostatic conditions (Dewaele et al., 2004a,b, 2008;
Klotz et al., 2009; Occelli et al., 2003). This problem was
reviewed in detail by Syassen (2008).

The ruby pressure scale was repeatedly calibrated under
nonhydrostatic conditions (Mao et al., 1978), in the argon
(Mao et al., 1986) and helium pressure media (Aleksandrov
et al., 1987; Chijioke et al., 2005b; Dewaele et al., 2004b,
2008; Dorogokupets and Oganov, 2003, 2006, 2007; Jacobsen
et al., 2008; Holzapfel, 2003; Silvera et al., 2007; Syassen,
2008). Our new calibration of the ruby pressure scale is based
on the EOSs for materials that were constructed using the

Table 3. Parameters of the equations of state, optimizing results of thermochemical, ultrasonic, and X-ray measurements and shock compression data. 

Parameter C MgO Al Cu Nb Mo Ag Ta W Pt Au

K0, GPa 441.5 160.3 72.8 133.5 170.5 260.0 100.0 191.0 308.0 275.3 167.0

K′ 4.00 4.38 4.70 5.44 3.77 4.32 6.02 4.08 4.25 5.28 5.81

(∂KS / ∂P)T 3.99 4.35 4.55 5.41 3.75 4.29 5.99 4.06 4.23 5.23 5.71

(∂KS / ∂P)S 3.99 4.31 4.40 5.31 3.72 4.26 5.86 4.03 4.21 5.16 5.58

θ10, K 1549 747 380 297 305 419 201 247 313 169 179

m1 2.468 3 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5

θ20, K 669 401 202 168 132 190 116 104 169 150 83.5

m2 0.532 3 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5

t 1.367 1.064 –0.451 2.172 –0.171 –0.342 2.722 0.330 –0.259 –0.102 0.164

δ –0.470 –0.165 –0.182 0.136 –0.183 –0.512 0.442 –0.073 –0.557 0.278 0.254

a0 (10–6 K–1) – 16.5 – – – – – – – – –

m – 4.96 – – – – – – – – –

e0 (10–6 K–1) 0 – 64.1 27.7 116.5 150.4 19.2 82.1 104.3 78.5 0

g – – 0.61 2.27 0.89 1.94 0.56 0.100 2.29 0.26 –

Note. Isotherm at 300 K is specified by Eq. (4.2) (Vinet et al., 1987).

 

Table 2. Parameters of the equations of state, optimizing results of thermochemical, ultrasonic, and X-ray measurements and shock compression data. 

Parameter C MgO Al Cu Nb Mo Ag Ta W Pt Au

K0, GPa 441.5 160.3 72.8 133.5 170.5 260.0 100.0 191.0 308.0 275.3 167.0

K′ 3.98 4.23 4.56 5.27 3.63 4.17 6.16 3.91 4.10 5.21 5.79

(∂KS / ∂P)T 3.977 4.20 4.40 5.24 3.61 4.15 6.12 3.89 4.08 5.15 5.67

(∂KS / ∂P)S 3.973 4.16 4.26 5.14 3.58 4.12 5.97 3.86 4.06 5.07 5.54

θ10, K 1560 749 381 298 296 369 197 235 310 163 176

m1 2.437 3 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5

θ20, K 684 401 202 168 136 213 115 109 172 153 84.5

m2 0.563 3 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5

t 1.140 0.555 –0.861 1.417 –0.829 –0.655 2.253 –0.279 –0.564 –0.890 –0.512

δ –0.537 –0.226 –0.247 0 –0.354 –0.686 0.175 –0.205 –0.642 0 0

a0 (10–6 K–1) – 14.6 – – – – – – – – –

m – 5.3 – – – – – – – – –

e0 (10–6 K–1) 0 – 64.1 27.7 114.6 143.1 17.6 80.7 100.3 75.5 0

g – – 0.66 0.66 0.98 2.65 0.62 0.2 2.70 0.32 –

Note. Isotherm at 300 K is specified by Eq. (2) (Holzapfel, 2001, 2010).
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same formalism with thermochemical, ultrasonic, and X-ray
diffraction measurements at zero pressure as well as shock
compression data at high pressures. It is expressed as

P (GPa) = 1870 
∆ λ
λ0

 



1 + 6.0 

∆λ
λ0




 , (20)

where λ0 = 694.24 nm.

This scale is based on the EOSs for 11 materials and
averages the scales obtained by the equations of Holzapfel
(2001, 2010) and Vinet et al. (1987). It was described in detail
earlier (Dorogokupets et al., 2012). The comparison between
the modern ruby scales and the scale proposed by Mao et al.
(1986) shows that at 150 GPa, the latter scale underestimates
pressure by 10–15 GPa (Fig. 2). 

Let us correct the room-temperature isotherms with the
ruby scale (Eq. 20) and again consider the EOSs for the
studied materials. This is necessary because the shock adiabat
does not correspond to equilibrium thermodynamic functions
(Zharkov and Kalinin, 1968 (section 5.1); Holzapfel, 2010
(section 11)). Among our isotherms, there are probably ones

close to the equilibrium isotherms as well as nonequilibrium
ones. Therefore, the ruby pressure scale averages the room-
temperature isotherms of studied materials, based on the
results of thermochemical, ultrasonic, and X-ray diffraction
measurements at zero pressure and shock compression meas-
urements at high pressures.

The optimized equations of state 
under quasi-hydrostatic conditions

The parameters of the optimized EOSs are presented in
Table 4. They were obtained as follows. First, the room-tem-
perature isotherms were corrected with the ruby scale by
Eq. (20). Then, optimization of the results of thermochemical,
ultrasonic, and X-ray diffraction measurements and shock
compression data was repeated for the fixed room-temperature
isotherms (K0 and K′ for (2) (Holzapfel, 2001)). This proce-
dure was performed for all studied materials, but the EOSs
for Au, Pt, and MgO were studied in more detail because they

Fig. 1. Thermodynamic functions of MgO (solid lines). (a) Calculated heat capacity (isobaric and isochoric) in comparison with selected reference and experimental
data. (b) Calculated bulk moduli (isothermal (KT) and adiabatic (KS)) in comparison with that from ultrasonic measurements. (c)  Calculated coefficient of volumetric
thermal expansion in comparison with experimental data. (d) Calculated shock compression adiabat in comparison with experimental data. Thin line is a
room-temperature isotherm constructed from the parameters in Table 2.
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are the most demanded pressure scales for experiments in
high-pressure multianvil apparatuses.

The difference between the ruby pressure scale and the
corrected room-temperature isotherms is shown in Fig. 3. A
comparison shows that the pressures of almost all studied
materials are characterized by a ~2% deviation in the region
of quasi-hydrostatic compression. The only exclusion is gold.
In the region of hydrostatic compression (<50 GPa), the
pressure deviation is most often >2%. The 1.5 GPa deviations
for Al, Mo, and Ta in the pressure region of ~30 GPa are
unexpected and call for additional experimental analysis. 

Verification of the equations of state 
by the independent determination 

The EOSs for MgO, Au, and Pt have been the most widely
discussed as possible pressure scales in the recent decade. We
have already performed their optimization (Dorogokupets and
Dewaele, 2007; Dorogokupets and Oganov, 2006, 2007). The
proposed approach to the construction of EOSs and the
published new data of simultaneous measurements of the
volume of these materials (Dewaele et al., 2008; Hirose et al.,
2008; Komabayashi et al., 2008; Kono et al., 2010; Matsui et

Fig. 2. Difference between the recent calibrations of the ruby pressure scales (P) and the classic ruby pressure scale (Mao et al., 1986) (PMao). Pressure was calculated
from the parameters in the original work by Mao and by Eq. (20).

Table 4. Optimized parameters of the equations of state  

Parameter C MgO Al Cu Nb Mo Ag Ta W Pt Au

K0, GPa 441.5 160.3 72.8 133.5 170.5 260.0 100.0 191.0 308.0 275.0 167.0 

K′ 3.90 4.10 4.51 5.32 3.65 4.20 6.15 3.83 4.12 5.35 5.90 

(∂KS / ∂P)T 3.90 4.07 4.35 5.28 3.62 4.17 6.10 3.81 4.10 5.29 5.81 

(∂KS / ∂P)S 3.89 4.03 4.21 5.18 3.60 4.15 5.96 3.79 4.08 5.22 5.68 

θ10, K 1561 748 381 296 302 353 199 254 309 177 179.5 

m1 2.436 3 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 

θ20, K 684 401 202 169 134 222 115 101 172 143 83.0

m2 0.564 3 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 

t 1.085 0.301 –0.958 1.401 –0.763 –0.791 2.210 –0.148 –0.591 –0.343 0.087 

δ –0.506 –0.235 –0.242 –0.07 –0.326 –0.802 0.178 –0.101 –0.686 0.167 0.134 

a0 (10–6 K–1) – 17.4 – – – – – – – – –

m – 4.95 – – – – – – – – –

e0 (10–6 K–1) – – 64.1 27.7 115.9 143.2 22.1 82.3 100.1 80.6 –

g – – 0.33 2.18 0.90 2.66 0.19 0.12 2.77 0.06 –

Note. Parameters K0 and K′ are given for Eq. (2). 
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al., 2009; Takemura and Dewaele, 2008; Sakai et al., 2011a;
Sata et al., 2010; Ueda et al., 2008; Yokoo et al., 2008, 2009)
permit their correction for better consistency with each other.

This procedure was performed as follows. We compiled a
database of simultaneous measurements of the MgO, Au, and
Pt volumes on the room-temperature isotherm and at elevated
temperatures, introduced them into our EOSs, and inserted the

relations between Excel tables with different EOSs. Unfortu-
nately, this database is not full because the results of many
measurements were published only graphically (Dubrovinsky
et al., 2010; Fei et al., 2007). Then we calculated the difference
between the pressures that yield different EOSs: first, for those
on the room-temperature isotherms, and then, for those at high
temperatures. Variation in K′ values is accompanied by

Fig. 3. Difference between the pressure calculated with the ruby scale (Pruby, Eq. (20)) and the pressure on the room-temperature isotherm of metals, diamond, and
periclase (PM) calculated from the parameters in Table 4. The ratios between ∆ λ / λ0 and x = V / V0 were obtained in experiments in the argon pressure medium (Tang
et al., 2010) and in the helium pressure medium (other works).

Fig. 4. Difference between the pressures measured in diamond anvil cells in the helium pressure medium (He) (Jacobsen et al., 2008; Speziale et al., 2001) and then
recalculated using a ruby pressure scale (Eq. (20)) and the room-temperature isotherm of MgO (the parameters in Table 4). Lines show the difference between the
room-temperature isotherms of MgO obtained with the EOSs from the above works and with our EOS (Table 4). DD-07 and DO-07 are the EOSs for MgO proposed
by Dorogokupets and Dewaele (2007) and Dorogokupets and Oganov (2007), respectively.
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changes in the relations between the EOSs. At high pressures
(>300 GPa), the obtained EOSs for MgO, Au, and Pt were
tested by simultaneous measurements of the volumes of these
materials and B2–NaCl. As an initial approximation, we took
our previous data (Dorogokupets and Dewaele, 2007; Doro-
gokupets and Oganov, 2006, 2007).

The room-temperature isotherm of MgO agrees with the
results of measurements in the helium pressure medium
(Jacobsen et al., 2008) (Fig. 4). Up to 100 GPa, it is consistent

only with the EOSs proposed by Jin et al. (2010) and Matsui
et al. (2000). Other modern EOSs yield much higher pressures
and agree with the results of measurements by Speziale et al.
(2001).

Recently, Kono et al. (2010) have obtained an EOS for
MgO by simultaneous measurement of sound velocities and
X-ray diffraction, without using other scales. Similar proce-
dures were earlier performed by Li et al. (2006) and Zha et
al. (2000). Therefore, it was important to obtain an EOS for
MgO which would be consistent with the results of not only
PVT but also direct ultrasonic measurements of the adiabatic
bulk modulus.

The difference between the measured adiabatic bulk moduli
of MgO and those calculated by the proposed EOS (Table 4)
is shown in Fig. 5, and the difference between the pressures
from (Kono et al., 2010, Table 1) and our calculated pressures,
in Fig. 6. It is seen that our EOS for MgO approximates (with
a reasonable accuracy) the results of ultrasonic measurements
of the adiabatic bulk modulus. The systematic discordance
between the pressures in the measurements by Kono et al.
(2010) (Fig. 6) might point out the nonhydrostatic conditions.
This is confirmed (Kono et al., 2010; Fig. 8) by the fact that
the calculated thermal expansion of MgO disagrees with the
direct measurements of the MgO volume (Dubrovinsky and
Saxena, 1997; Fiquet et al., 1999) at high temperatures and
1 bar. In general, the calculated adiabatic bulk modulus agrees
with the experimental one within 2%, though the discordance
between these moduli in the experiments carried out by Zha
et al. (2000) reaches 6%.

In Fig. 7, comparison of the EOSs for MgO and Au at
≤30 GPa and ≤2173 K is made. Most of the PVT points
calculated from the EOSs for MgO and Au agree with each
other within ±0.5 GPa, and almost all of them are in the

Fig. 5. Difference (in %) between the measured (KS obs) (Kono et al., 2010) and calculated (KS cal) (by our EOS (Table 4)) adiabatic bulk moduli of MgO.
Measurements in other mentioned works were performed on the room-temperature isotherm.

Fig. 6. Difference between the pressures determined from the EOS proposed by
Kono et al. (2010) (Pobs) and our EOS for MgO (Pcal).
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variation interval of ±1 GPa. However, the EOSs for MgO
and Au differ by >1 GPa at 1873 K (Matsui and Nishiyama,
2002).

Comparison of the EOSs for MgO, Au, and Pt on the
room-temperature isotherm at ≤200 GPa is shown in Fig. 8.
Our isotherm of Pt agrees with the isotherms of other
researchers (Chijioke et al., 2005a; Jamieson et al., 1982; Jin

et al., 2011; Holmes et al., 1989) and significantly exceeds
our earlier estimates (Dorogokupets and Dewaele, 2007;
Dorogokupets and Oganov, 2007) based on nonhydrostatic
measurements (Akahama et al., 2002). At high temperatures,
the difference in pressures estimated from the EOSs for MgO,
Au, and Pt does not exceed 3 GPa, which is close to the error
of determination (Fig. 9).

Fig. 7. Difference between the pressures obtained from our EOSs for MgO and Au, calculated from the results of simultaneous measurements of their cell parameters
at the given temperature.

Fig. 8. Difference in pressure between our EOSs for MgO and Au and the EOS for Pt, calculated from the results of simultaneous measurements of the MgO–Pt and
Au–Pt cell parameters on the room-temperature isotherm borrowed from literature. Also, the difference between the EOSs for Pt from (Chijioke et al., 2005a;
Dorogokupets and Dewaele, 2007; Dorogokupets and Oganov, 2007; Holmes et al., 1989; Jamieson et al., 1982; Jin et al., 2011) and our EOS for Pt is shown.

T.S. Sokolova et al. / Russian Geology and Geophysics 54 (2013) 181–199 191



Author's personal copy

The B2-NaCl isotherm at 300 K

Results of simultaneous measurements of the volumes of
Au, Pt, MgO, and B2-NaCl were published elsewhere (Hirose
et al., 2008; Komabayashi et al., 2008; Ono et al., 2006; Sakai
et al., 2011a; Sata et al., 2002, 2010; Ueda et al., 2008). They
can be used to calculate an isotherm for B2-NaCl at 300 K
and verify the EOSs for Au, Pt, and MgO obtained at
>300 GPa. Figure 10 shows the compression curve for

B2-NaCl in comparison with direct experimental data recal-
culated by our EOSs. The data of Heinz and Jeanloz (1984b)
are based on the ruby pressure scale (Mao et al., 1978), but
laser heating was used to reduce deviatoric stress (which is
consistent with the data of other researchers) in only one
measurement. The EOS for B2-NaCl (Ueda et al., 2008)
agrees with our previous estimates (Dorogokupets and De-
waele, 2007), but they significantly underestimate pressure at
>100 GPa.

Fig. 9. Difference in pressure between our EOSs for MgO and Au and the EOS for Pt, calculated from the results of simultaneous measurements of the MgO–Pt and
Au–Pt cell parameters at high temperatures. Also, the difference between the EOSs for Pt from (Dorogokupets and Dewaele, 2007; Dorogokupets and Oganov, 2007;
Jin et al., 2011; Matsui et al., 2009; Sun et al., 2008) and our EOS for Pt is shown.

Fig. 10. NaCl compressibility curve on the room-temperature isotherm. Original experimental data were recalculated using our MgO, Pt, Au (Table 4), and hcp-Fe
(Dorogokupets et al., 2012) pressure scales. Line is the B2-NaCl isotherm calculated by Eq. (2) with parameters V0 = 40.351 Å3, K0 = 30.2 GPa, and K′ = 5.15. The
error bars for volumes determined by Sakai et al. (2011a,b) are given. Mao-78 is the scale proposed by Mao et al. (1978).
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Figure 11 is the key to verify the room-temperature
isotherms for Au, Pt, and MgO, whose parameters are listed
in Table 4. The difference in pressure according to the
platinum scale (Sakai et al., 2011b) reaches ±5 GPa, but most
of the pressures differ within ±2 GPa. The gold scale yields
a somewhat smaller difference, but it cannot be verified by
the ruby scale at >150 GPa because of lack of experimental
data. As seen from the figure, the results of almost all
measurements made after stress relieving (by the gas pressure
medium or laser heating) agree within 3%.

Independent verification of the EOSs for Au, Pt, and
B2-NaCl can be made by a simultaneous measurement of
sound velocities in B2-NaCl, the volumes of Au, Pt, and
B2-NaCl, and the shift of the R1 luminescence line of ruby.
Lakshtanov et al. (2005) reported such measurements at
35–73 GPa, but their data have not been published yet.

Independent comparison with other pressure scales

Recently, Dorfman et al. (2012) have published results of
comparison of the Au, Pt, Mo, MgO, and B2–NaCl pressure
scales up to 265 GPa for the room-temperature isotherm. They
made a simultaneous measurement of the volumes of Au and
NaCl, MgO and NaCl, Mo and MgO, Pt and MgO, Pt and
NaCl, and Pt:NaCl and MgO in diamond anvil cells in the Ne
and He pressure media. Therefore, it is of great interest to
compare our EOSs with the independent measurements by
Dorfman et al. (2012). Figure 12 shows a difference between
the pressure calculated from the equation of state proposed by
Dorfman et al. (2012) and the pressure calculated from the
parameters presented in Table 4. These EOSs are in good
agreement, but Dorfman et al. (2012) considerably expanded
the pressure range as compared with the previous measure-
ments. Using these data, we can correct our EOSs for MgO,

Au, and Mo. The parameters of the corrected EOSs are as
follows: MgO—K0 = 160.3 GPa, K′ = 4.25, θ10 = 748 K,
θ20 = 401 K, t = 0.583, δ = –0.25, a0 = 17.4 × 10–6 K–1, m =
5.5; Au—K0 = 167.0 GPa, K′ = 5.75, θ10 = 176 K, θ20 = 84 K,
t = –0.463, δ = 0.045; and Mo—K0 = 260.5 GPa, K′ = 4.05,
θ10 = 356 K, θ20 = 218 K, t = –0.735, δ = –0.755, e0 =
123.9 × 10–6 K–1, g = 3.5. We recommend the following pa-
rameters for the room-temperature isotherm of B2–NaCl: V0 =
41.00 Å3, K0 = 27.6 GPa, K′ = 5.31, c0 = 2.768 (for Eq. (2)).

Tables 5, 7, and 9 present thermodynamic functions of
MgO, Mo, and Au, which were calculated from the corrected
parameters of the EOS based on data by Dorfman et al. (2012).
They were tabulated against temperature at zero pressure, at
100 GPa, and on compression, x = V/V0 of up to 0.6. The
tables present the calculated coefficient of volumetric thermal

Fig. 11. Difference between the smoothed B2-NaCl isotherm at room-temperature (Fig. 10) and MgO, Pt, Au (Table 4), and hcp-Fe (Dorogokupets et al., 2012)
pressure scales, according to the results of measurements from the above-mentioned references. Mao-78 is the scale proposed by Mao et al. (1978). 3%—line of 3%
deviation of calculated data.

Fig. 12. Difference between the pressures calculated by the pressure scales from
Dorfman et al. (2012) and the pressured calculated by the EOSs for MgO, Pt,
Au, and B2–NaCl from Table 4.
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expansion (α), entropy (S), heat capacity at constant pressure
(CP) and at constant volume (CV), isothermal (KT) and
adiabatic (KS) bulk moduli, thermodynamic Grüneisen pa-
rameter (γth = αVKT / CV = αVKS / CP), parameter K′ from
Eq. (2), and Gibbs free energy increment relative to the
standard state, which coincides with the Gibbs energy incre-
ment from the known thermodynamic database (Holland and
Powell, 1998, 2011). Tables 6, 8, and 10 present pressure for
MgO, Mo, and Au depending on temperature and compression
as well as Grüneisen parameter γ = − (∂ ln θ / ∂ ln V)T depend-
ing on volume.

Conclusions

We have obtained the EOSs for 11 materials, which agree
with each other within 2–3% uncertainty. These equations can
be considered optimized pressure scales for quasi-hydrostatic
conditions on the room-temperature isotherm. They agree both
with the ruby scale (Eq. (20)) and with each other, as shown
by the example of the EOSs for Au, Pt, and MgO. The EOSs
for Au, Pt, and MgO agree with each other not only on the
room-temperature isotherm but also at high temperatures, as
shown by their intercomparison. Using the room-temperature

Table 5. Thermodynamic functions of MgO at different pressures and temperatures, calculated using the EOS of MgO corrected by the data from Dorfman et
al. (2012) (see the text).

P, GPa T, K x = V / V0 αE-6, K–1 S, J mole–1 K–1 CP, J mole–1 K–1 CV, J mole–1 K–1 KT, GPa KS, GPa γth K′ ∆G, kJ mole–1

0 298.15 1 30.38 26.90 36.95 36.45 160.30 162.48 1.502 4.25 0.000

0 500 1.00705 37.93 48.43 45.45 44.19 154.80 159.22 1.505 4.29 –7.716

0 1000 1.02828 44.59 82.08 51.01 47.78 140.31 149.78 1.514 4.40 –41.153

0 2000 1.08025 54.28 118.91 55.51 47.60 110.44 128.78 1.530 4.73 –143.504

0 3000 1.14778 68.19 142.22 59.91 45.60 79.41 104.32 1.533 5.28 –274.706

100 298.15 0.72633 7.03 13.83 26.33 26.26 518.43 519.66 1.133 3.26 933.854

100 500 0.72764 10.38 30.90 38.85 38.62 514.96 517.99 1.133 3.26 929.300

100 1000 0.73196 12.68 61.22 47.24 46.57 505.31 512.57 1.132 3.27 905.636

100 2000 0.74173 13.63 95.18 50.33 48.83 485.78 500.76 1.131 3.30 825.660

100 3000 0.75208 14.05 115.83 51.47 49.13 466.72 488.94 1.129 3.33 719.496

100 4000 0.76285 14.37 130.75 52.28 49.11 448.34 477.34 1.126 3.36 595.871

235.839 298.15 0.6 3.26 9.06 20.43 20.41 938.20 939.13 1.012 2.97 1934.600

236.694 500 0.6 5.50 23.36 34.48 34.38 937.79 940.40 1.012 2.97 1937.098

239.778 1000 0.6 7.19 51.48 45.40 45.07 938.19 945.01 1.010 2.97 1938.694

246.856 2000 0.6 7.70 84.17 49.29 48.54 941.05 955.63 1.007 2.97 1916.952

254.144 3000 0.6 7.74 104.01 50.35 49.20 944.63 966.65 1.003 2.97 1871.403

261.464 4000 0.6 7.72 118.20 50.93 49.41 948.51 977.78 1.000 2.97 1809.365

 
Table 6. Volume dependence of Gruneisen parameter and volume- and temperature-depending pressures (GPa) calculated using the parameters of the EOS of
MgO corrected by the data from Dorfman et al. (2012) (see the text)

x = V / V0 γ Temperature, K 

0 298.15 500 1000 1500 2000 2500 3000 3500

1 1.514 –0.690 0.000 1.104 4.167 7.276 10.337 13.332 16.254 19.100

0.95 1.427 8.538 9.166 10.235 13.267 16.378 19.464 22.501 25.483 28.406

0.9 1.350 20.528 21.101 22.137 25.150 28.276 31.396 34.485 37.532 40.535

0.85 1.281 36.169 36.690 37.695 40.699 43.852 47.018 50.165 53.284 56.371

0.8 1.218 56.684 57.156 58.132 61.137 64.329 67.550 70.766 73.966 77.143

0.75 1.161 83.792 84.218 85.166 88.179 91.422 94.712 98.009 101.298 104.574

0.7 1.108 119.951 120.333 121.251 124.281 127.588 130.962 134.353 137.745 141.132

0.65 1.059 168.745 169.085 169.973 173.027 176.414 179.887 183.390 186.902 190.415

0.6 1.013 235.540 235.839 236.694 239.778 243.261 246.856 250.491 254.144 257.804

0.55 0.970 328.578 328.838 329.658 332.777 336.377 340.117 343.912 347.732 351.566

0.5 0.929 460.960 461.182 461.962 465.121 468.861 472.776 476.764 480.788 484.830
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Table 7. Thermodynamic functions of Mo at different pressures and temperatures, calculated using the EOS of Mo corrected by the data from Dorfman et al.
(2012) (see the text)

P, GPa T, K x = V / V0 αE-6, K–1 S, J mole–1 K–1 CP, J mole–1 K–1 CV, J mole–1 K–1 KT, GPa KS, GPa γth K′ ∆G, kJ mole–1

0 298.15 1 14.04 28.55 24.09 23.94 260.50 262.06 1.431 4.05 0.000

0 500 1.00305 15.96 41.55 26.11 25.80 255.99 259.03 1.488 4.06 –7.170

0 1000 1.01205 19.84 60.54 28.90 27.99 242.83 250.69 1.632 4.10 –33.159

0 2000 1.03735 30.58 82.45 35.69 31.93 206.78 231.11 1.924 4.22 –105.531

0 3000 1.08049 55.51 99.27 51.07 37.08 149.43 205.79 2.264 4.44 –196.468

100 298.15 0.78852 4.44 22.31 22.29 22.26 622.36 623.11 0.916 3.37 819.871

100 500 0.78928 5.03 34.48 24.51 24.46 619.89 621.36 0.942 3.37 814.054

100 1000 0.79143 5.78 52.07 26.16 26.01 612.92 616.50 1.011 3.38 791.960

100 2000 0.79655 7.13 70.81 28.11 27.66 595.74 605.46 1.145 3.39 729.555

100 3000 0.80283 8.63 82.59 30.17 29.21 574.09 593.04 1.276 3.41 652.526

100 4000 0.81049 10.41 91.60 32.65 30.85 547.48 579.48 1.403 3.43 565.275

190.789 298.15 0.7 2.78 20.11 21.56 21.55 918.72 919.31 0.777 3.18 1449.759

191.345 500 0.7 3.16 31.96 24.02 23.99 918.45 919.60 0.794 3.18 1448.074

192.896 1000 0.7 3.55 49.16 25.55 25.47 917.69 920.43 0.839 3.18 1437.511

196.412 2000 0.7 4.11 67.20 26.83 26.63 915.36 922.34 0.927 3.18 1401.421

200.416 3000 0.7 4.65 78.18 27.95 27.56 911.86 924.71 1.009 3.18 1354.647

204.896 4000 0.7 5.20 86.23 29.11 28.47 907.18 927.69 1.087 3.18 1301.652

Table 8. Volume-depending Gruneisen parameter and volume- and temperature-depending pressure (GPa) calculated using the parameters of the EOS of Mo
corrected by the data from Dorfman et al. (2012) (see the text)

x = V / V0 γ Temperature, K

0 298.15 500 1000 1500 2000 2500 3000 3500

1 1.348 –0.692 0.000 0.784 2.986 5.493 8.294 11.385 14.766 18.436

0.95 1.201 14.199 14.823 15.548 17.585 19.893 22.460 25.282 28.360 31.692

0.9 1.079 33.395 33.964 34.641 36.540 38.680 41.046 43.637 46.450 49.486

0.85 0.975 58.274 58.796 59.433 61.218 63.215 65.411 67.800 70.383 73.159

0.8 0.887 90.741 91.224 91.829 93.519 95.396 97.445 99.661 102.043 104.592

0.75 0.810 133.485 133.935 134.513 136.125 137.903 139.827 141.894 144.104 146.454

0.7 0.743 190.367 190.789 191.345 192.896 194.592 196.412 198.354 200.416 202.596

0.65 0.684 267.064 267.462 268.002 269.505 271.137 272.874 274.712 276.650 278.687

0.6 0.631 372.135 372.512 373.041 374.512 376.095 377.768 379.524 381.362 383.282

Table 9. Thermodynamic functions of Au at different pressures and temperatures, calculated using the EOS of Au corrected by the data from Dorfman et al.
(2012) (see the text)

P, GPa T, K x = V / V0 αE-6, K–1 S, J mole–1 K–1 CP, J mole–1 K–1 CV, J mole–1 K–1 KT, GPa KS, GPa γth K′ ∆G, kJ mole–1

0 298 1 41.77 47.54 25.39 24.51 167.00 173.05 2.908 5.75 0.000

0 500 1.00883 45.33 60.93 26.46 24.79 157.11 167.65 2.960 5.84 –11.053

0 1000 1.03467 56.93 80.08 29.35 24.91 129.51 152.57 3.128 6.11 –46.774

0 1300 1.05425 69.22 88.11 32.27 24.93 109.49 141.74 3.274 6.35 –72.036

100 298 0.75908 9.71 31.65 23.50 23.37 638.35 642.15 2.056 4.26 866.713

100 500 0.76061 10.21 44.13 24.62 24.37 632.90 639.55 2.060 4.26 858.967

100 1000 0.76459 10.61 61.47 25.34 24.80 619.31 632.89 2.069 4.28 832.091

100 2000 0.77295 11.13 79.27 26.07 24.91 591.80 619.31 2.088 4.32 760.744

100 3000 0.78181 11.68 89.97 26.77 24.93 563.81 605.45 2.109 4.35 675.789

350.386 298 0.6 3.79 21.63 21.42 21.37 1618.86 1622.08 1.761 3.71 2565.984

351.704 500 0.6 4.18 33.33 23.65 23.57 1619.06 1625.02 1.761 3.71 2568.433

355.188 1000 0.6 4.36 50.09 24.78 24.59 1620.34 1632.79 1.761 3.71 2568.476

362.305 2000 0.6 4.40 67.24 25.24 24.85 1623.50 1648.66 1.761 3.71 2552.460

369.456 3000 0.6 4.40 77.33 25.48 24.90 1626.79 1664.61 1.761 3.71 2523.663
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isotherms of Au, Pt, and MgO as pressure scales, we obtained
a new B2–NaCl isotherm, which can serve as a pressure scale
at >300 GPa and is consistent with the Pt pressure scale under
these conditions. We also corrected the room-temperature
isotherm of hcp-Fe, using the new ruby pressure scale and the
EOS for W (Dorogokupets et al., 2012). The high-temperature
EOSs for B2-NaCl and hcp-Fe will be considered in a special
paper.

Thus, we have obtained the best EOSs for Au, Pt, MgO,
and B2-NaCl on the room-temperature isotherm, taking into
account the data from Dorfman et al. (2012) and using the
second-order equation (Eq. (2)) from Holzapfel (2001, 2010).
A subsequent increase in the accuracy of pressure scales based
on the EOSs for Au, Pt, MgO, and B2-NaCl is possible but
with the use of third-order equations.

The used calculation procedure will also be applied to study
the EOSs for silicates, carbonates, and metal compounds
obtained recently by our research team for thermodynamic
description of phases in the Earth’s (Dobretsov and Shatskiy,
2012) and other planets’ interior and comparison of results
with experimental data on mantle systems, including ones with
volatiles (Litasov, 2011). The procedure of calculation of PVT
relations and phase thermodynamics using the proposed EOSs
can be found online at http://labpet.crust.irk.ru.
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