Solid Earth Discuss., 6, C554—C562, 2014

www.solid-earth-discuss.net/6/C554/2014/ Solid Earth
© Author(s) 2014. This work is distributed under Discussions
the Creative Commons Attribute 3.0 License.

$$800y UadQ

Interactive comment on “Plate tectonic raster
reconstruction in GPlates” by J. Cannon et al.

J. Cannon et al.
john.cannon@sydney.edu.au

Received and published: 5 June 2014

We thank the reviewers and the editor for taking time to critically evaluate our sub-
mission. The manuscript has been improved on the advice of the reviewers. Our
responses to specific comments are below. The updated manuscript is attached as a
supplement to the Reviewer 1 response for referral - all manuscript modifications are
in bold typeface.

Reviewer comment:

It may be worth revisiting their opening sections (e.g. section 3.0 and 4.0) and try to
clearly set a stage for the reader to appreciate the problems and solutions discussed
in the upcoming sections.

Response:

C554

Yes, this is a good idea. Especially section 3.0 which is a good place to give an
overview of the steps involved in multi-resolution raster reconstruction.

We have added the following text to section 3.0...

" The rendering framework described so far can render an unreconstructed raster either
directly to the computer screen when the user has chosen not to reconstruct a raster
or as the first stage of the raster reconstruction process when the user does choose
to reconstruct a raster. This section describes our approach to visualisation of a re-
constructed present-day (or time-dependent) raster by building a multi-resolution cube
map framework on top of the raster rendering framework described so far. Our raster
reconstruction process involves a multi-resolution cube map, a set of tectonic polygons
and a rotation model. By imprinting the raster data into the overlapping tectonic poly-
gons and then independently rotating the polygons across the globe, using the rotation
model, we are essentially reconstructing present day raster data to its past geological
configuration. First we introduce the concept of a cube map as an efficient way to cap-
ture raster data in a representation that is decoupled from the raster’s geo-referencing
and inbuilt raster projection. We then extend the cube map with multi-resolution tiles to
support level-of-detail and visibility culling necessary for efficient rendering. We show
that any tile, in the cube map, can be generated by rendering the geo-referenced raster
using the method described in Sect. 2. With the generation of a multi-resolution cube
map covered, we finally describe in detail how raster data are imprinted onto tectonic
polygons and rotated with them across the globe. The multi-resolution cube map facili-
tates this by enabling the raster imprinting, of pre-rendered cube map tiles onto tectonic
polygons, to be accelerated by common graphics hardware. "

...note that we didn’t give the major step of section 3.4 (see "we then finally describe in
detail..." above) proportionately extra attention here (even though it is the largest step
in section 3) because section 3.4, in turn, has many sub-sections and section 3.4.0
already gives a reasonable overview coverage of those sub-sections.

C555

We have added the following text to section 4.0 to give an overview of the various
enhancements to raster reconstruction...

" The rendering framework described so far can render a reconstructed raster directly
to the computer screen in the standard 3D globe view. This section describes var-
ious enhancements to raster reconstruction that build on the approach described in
Sect. 3. Visualising reconstructed rasters in the 2D map projection views discusses
how interactivity is maintained in the 2D map views. Instead of rendering the recon-
structed raster directly to the computer screen (as done in the 3D globe view) it is
first rendered into an intermediate cube map (called the reconstructed cube map) and
then rendered directly to the computer screen via a map projection. Improved raster
reconstruction using age grids makes use of a second raster containing pixel values
representing the age of oceanic crust. Replacing the usual per-tectonic-polygon age
test with a per-pixel age test restores the missing sections of reconstructed raster data
near oceanic ridges. Revealing raster detail with surface normal maps modulates the
colour of a raster with the surface lighting generated from a second raster. This en-
ables patterns in the second raster to be visually transposed onto the first raster. And
finally, analysing reconstructed numerical raster data adds support for reconstructing
floating-point raster data (in contrast to colour raster data). This enables numerical
raster data to be analysed in the data-mining front-end of GPlates and also enables
export to numerical raster file formats. "

Reviewer comment:

It is asserted that ‘the vast majority of desktop graphics hardware manufactured in the
last decade is more than capable of displaying raster data at interactive frame rates...
I’'m not sure how to interpret this given that the increase in GPU power over the last
decade has been quite remarkable (perhaps 20-100x speedup).

Response:
We can see that this is a little confusing. Essentially we were suggesting that even ten
C556

year old graphics hardware can render texture data at interactive frame rates provided
the amount of texture data is limited (and that, by inference, more recent hardware is
also capable of this). So we’ve removed reference to GPU capabilities and changed
the text to the following...

"Interactive exploration of raster data, at the fixed resolution of the computer monitor
screen, requires the user to pan and zoom the view in order to expose desired raster
regions and details. Since the imported raster data can have arbitrarily high resolution
we must employ visibility culling and level-of-detail (LOD) techniques. These enable
the raster to be efficiently rendered at the highest detail level permitted by the monitor
resolution and the user’s zoom level."

...note that this also includes a change requested by Reviewer #2.
Reviewer comment:

Section 2.2-3 discusses the problem of data streaming. Solid-state disk technology is
also significantly faster than HDD. Modern 64-bit computing has a maximum of 64 GB
RAM for standard desktops. Also, | wonder if RAMDISK technology can be coupled
with GPlates. RAMDISK storage (treating RAM as storage) may also be able to utilize
>4 GB RAM in a 32-bit operating system environment. Are any of these resources
significant game-changers here? Also, is the cache file generated (797:21) stored on
the HDD or in memory?

Response:

Actually the raster cache file is stored on disk (instead of in memory) and contains
the entire raster (including its down-sampled level-of-detail versions). There is another
cache containing texture resources, but this resides in memory (instead of on disk)
and essentially contains only the currently visible subset of the raster. We've made
a small note of this in section 2.3 and section 2.4. The texture cache will typically
contain much less data than the entire raster and therefore work well on memory-

C557

limited systems. The disadvantage of streaming is the potential for stuttering due to
the difference between the time when a tile is requested and the time when that tile is
available in the texture cache, which brings us to the Solid State Drive (SSD)...

A Solid State Drive (SSD) will improve streaming performance due to its low latency
random access reads compared to hard disk drives (HDD). We've noted this in sec-
tion 2.2. In other words, as the user pans and zooms there will be less stuttering with
an SSD. However by storing our raster tiles on disk in a Hilbert space-filling curve ar-
rangement (as mentioned in Section 2.4) we were able to mitigate much of the cost of
high-latency disk accesses in HDDs (the main storage devices in use at the time when
we first implemented raster reconstruction in GPlates). It turns out that, when using an
SSD, profiling reveals much of the streaming time (for non-colour rasters) is taken up
by CPU (Central Processing Unit) cycles spent converting the floating-point pixels to
colours (using a colour palette). Since the actual SSD read latency does not appear
to contribute much to profile we believe a RAMDISK (with even lower latency than an
SSD) will not make a significant improvement. To reduce this secondary stuttering we
will, in the future, move the colour conversion code from the CPU to the GPU (Graphics
Processing Unit) where it is significantly faster for graphics hardware that supports it.
Another future example of a step in the streaming pipeline is decompressing a raster
tile (that is stored in compressed format on disk). The current raster cache file is not
compressed (even though the original imported raster might be in a compressed for-
mat such as JPEG) and hence can consume many gigabytes of a user’s disk space (for
high-resolution rasters and time-dependent rasters). So instead we plan to store com-
pressed data in the raster cache file and decompress it on-the-fly during streaming. In
addition to saving users’ disk space this benefits streaming performance by reducing
the amount of data to be read from disk. However more processing time is then re-
quired to decompress that data. So we plan to use the Open Computing Language
(OpenCL) to efficiently execute decompression on the CPU (or GPU where possible).
There is also the possibility of predictively loading tiles that are just outside the visible
area (and at one level above and below the current level-of-detail). So we are hoping
C558

that a relatively modern system with an SSD combined with these future improvements
will provide for a smooth streaming experience with very little or no stuttering.

Reviewer comment:

The LOD algorithm utilized here is in principle quite conventional in the 3D gaming
industry. | wonder if there is a promising, significantly different avenue of future de-
velopment for a scientific environment such as GPlates. For example, much of the
visibility culling work of the algorithm presented is complicated, ad hoc, and even still
somewhat lossy or overcomputed (even if much improved on previous efforts). For
instance, in 798:2, the authors indicate that for a 1650x1050 display a raster of dimen-
sions 2700x1350 can be used. This means that two times as many pixels are rendered
than can be displayed. An alternative approach might be to find the global coordinates
corresponding to each pixel in the field of view, evaluate its properties, and display
its color. “Euclideon Geoverse” uses an algorithm of this kind. In this case, no LOD
analysis is necessary.

Response:

As you noted, at times more pixels are rendered than can be displayed. This also can
happen as a result of the non-uniformity of the cube map as noted in the Discussion
section. The quality doesn’t suffer but there is a higher rendering load. There are
conventional methods that provide a closer match between rendered and displayed
pixels. However we found the extra pixels to be an acceptable tradeoff that enabled
us to implement a comparatively simple multi-resolution tile structure (based on the
cube map and the quad tree) and still provide interactive raster reconstruction on a
wide variety of systems. In our experience modern graphics hardware is extremely fast
and can easily deal with some extra rendering load above the optimal load (provided
visibility culling and LOD are still doing a decent job).

The "Euclideon Geoverse" looks very interesting. It seems they can interactively render
a very large point cloud. They must have a clever spatial indexing scheme to enable

C559

them to so quickly find which points in the cloud the screen pixels project onto (from
any viewpoint). With a computer screen of around 1,000,000 pixels (eg, 1,680 x 1,500)
their per-pixel test to find a point in the cloud must somehow minimise the number of
disk accesses per screen draw because they are apparently not pre-loading any point
data. Presumably each disk access brings in some data (say 4K) that can be shared
by adjacent screen pixels due to their indexing, otherwise you'd have one million 10
operations every frame (which wouldn’t be possible at 15 frames/second).

Something similar to Euclideon Geoverse could remove the need for conventional visi-
bility culling and level-of-detail techniques in a scientific environment such as GPlates.
Just as a quick example, in our case it might look something like casting rays into the
globe for each screen pixel to find intersection location on the globe, then finding which
reconstructed tectonic polygon that includes, then performing the reverse of that tec-
tonic polygon’s reconstruction rotation to get present day position, then looking up very
high resolution raster on disk (and repeating for each screen pixel). Though if you're
always sampling the raster at its original (very high) resolution then I'd imagine there’'d
be aliasing issues (ie, raster details flickering as the view moves). And this is what
level-of-detail normally addresses through filtering because a single screen pixel could
cover a potentially very large number of raster pixels which would then need to be fil-
tered/averaged to avoid aliasing. So this is just for raster data on a spherical surface
which would appear to still need pre-generated LOD to be feasible in which case on-
demand tile streaming plus GPU polygon rendering is starting to look more appealing.
We are no experts in point cloud rendering so we are not sure if aliasing is a problem
there or not. In regards to 3D data, GPlates can render isosurfaces and cross-sections
of 3D scalar fields (to be covered in another paper) but those datasets are not very
dense compared to point clouds and can fit relatively easily in GPU memory (at least
on recent desktop graphics hardware), or at least still look good when down-sampled
to fit, and then super-fast GPU ray-tracing does the rest. But certainly for very large 3D
datasets an approach similar to Euclideon Geoverse would be worth looking into.

C560

Reviewer comment:

Those unfamiliar with plate tectonic rotation modeling may be confused by the contin-
ued reference to plate tectonic motion as dictated by a ‘rotation model’. It may be worth
briefly mentioning that rotation models refer to biaxial rotations in 3D space of a rigid
surface across a spherical shell.

Response:
We have added the following text near the beginning on the Introduction...

"The rotation model provides rotations for each tectonic plate over a period of geolog-
ical history. Each rotation, consisting of an axis passing through the globe centre and
an angle, rigidly rotates a tectonic plate across the spherical surface of the globe."

Reviewer comment:

The continued reference to ‘reconstruction’ in the work was initially confusing to me.
It may be worth a slightly more forward explanation in the introduction (about 794:25),
indicating that mapping present-day geospatial data onto the globe is essentially a con-
struction, and that modifying the rasterized data and tectonic configurations amounts
to a ‘reconstruction’ of the tectonic state over geologic history.

Response:
We have added the following text near the beginning on the Introduction...

"Typical geospatial data consists of present day observations on tectonic plates. Due to
the movement of plates throughout geological history this data must be reconstructed
from its present day configuration to its spatial arrangement at past geological times
before spatio-temporal exploration can occur.”

Reviewer comment:

796:8 rending should be rendering?

C561

Response:

We'’ve changed this to rendering’.

Please also note the supplement to this comment:
http://www.solid-earth-discuss.net/6/C554/2014/sed-6-C554-2014-supplement.pdf

Interactive comment on Solid Earth Discuss., 6, 793, 2014.

C562

