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Abstract

The Earth crust presents two dissimilar rheological bahagi depending on the in-situ stress-
temperature conditions. The upper, cooler, part is buittide deeper zones are ductile. Seismic
waves may reveal the presence of the transition but a prdmeacterization is required. We
first obtain a stress-strain relation including the eff@ftshear seismic attenuation and ductil-
ity due to shear deformations and plastic flow. The aneldsti@mviour is based on the Burgers
mechanical model to describe the effects of seismic attemuand steady-state creep flow. The
shear Lamé constant of the brittle and ductile media dependhe in-situ stress and tempera-
ture through the shear viscosity, which is obtained by thiaéwius equation and the octahedral
stress criterion. The P- and S-wave velocities decreaseh dnd temperature increase due
to the geothermal gradient, an effect which is more pronedrfor shear waves. We then ob-
tain the P-S and SH equations of motion recast in the velstiss formulation, including
memory variables to avoid the computation of time convohadi The equations correspond to
isotropic anelastic and inhomogeneous media and are sbivaddirect grid method based on
the Runge-Kutta time stepping technique and the Fourierdmspectral method. The algorithm
is tested with success against known analytical solutionslifferent shear viscosities. A real-
istic example illustrates the computation of surface andnse=-VSP synthetic seismograms in
the presence of an abrupt brittle-ductile transition.

1 Introduction

The seismic characterization of the brittle-ductile tidos (BDT) is essential in earthquake
seismology and geothermal studies, since it plays an iraporble in determining the nature
and nucleation depth of earthquakes (Meissner and Streli@2; Zappone, 1994; Simpson,
1999) and the availability of geothermal energy (Manzellalg 1998). The BDT in the Earth
is generally viewed as a transition between two differemtstitutive behaviours, viscoelastic
and plastic (Dragoni, 1990). There is evidence that the Kzbarin the upper crust of Central
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Italy corresponds to a shear plane separating the britikst étom the ductile crust (Brogi et al.,
2003).

The viscosity of the crust is a fundamental factor in defirtimg properties of the BDT in-
terface. The contrast in properties at the transition isipalue to the dissimilar shear rigidity
with much lower values in the ductile medium (Matsumoto araétawa, 1996). The ductile
medium mainly flows when subjected to deviatoric stresslenddes not show major flow un-
der hydrostatic stress. Then, the flow deformation is maasiociated with the shear modulus
of the medium. The deviatoric stress is determined by thahectral stresss,, a scalar that
is invariant under coordinate transformations and whosgevdetermines the character of the
flow. When the stress vector associated with the normal tattehedral plane is generated,
its components in the principal directions are the eigesses (or principal stresses). Alterna-
tively, it has two components — one normal to the plane (whiak a magnitude equal to the
mean stress) and one tangential to the plane which has a tadgréqual to the octahedral
stress (and the latter is proportional to the magnitude efdéviatoric stress). The rock starts
to yield wheno, exceeds the elastic octahedral-stress limit. Below thidt lithere is gradual
creep deformation when constant stress is applied. Thepjsflower than the elastic limit, the
material follows a viscoelastic stress-strain relatidnr | exceeds this limit, steady-state flow
and failure occurs (Carcione and Poletto, 2013).

The flow viscosity is a function of temperature and presstdetermined by the geothermal
gradient and the lithostatic stress, respectively. Arriadtiive constitutive equation is proposed
by Hueckel et al. (1994), based on a thermo-plasticity §heshere the elastic domain is pos-
tulated as temperature dependent, shrinking with temyrera®n the other hand, Arcay (2012)
proposes a thermomechanical model based on a non-Newtds@us rheology and a pseudo-
brittle rheology.

It is widely accepted that linear visco-elastic-plasticdais are appropriate to describe the
behavior of ductile media. Gangi (1981, 1983) used this tfpmodels to fit data for synthetic
and natural rocksalt. The viscoelastic creep of salt has tescribed with a Burgers model by
Carcione et al. (2006). Carcione and Poletto (2013) useBuhgers model to describe the BDT
transition, including the presence of anisotropy and seistttenuation. The Burgers model is
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shown in Figure 1 (the Maxwell and Zener model are particcéaes of this model). Here, the
Zener model is used to model the viscoelastic motion withlastjz flow, obtained as the limit
of infinite plastic viscosity. Seismic wave losses are golele to shear deformations.

Computational geophysics is essential to study the streiaifi the Earth on the basis of
seismic forward modelling, inversion and interpretatidgagpone, 1994; Long and Silver, 2009;
Juhlin and Lund, 2011). In particular, grid methods are imeglto simulate wave propagation
in heterogeneous realistic models (e.g., Carcione et@02;2Seriani et al., 1992). In this work,
we propose to simulate seismic wave propagation in hetasages media involving the brittle-
ductile transition. The differential equations are sohtedhe time domain by using memory
variables (Carcione, 2007). We assume isotropic media kame [strain conditions and obtain
the differential equations of motion for 2D P-S and SH wavédg equations are recast in the
velocity-stress formulation, requiring eight and four nognvariables in the first and second
cases when using one shear relaxation mechanism. The @wgiatie solved by a direct grid
method based on the Runge-Kutta and the Fourier methodgsponding to the time and
spatial discretizations (e.g., Carcione, 2007).

2 TheBurgers mechanical model

The constitutive equation including both the viscoelaatid ductile behaviour, can be written
as a generalization of the 1D stress-strain relation reddsy Dragoni (1990) and Dragoni and
Pondrelli (1991) to the 3D anelastic case, replacing thevsdixmodel by the Burgers model
(Carcione et al., 2006; Carcione, 2007; Carcione and Po213).

The Burgers model is a series connection of a dashpot andexr Awrdel as can be seen in
Figure 1. The usual expression in the time domain is the digsgion

X = (% + i [1 - <1 - :—"> exp(—t/Te)D H(t) 1)

(Carcione et al., 2006; Chauveau and Kaminski, 2008), wher¢éime andH (¢) is the Heav-
iside function. The quantities, and 7. are seismic relaxation timeg, is the relaxed shear
4
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modulus (see below) angl is the flow viscosity describing the ductile behaviour retato
shear deformations. The frequency-domain shear modubas be obtained gs= []-"(;’()]_1,
where F denotes time Fourier transform and a dot above a variableteégiime derivative. It

gives

po(1+iwT)

p= : )

1+iwr, — 1M—O(l +iwTe)
win

wherei = y/—1 andw is the angular frequency. The relaxation times can be espdeas

TE:%<\/Q02+1+1>7 70:76_%7 (3)

wherery is a relaxation time such that) = 1/7 is the center frequency of the relaxation peak
and @ is the minimum quality factor. The dependence of the qualistdr as a function of
frequency is given below in equation (22).

The limit  — oo in equation (2) recovers the Zener kernel to describe thevielr of the
brittle material, whiler, — 0 andr. — 0 yield the Maxwell model used by Dragoni (1990) and
Dragoni and Pondrelli (1991):

. -1
1= Ho (1 - W—O> @)
wmn
(e.g., Carcione, 2007). Fgr— 0, u — 0 and the medium becomes a fluid. Moreovey; > oo,
w— poTe/Ts @andpy is the relaxedy = 0) shear modulus of the Zener elemepnt( o).
The viscosityn can be expressed by the Arrhenius equation (e.g., Carcibag, £006;
Montesi, 2007). It is related to the steady-state creepérbje

Oo
whereo, is the octahedral stress. The creep rate can be expressed as
é= Aol exp(—E/RT) (6)
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(e.g., Gangi, 1983; Carcione et al., 2006; Carcione andt®p’013), whered andn are con-
stants,E is the activation energyR = 8.3144 J/mofK is the gas constant aridis the absolute
temperature. The form of the empirical relation (6) is daieed by performing experiments at
different strain rates, temperatures and/or stresses Gaggi, 1983; Carter and Hansen, 1983).

In order to obtain the equations of motion to describe waepagation it is convenient to
consider the Burgers relaxation function

Y(t) = [Arexp(—t/m1) — Azexp(—t/72)|H (1) @)

(Carcione, 2007), where

1
Ma=—— and Aps= JYL +W1,2771M2. ®)
w1,2 m (w1 —wa)
and
(2mm1)wi2 = —bE V% —4pyponm, b= (1 + p2)n + pan. 9)
In terms of the relaxation times and, it is
07, T
#1:La [ = po—, T = p1Te. (10)
Te — To To

The complex shear modulus is

AlTl A27_2 >

— - — (11)
1+iwr  14+iwn

u:f(ib):iw(

It can be verified that equations (2) and (11) coincide.
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3 2D Propagation of P-Swaves

Let us consider plane-strain conditions and propagatiothen(x,z)-plane. The simplest P-S
stress-strain relation, with shear loss and flow, are

Oz = MNOpvy + 0,v,) + 21,[) * OgUy,
é'zz = )\(axvx + azUz) + 2¢ * az”zw (12)

é'J:z - w * (axvz + azvx)

(e.g., Carcione, 2007), whereis a Lamé constanty are stress components,are particle-
velocity components); indicates a spatial derivative with respect to the variahle = 1,2,3
(r1 =z, zo = y andz3 = z), and %” denotes time convolution.

The convolutions have the form 0;v; and can be overcome by introducing memory vari-
ables. We obtain,

¢ * aﬂ}j = Al(ﬁivj + ez(jl)) — Ag(@ivj + GZ(?)), ,7=1,3 (13)
where
m 1
65] ) = gmH*ain7 Im = __eXp(_t/Tm)7 m= 1727 (14)
Tm

which satisfies

.(m 1 m
ez(j ) = _E(aﬂj +ez(~j )). (15)

The stress-strain relation becomes
Gaw = (A + 2471 — 242)0,0, + A0, + 2(Arell) — Ayel?)),

Gaz = (A+ 241 — 245)0.0; + A0y, +2(Arely) — Agel?), (16)

Ozz = (A1 — A2)(0zv; + 0zvg) + Arel — Azel? + Arel) — Ayl
7
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On the other hand, the dynamical equations of motion are

. 1
Vy = ;(a:co'mm + azamz) + Sz,
17)
. 1
Vy = ;(axgxz + azazz) + s,
(Carcione, 2007), whereis the mass density ang are source components.

The equations of motion are given by equations (15), (16)(&i) in the unknown vector

v = (vx,vz,am,azz,am,egn))T. In matrix notation

v=M-:v+s, (18)

whereM is a 13x 13 matrix containing the material properties and spatialdtves.
In view of the correspondence principle (e.g., Carcion®720the complex and frequency-
dependent P- and S-wave velocities are

vp(w) :’/HQT’M(W), and vg(w) = @, 19)

respectively.
For homogeneous waves in isotropic media, the phase vwelaod attenuation factors are
given by

1 -1
CP(S) = [Re( >:| (20)
UP(S)

and

1
(Xp(s) = —wlm <’UP(S)> s (21)
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and the P- and S-wave quality factors are given by

B Re(v%(s))
P(s) = Im(vl%.(s))

(e.g., Carcione, 2007).

4 Propagation of SH waves

The stress-strain relations describing shear motion irf1t}8)-plane are

Tay = Y % Oy,

Ooy = ¢ * 0,0y
(Carcione, 2007).
On the other hand, the dynamical equation of motion is

. 1
Uy = ;(Bxaxy +0,0.y) + s,
wheres is the source (Carcione, 2007).

Applying the same procedure as in the P-S case we obtain

é’xy = (Al — Ag)ax?}y + Alegly) - A2€§c2y)7

d'zy = (Al — Az)ﬁzvy + Aleg;) _ AQB%},

with

1 -

(m 1 N

egy) - _T_(azvy+egy)), m=1,2.

m

(22)

(23)

(24)

(25)

(26)
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The equations of motion are given by equations (24), (25) @&l in the unknown vector
o= (vy,o—xy,o—zy,e%),e%))T and can be recast as equation (18) with maidof dimension

7x7.

5 Numerical solution

The formal solution to equation (18) with zero initial cotoins is given by
t
v(t) = /exp(TM) -s(t —7)dr, (27)
0

whereexp(tM) is the evolution operator of the system. The numerical gwiut based on a
Taylor expansion of this operator up to the fourth order, #iedRunge-Kutta algorithm is used
(Jain, 1984; Carcione, 2007).

The spatial derivatives are calculated with the Fourieugespectral method (Kosloff and
Baysal, 1982; Carcione, 2007). This method consist of dapditcretization and calculation
of spatial derivatives using the fast Fourier transforms k& collocation technique in which a
continuous function is approximated by a truncated seffiégsgmnometric functions, wherein
the spectral (expansion) coefficients are chosen suchhbatpproximate solution coincides
with the exact solution at the discrete set of sampling olocation points. The collocation
points are defined by equidistant sampling points. Sincetipansion functions are periodic,
the Fourier method is appropriate for problems with peddmtiundary conditions. The method
is infinitely accurate up to the maximum wavenumber of thehmisat corresponds to a spatial
wavelength of two grid points.

The stability condition of the Runge-Kutta method:ig.x dt/dmin < 2.79, wherecyax is the
maximum phase velocityit is the time step and,,;, is the minimum grid spacing.

10
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6 Examples

First, we test the numerical code against an analyticatisoldor P-S waves in homogeneous
media (Appendix A). To compute the transient responses,seaRicker wavelet of the form:

w(t) = (a _ %) exp(—a), a= [”(’5%)} g (28)

wheret,, is the period of the wave (the distance between the side peaks, /) and we take
ts = 1.4t,. Its frequency spectrum is

W(w) = (%) aexp(—a—iwts), a= (%p)Q wp = —. (29)

The peak frequency i, = 1/t,.

The rock is described by an unrelaxed P-wave velocity-of 6 km/s. Considering a Poisson
medium, we obtain an S-wave velocity @f = 3.464 km/s. We hava + 2p9 = pc% and g =
pc%. Assuming a density gf = 2700 kg/nt, we have = iy = 32.4 GPa. The seismic quality
factor isQo = 40 andwy = 27 f,,. The numerical mesh has 234 231 grid points and a grid
spacing ofdz = dz = 30 m. The source is a vertical force wifh = 10 Hz and the receiver is
located atr = z = 1.2 km from the source. The solution is computed using a 8tepdt =
1 ms. Figure 2 shows the comparison between the numericaraadgtical PS-wave solutions
for n=10%" Pa s (a-b) and = 10° Pa s (c-d), where (a) and (c) correspond.jaand (b) and
(d) to v.. At the source peak frequency, the P- and S-wave qualitpifadorn = 10?° Pa s
are 60 and 40, while those correspondingjte: 10° Pa s are 2.9 and 1.8, respectively, i.e.,
very strong attenuation. The results for the SH wave ardalisgd in Figure 3. In this case, we
assumey), = oo, i.e., attenuation is solely due to the plastic viscositlye Tjuality factor for
n=2x10" Pasis 39.

Next, we present examples showing the capabilities of tHhevaveform simulation algo-
rithm for the seismic characterization of crustal rocks extyvhigh temperatures, as those en-
countered at depths where hydrothermal fluids are preseunipatcritical conditions (Alberts-
son et al., 2003). The temperature dependence is expregsieel Arrhenius steady-state power

11
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law, e.g., Eqg. 15 in Carcione and Poletto (2013). We usest@alrrhenius constantd = 10%°
MPa "s™!, n = 3.5 and activation energy¥’ = 990 kJ/mol for the rheology of the Icelandic
crust (Violay et al., 2010, 2012). These parameters werermted by mechanical observa-
tions in laboratory stress-deformation experiments paréal at different confining pressures
with glass-free basaltic rock samples (GBF) (Violay et20.10, 2012), in agreement with the
results of Hacker and Christie (1992). In the absence okdkikca)—that strongly influences
the ductile behaviour of the basaltic rock at lower tempeest—the glassy-free basalts present
rapid BDT variation at high temperature. Figure 4 shows #reperature profile used in the
calculation, with a steep gradient at depth, similar to thpbrted in Foulger (1995).

The purpose of the numerical experiment is to predict P- amg& propagation with dis-
persion and attenuation at high temperatures (Carciondaletto, 2013), and study the ob-
servability of the BDT by seismic reflection methods. Th&uis poses the problem to evaluate
suitable transition zones and gradients for the crustdd pwoperties to get reflections in the
frequency range typical of seismic exploration. In thedaiihg examples, we assume propaga-
tion in a uniform, isotropic medium, under lithostatic ere in the absence of tectonic stress.
Figures 5 and 6 show the phase velocities calculated at adney of 10 Hz using the approach
of Carcione and Poletto (2013), with an average lithostaiitining pressure of approximately
95 MPa for a Poisson medium with unrelaxed P-wave velocitg§ kin/s, S-wave velocity of
3.464 km/s and density = 2600 kg/m?. The transition in the GBF velocity functions is quite
rapid at approximately 3.55 km in Figure 6, correspondin@’te 1120°C. Complete melting
is obtained above 1300C. The sharp variation of the velocity in the transition z¢Rigure 7)
is due to the combined effect of the rapid velocity variatiothe BDT zone (Figure 5) and to
the steep temperature gradient (Figure 4). Figure 8 shoevdifipersion of the P-wave velocity
calculated at frequencies of 3, 10 and 30 Hz.

The full-waveform synthetic data are calculated using &cadrsource with a Ricker wavelet
with maximum frequency of 50 Hz. The source is assumed todmed at the free surface and
the grid spacing of the numerical mesh is 10 m. The signalssaarded by a horizontal line of
receivers at the surface (shot gather) and by a verticay afreeceivers. The latter experiment
simulates a seismic-while-drilling reverse-VSP experitr{®oletto and Miranda, 2004; Poletto

12
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et al., 2011). Figure 9 shows the synthetic common-shotsyewa) corresponds to the vertical
component and (b) to the horizontal component. In both shitteys, we can see the reflections
of the transition interface for P waves (RP) (a) and S wav& (B). We remark the fact that the
only change in the model is the temperature profile. Figurshtiivs the VSP recorded at zero
offset, from 0.2 km depth to the bottom of the model. We careolss the direct transmitted
arrival (TP) in the deeper melted zone below 3.5 km, and tfieateon of the P wave (RP) at
approximately 3.5 km depth. Finally, Figure 11 shows thke plot of the VSP signal calculated
every 10 m in depth. This plot confirms that the dispersiorhis €xample is moderate due to
the thinness of the GBF transient zone (cfr. Figure 7). Higligpersion can be expected in
glassy basalts (GB) (Violay et al., 2010, 2012).

7 Conclusions

The upper — cooler — part of the crust is brittle, while deequeres present ductile behaviour. In
some cases, this brittle-ductile transition is a singleraai reflector with an associated reflec-
tion coefficient. The stress-strain relation and its phgisimplications have been analysed in
a previous work. Here, we have developed a full-waveforroritigm to simulate temperature-
dependent propagation of seismic waves in geothermal agdhatic crustal rheologies in gen-
eral and the brittle-ductile transition in particular. $kabrupt transition is believed to be the
lower limit of seismicity and may be an indication of geothat activity, since its reflectivity
may reveal the presence of partial melting and/or overpredsfluids.

The method uses the Burgers viscoelastic model and the wiahequation to calculate
the flow viscosity. Existing viscoelastic codes, based enMlaxwell, Kelvin-Voigt and Zener
models, cannot be used, because they fail to model both ttike land ductile behaviours.
The time convolutions appearing in the stress-strainiogiatare circumvented by introducing
memory variables and the numerical algorithm is based of-tleeier pseudospectral method
to compute the spatial derivatives. The modeling technidaeeloped for P-SV and SH waves,
is successfully tested against known analytical solutions

13



The example demonstrate the observability of the brittletite transition using surface-
seismic and VSP methods under appropriate conditionsl&@isimulations, using this forward
modeling technigue, can be performed, including estimatiaf P/S velocity relations, disper-
sion and attenuation related to temperature profiles, teatyre-gradient variations, pressure

s conditions and many aspects of rock physics in hot geotHemsarvoirs with hydrothermal
fluids and inhomogeneous media.

Appendix A

Analytical solution in 2D homogeneous media

The P-S Green’s function corresponding to the wave field géee by an impulsive vertical
force of strengthty is given by

F Tz
Gl z,0p.05) = (2 ) 1 Fi0,20,01,05) + Falr o, (A1)
a _ Fy 1., 9
s Gy(z,z,w,0p,vg) = % ﬁ[z Fi(z,z,w,vp,vg) — 2 F3(r,w,vp,vg)], (A2)

wherer = Va2 + 22,
Fl(T,W,UP,’US) = E |:i2H(gz) <ﬂ> + ! H£2) <ﬂ> - : H£2) <ﬂ>:| ’ (A3)

2 |vp vp wrug Vg wrvp vp
1 1 1
By(r,w,vp,vs) = == |5 HE (55 ) = —— B (5 )+ 0 (22)|, (ag)
2 |vg vg wrvg Vg wruvp vp

20 andHéQ) andH{Q) are the zero- and first-order Hankel functions of the secamd (Eason et
al., 1956; Carcione, 2007).
14
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The 2D viscoelastic particle velocities can then be expess

W(w)Gi(z,z,w,vp,vg), w >0,

vi(@,2,w) = {W*(w)Gf(x,z,—w,vP,vs), w<0, 1=1,3 )

(hermiticity), where the superscript™denotes complex conjugate a6 andG, are assumed
to be zero atv = 0. A numerical inversion to the time domain by a discrete Fauiansform
yields the desired time-domain solution.

On the other hand, the SH Green'’s function is

G(z,z,w,vg) = WwHéz) <ﬂ> (A6)
vs
(Carcione, 2007, Section 6.4), and
W(w)G(z,z,w,vg), w >0,

vy (@, 2,0) = { W*(w)G*(z,z,—w,vs), w <DO0. (A7)
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Fig. 1. Mechanical representation of the Burgers viscoelasticehfut shear deformations (e.g., Car-
cione, 2007)0, ¢, u andn represent stress, strain, shear modulus and viscosipgctely, where); 3
describes seismic relaxation whijés related to plastic flow and processes such as dislocatéapc &
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Fig. 2. Comparison between the analytical (solid line) and nunaé(gymbols) PS-wave solutions. The
fields are normalised. The amplitude in (c) and (d) are mueletdhan in (a) and (b) due to attenuation
arising from the plastic viscosity. The S-wave has disapgbtorn = 10° Pa s.
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Fig. 3. Comparison between the analytical (solid line) and nunaé(gymbols) SH-wave solutions. The
fields are normalised with respect to the amplitude of théadrgiscosity.
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Fig. 5. Phase-velocity profiles as a function of temperature at 10 Hz
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Fig. 6. Phase-velocity profiles as a function of depth at 10 Hz forGi#, based on the temperature
profile of Figure 4.

24



Velocity gradient (1/s)

_80 Il Il Il
3.5 3.55 3.6 3.65 3.7 3.75

Depth (km)

Fig. 7. Vertical gradient of the P and S-wave velocities in the tithotszone at 10 Hz.
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Fig. 9. Synthetic shots calculated from a 2D model with a verticakse at the surface, where a) shows
the vertical component and b) the horizontal componentoth panels we can see the reflections of the
P-waves (RP) and S-waves (RS) from the transition zone.
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Fig. 10. Synthetic VSP in the melted zone due to a vertical sourceddcat the surface (vertical com-

ponent). RP indicates the reflected wave and TP the trarshitivave.
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Fig. 11. An f-k plot of the VSP shows that the dispersion effects are moelerat
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