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Abstract: The modification of the matrix method of construction of wavefield on the free surface of an anisotropic 

medium is presented. The earthquake source represented by a randomly oriented force or a seismic moment tensor is placed 

on an arbitrary boundary of a layered anisotropic medium. The theory of the matrix propagator in a homogeneous 

anisotropic medium by introducing a "wave propagator" is presented. It is shown that for anisotropic layered medium the 

matrix propagator can be represented by a "wave propagator" in each layer.  The matrix propagator P(z,z0=0) acts on the 

free surface of the layered medium and generates stress-displacement vector at depth z. The displacement field on the free 

surface of an anisotropic medium is obtained from the received system of equations considering the radiation condition and 

that the free surface is stressless. The approbation of the modification of the matrix method for isotropic and anisotropic 

media with TI symmetry is done. A comparative analysis of our results with the synthetic seismic records obtained by other 

methods and published in foreign papers is executed. 
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1. Introduction 

With the increased resolution of seismic data, there is a 

growing awareness that an isotropic description of the 

Earth may no longer be adequate. Anisotropy appears to be 

a near ubiquitous property of earth materials, and its effects 

on seismic data must be quantified [25].  

Measurements of seismic velocity in exploration 

geophysics from travel-times of P, SV and SH waves have 

disclosed that many rocks in sedimentary basins exhibit 

significant degrees of anisotropy.  

Seismic velocity anisotropy is a widespread phenomenon 

in Earth materials. Until recently, seismic data could be 

adequately explained by assuming isotropy, so anisotropy 

could be largely ignored. With the increasing resolution of 

seismic observations, however, there is a growing 

awareness that the assumption of isotropy is often violated. 

Anisotropy has been widely detected in the crust and upper 

mantle and laboratory measurements imply that the 

phenomenon must be widespread in both crystalline and 

sedimentary rocks There are fundamental differences 

between wave propagation in isotropic and anisotropic 

media [12, 13]. In an isotropic medium, P-wave particle 

motion is normal to a wavefront so the P polarization vector 

is coincident with the phase propagation vector. S motion 

may be in any direction orthogonal to P. In an anisotropic 

medium, the P polarization vector need not be coincident 

with the phase propagation vector, hence this phase is 

denoted qP for ‘quasi-P‘. Two quasi-shear polarizations 

form a mutually orthogonal set with qP. Thus for any 

particular direction of phase propagation, there are three 

body waves with fixed orthogonal polarizations. In general, 

the velocities and polarizations vary with direction of phase 

propagation, causing the transverse component of the 

wavenumber vector to be non-zero. As a consequence of 

this behaviour, in an anisotropic medium phase and energy-

velocity vectors may diverge so that a ray may depart from 

the sagittal plane (the vertical plane through the, direction 

of phase propagation). Further, if the medium is elastic, 

energy and group velocity vectors will also diverge [3]. 

Interpretation of seismic research can predict the dynamic 

properties of elastic media, and consider the effects of 

anisotropy in the inversion problems of determining the 

source parameters. Therefore, the problem of mathematical 

modelling of seismic wave propagation in anisotropic 

medium is relevant. Over the past decade the considerable 

experience in theoretical and algorithmic solutions of a 

wide range of dynamic seismology problems is 
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accumulated. Analytical problem solving methods are 

developed only for a relatively narrow range of tasks. More 

precise, and hence more complex mathematical models are 

implemented by numerical methods. The last give a 

solution only in certain limited areas of model medium, and 

this is the main drawback of numerical methods. This 

means that the use of numerical methods, including finite 

difference method [1, 17, 20, 21, 27] and finite element 

method [28, 30, 31, 33] for modelling of seismic wave 

propagation in inhomogeneous anisotropic media gives 

very high accuracy results, but requires a grid which covers 

the entire area occupied by the investigated object and a 

significant amount of computer resources for the solution 

of high-dimensional systems of algebraic equations. 

 Therefore, it is difficult to implement, even with the use 

of modern computational tools, including clusters. The 

matrix method is used to obtain solutions, which avoid the 

complicated procedures to satisfy all boundary conditions. 

The usefulness of solutions obtained by this method is 

considered in [2, 4-6]. The matrix method allows for a 

common approach to examine the propagation of waves in 

a wide class of systems. This method allows to obtain 

solutions in a more compact and convenient form for 

further analytical and numerical calculations. 

In the 50's of 20th century Thomson and Haskell first 

proposed a method for constructing interference fields by 

simulation of elastic waves in layered isotropic half-space 

with planar boundaries [18]. The matrix method was 

developed in the works [7-10, 24].   

The stable algorithms of seismograms calculation for all 

angles of seismic waves propagation is obtained. The 

matrix method is generalized for low-frequency waves in 

inhomogeneous elastic concentric cylindrical and spherical 

layers surrounded by an elastic medium. The concept of the 

characteristic matrix determined by physical parameters of 

the environment is developed. The matrix method is used 

for wave propagation in elastic, liquid and thermoelastic 

media. In addition, it has been generalized for the study of 

other processes described by linear equations. The 

advantage of the matrix method is the ability to compactly 

write matrix expressions that are useful both in analytical 

studies and numerical calculations.  

The matrix method and its modifications are used to 

simulate the seismic waves propagation in isotropic and 

anisotropic media. This method is quite comfortable and 

has several advantages over other approaches. Both 

advantages and disadvantages of the matrix method are 

well described in [19, 29, 32, 34]. 

2. Theory 

We assume the usual linear relationship between stress τij 

and strain ekl  
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where u=(ux, uy, uz)
T
 is displacement vector. 

 

Figure 1. Model vertically inhomogeneous medium 

The equation of motion for an elastic homogeneous 

anisotropic medium, in the absence of body forces is [15] 
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where ρ is the uniform mass density, and ijklc  are the 

elements of the uniform elastic coefficient tensor which 

satisfy the symmetry conditions 

klijijlkjiklijkl cccc ===  

So that only 21 independent constants are involved. The 

suffixes can take the values 1, 2, or 3, and the summation 

convention for repeated suffixes is assumed. 

Taking the Fourier transform of (1) and (2), we obtain 

the matrix equation [16] 
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the system matrix A has the structure 
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where T, S and C are  3×3 sub matrices, C and S are 

symmetric. 

For any vertically stratified medium, the differential 

system (3) can be solved subject to specified boundary 

conditions to obtain the response vector b at any desired 

depth. If the response at depth z0 is b(z0), the response at 

depth z is 

)(),()( 00 zbzzPzb
��

=                                       (4) 



Earth Science 2014; 3(1): 1-8 3 

 

Where P(z, z0) is the stress-displacement propagator. The 

matrix propagator is defined as 
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where I is the 6 x 6 identity.  

If D is the local eigenvector matrix of A then 

Λ=− ADD 1                                                  (5) 

where Λ is diagonal. The diagonal elements of Λ are the 

eigenvalues of A which are the vertical phase 

slownesses zpq = . In general we may write 
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where superscripts U and D denote upgoing and downgoing 

disturbances, the subscript P denotes quasi-P and S1, S2 

denote the two types of quasi-S. For an isotropic 

medium DU qq −= , but for general anisotropy there is no 

such simple relationship between the vertical slownesses 

[23]. However, for our choice of Fourier transform and the 

definition of A in (3), and considering the radiation 

condition, it follows that 

Im (qD) > 0 and Im (qU) < 0. 

Given the eigenvector matrix D, we may define a 

wavevector v from the transformation 

vDb
�

�

= .                                           (6) 

As in the isotropic case the elements of v may be 

identified with the amplitudes of upward and downward 

travelling plane waves, 

T
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where φ, denotes qP amplitude and ψ, χ the two qS 

amplitudes. As before U and D denote up and down. 

If the elastic parameters are locally constant then D is 

independent of z and substitution of (6) and (5) into (3) 

yields 
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with the solution 
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where z1 is some reference depth. From (7) it is apparent 

that Q may be regarded as a 'wave propagator' since it is the 

solution to 
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We note from (6) that within the uniform layer, Q has the 

structure 
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Using (6) and (9) the stress-displacement vector at any 

level z within the uniform medium is 
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1
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By comparison with (4) the desired propagator for the 

uniform interval is 

1

11 ),(),( −= DzzDQzzP                          (14) 

To find this propagator, it is necessary to find the 

eigenvalues (vertical slownesses), the eigenvector matrix D, 

and its inverse D
-1

. In the isotropic case these are known 

analytically, so the construction of the propagator is 

straightforward. In the anisotropic case, analytic solutions 

have been found only for simple symmetries so in general, 

solutions will be found numerically.  

The layered anisotropic medium, which consists of n 

homogeneous anisotropic layers on an anisotropic 

halfspace (n +1) (Fig. 1), is considered. The matrix 

propagator (4*) can be represented by a “wave propagator” 

in each layer for anisotropic layered medium. The source in 

the form of a jump in the displacement-stress 

ss bbF
���

−= +1 is placed on the s-boundary (Fig. 1); it is easy 

to write the following matrix equation, using (13-14): 
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 - characteristic matrix of a layered anisotropic medium. 
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Using (15) and the radiation condition (with a halfspace 

(n+1) the waves are not returned), and also the fact that the 

tension on the free surface equals to zero, we obtain a 

system of equations: 
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Using only the homogeneous equations is sufficient to 

get the displacement field on a free surface: 
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The stress-displacement discontinuity is determined via 

the components of the seismic moment tensor in matrix 

form [15]: 
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where Mxx, MGyy, Mzz, Mxz, Myz, Myx, Mxy, Mzy, Mzx – 

components of the seismic moment tensor, and c13, c23, c33, 

c44, c55 – components of the stiffness matrix. 

As a result, the displacement field of the free surface of 

an anisotropic medium is in the spectral domain as: 
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Using (16) and three-dimensional Fourier transform, we 

obtain a direct problem solution for the displacement field 

of the free surface of an anisotropic medium in the time 

domain as: 
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where zR – epicentral distance, px, py- horizontal slowness. 

3. The Comparative Analysis 

A comparative analysis of synthetic seismograms is done 

to confirm the reliability of the described modification of 

the matrix method. 

3.1. Modelling of the Waveform in Isotropic Medium 

To test the proposed methodology used results obtained 

in the group of scientists involved in the project Source 

Inversion Validation (SIV) [http://equake-

rc.info/sivdb/wiki/]: Mathieu Causse (France), Susana 

Custodio (USA), Martin Mai (Saudi Arabia), Kaeser Martin 

(Germany), Haruko Sekiguchi (Japan), Guangfu Shao 

(USA), Seok-Goo Song (Switzerland) . The synthetic 

seismograms are calculated for known model of medium 

(Table 1) and locations of seismic stations (Fig. 2) by 

different methods: Kennett propagator matrix technique 

(A1, A2); Thompson-Haskell propagator matrix technique 

(ZR1, ZR2); finite element method (CS1 , CS2, CS3); 

finite-element method combined with the explicit time 

integration method using arbitrary high-order derivatives 

(DG). Fig. 4 shows the synthetic seismograms (project 

SIV), as well as through the proposed modification of the 

matrix method, for medium modelled by five homogeneous 

layers. The source is located at a depth of 10km (third 

layer), focal mechanism is a pure shear (Fig. 3), and the 

source time function is boxcar with rise time 0.2 s. Seismic 

moment is given as: M0 = 3.4992 • 10
16

 N • m (Mw = 

4,996). 

Table 1. The parameters of medium 

№ 
layer 

thickness, m 
с11, GPa с12, GPa с44, GPa 

density, 

kg/m3 

1 2000 52,992 21,896 15,548 2300 

2 2800 75,625 27,575 24,025 2500 

3 13200 103,788 33,804 34,992 2700 

4 6000 129,472 48,608 40,432 2800 

5 21000 204,800 68,196 68,302 3200 
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Figure 2. Source - receiver geometry for the strike-slip point-source. The 

star shows the epicentre in the chosen right‐handed coordinate system 

with positive X pointing East, positive Y pointing North, and positive Z 

pointing up.  

 

Figure 3. The source focal mechanism (strike-slip) 

Focal mechanism which is shown in Fig. 3 corresponds 

to the seismic moment tensor, all components are equal 

zero except for Mxy = Myx. 

 

Figure 4. Components of the displacement field on the free surface of the medium (Table 1), calculated by different methods according to the project SIV 

and by proposed modification of the matrix method for the receiver 10 (X = 13990 m, Y = 7500 m). 

Comparative analysis of synthetic seismograms shows 

that the proposed modification of the matrix method for the 

determination of the displacement field on the free surface 

of the layered half-space can be used for modelling of wave 

fields.  

 

 

 

3.2. Modelling of Waveform in Anisotropic Medium with 

Transversally-Isotropic Symetry 
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Figure 5. PREM reference model 

[http://web.utah.edu/thorne/movies/PREM_Reference.jpg] 

The synthetic seismogram from article [22] is considered 

for the comparative analysis. In this paper DSM matrix 

solution for the displacement field on a free surface in 

frequency range up to 2 Hz is shown for anisotropic 

medium simulated by PREM structure [14], which includes 

transversally isotropic layers at depths ranging from 22.4 to 

220km.  

The surface earthquake is considered, seismic waves 

source is located at a depth of 5km. The epicentral distance 

to a receiver is 60º. The earthquake source is described by 

the seismic moment tensor: Mxz = Mzx = 1, the remaining 

components of the tensor are equal to zero. The synthetic 

seismogram calculated by DSM matrix method for this 

earthquake source is shown in (Fig. 6a). Fig. 6b shows a 

synthetic seismogram (x-component) which is calculated 

by the proposed modification of the matrix method for the 

same example of a source and PREM for the comparative 

analysis. The FFT filter is used for the synthetic 

seismograms (Fig. 6.a, b). FFT filter performs filtering by 

using Fourier transforms to analyze the frequency 

components in the signal. A threshold filter, which removes 

those frequency components whose amplitudes are below a 

specific threshold value, is used in this paper. 

 

Figure 6. а - Synthetic seismogram calculated by DSM [8], b - Synthetic 

seismogram calculated by the modification of the matrix method. 

The seismogram computed by the described modification 

of matrix method (Fig. 6b)) is fairly well correlated with 

the seismogram, which is calculated by DSM method (Fig. 

6a)) [22]. 

In the paper [11] numerical simulations of seismic waves 

propagation are presented. The author considers anisotropic 

and heterogeneous Earth models, in particular, transversally 

isotropic PREM and weakly anisotropic model (isotropic 

PREM with 5% share of anisotropic perturbations). In this 

paper the synthetic seismograms are calculated by 

numerical method. For body-wave simulations, the source 

is replaced by a vertical point force located at a depth of 

600km. The station is located at a source azimuth of 0º (i.e., 

along the prime meridian) at an epicentral distance of 60º. 

The vertical point force avoids waveform complexities 

associated with the radiation pattern. The source-time 

function (STF) is a Ricker wavelet (17) with a 3 s half-

duration 

( ) 2)(22221 ftetfSTF ππ −−=                 (17) 

Fig. 7.a shows the superposition of two waveforms 

constructed for vertical point force (17) and for the medium 

model PREM (see Fig. 5) and weakly anisotropic Earth 

model [11]. Both seismograms are aligned on the P arrival 

predicted by IASP91 [26], and the IASP91 arrivals times of 

P, PcP, pP, sP, S, and ScS are indicated by the arrows [11].  

Fig. 7.b shows the synthetic seismogram constructed by the 

proposed modification of the matrix method for PREM 

reference model and the vertical point force (17). 

 

Figure 7. a - Synthetic seismograms for PREM and an anisotropic model 

(isotropic model with 5% share of weakly anisotropic perturbations) 

throughout the entire upper mantle, b - Synthetic seismogram calculated 

by the proposed modification of the matrix method for the source 

described above. 
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The waveforms computed by the proposed modification 

of the matrix method are very similar with the synthetic 

seismograms done in the paper [11]. 

4. Conclusion 

In this paper the theory of seismic wave propagation in 

anisotropic media using the matrix method of Thomson-

Haskell and its modifications is presented. The relationship 

between the matrix propagator P and a matrix eigenvectors 

D (14) is established by introducing the wave propagator Q. 

The displacement field on free surface of an anisotropic 

layered half-space using eigenvectors and eigenvalues is 

obtained. It is shown the advantage of the matrix method is 

the possibility of compact solution recording of direct and 

inverse problems of seismology. 

The approbation of the proposed method is done via 

comparative analysis of waveforms, obtained by different 

methods. The Fig. 4, 6b and 7b show synthetic 

seismograms calculated by the proposed modification of 

the matrix method for isotropic and anisotropic media.  It 

was shown quite well juxtaposition of the seismograms 

computed by DSM method [22] and the modification of the 

matrix method (Fig. 6.a, b) for the anisotropic PREM 

structure that includes transversely-isotropic layers at 

depths ranging from 22.4 to 220km. The Fig. (7a, b) shows 

the seismograms for deep focus earthquake at a depth of 

600km computed by numerical method [11] (Fig. 7a) and 

proposed modification of the matrix method (Fig. 7b) for 

anisotropic PREM. Comparative analysis of waveforms 

confirms the possibility of using the matrix method for 

problems of seismology in the case of distributed in time 

earthquake sources both in isotropic and anisotropic media.  

Thus, the methods, approaches, algorithms, software for 

the propagation of seismic waves and results of direct 

dynamic problems of seismology proposed and developed 

by the author and highlighted in the paper, can be 

successfully used in the study of the seismic regions and 

effective implementation in the construction of the 

earthquake source mechanism which is crucial for seismic 

regions of the country. 

Probability and reliability of basic scientific terms and 

results is provided by well posed problems, rigidity of 

mathematical methods and transformations in obtaining 

basic analytical relations for the displacement field and the 

seismic moment tensor components, by conducting 

computational experiments with reasonable accuracy, 

controlled by means of the theoretical relations for 

variations of physical parameters of studied media and 

wave forms on the surface of a layered half-space, and is 

also confirmed by the coincidence with analytical solutions 

and with results obtained by other methods. 

This paper is the first step to determine the earthquake 

source parameters. The algorithm of determining of the 

source parameters is based on the expressions for 

displacement field on free surface of an anisotropic medium 

(16) and spectra of real records from stations that recorded 

these events. The results of determining of the earthquake 

source parameters will be published in the next papers.  
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