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Abstract

In X-ray computed microtomography (uXCT) image processing is the most important
operation prior to image analysis. Such processing mainly involves artefact reduction
and image segmentation. We propose a new two-stage post-reconstruction procedure
of an image of a geological rock core obtained by polychromatic cone-beam uXCT
technology. In the first stage, the beam-hardening (BH) is removed applying a best-
fit quadratic surface algorithm to a given image data set (reconstructed slice), which
minimizes the BH offsets of the attenuation data points from that surface. The final
BH-corrected image is extracted from the residual data, or the difference between the
surface elevation values and the original grey-scale values. For the second stage, we
propose using a least square support vector machine (a non-linear classifier algorithm)
to segment the BH-corrected data as a pixel-based multi-classification task. A combi-
nation of the two approaches was used to classify a complex multi-mineral rock sample.
The Matlab code for this approach is provided in the Appendix. A minor drawback is
that the proposed segmentation algorithm may become computationally demanding in
the case of a high dimensional training data set.

1 Introduction

Advances in the technological (image resolution) and computational (image size) as-
pects of X-ray computed microtomography (uXCT) technology now enable the acquisi-
tion of three-dimensional (3-D) images down to a sub-micron spatial resolution, which
is sufficient to capture the microstructure of geological rock cores (Cnudde and Boone,
2013). Recent research on digital rock physics has successfully combined microscopic
imaging with advanced numerical simulations of physical properties for which labora-
tory measurements are not possible. However, benchmarking tests of commonly used
image processing methods revealed unacceptably large variations in the results and
further development and optimization is therefore clearly warranted (e.g., André et al.,
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2013). Furthermore, Leu et al., 2014 determined the importance of image analysis
of uXCT-generated data to provide accurate parameterization of porosity—permeability
relationships. It turned out that this relationship is highly sensitive towards accurate
processing of the pore microstructure images used. This accuracy is of great impor-
tance in pedohydrology studies of water flux in the critical zone (e.g., Khan et al., 2012;
Kumahor et al., 2015), reactive transport modelling (e.g., Schwarz and Enzmann, 2013;
Molins et al., 2014), distributions of multi-component fluids (e.g., Berg et al., 2013,
2015), contaminant retardation (e.g., Huber et al., 2012), energy-related activities such
as nuclear waste disposal (e.g., Hemes et al., 2015), and the geological sequestration
of CO, (e.g., Sell et al., 2012; Herring et al., 2015), to name just a few examples.

The research aim of image classification is to obtain representations of structures
that can be automatically used for categorization of samples into a finite set of la-
bels (i.e., phases in geological materials). As part of the recent development of com-
puter performance and advanced automated computer algorithms, the classical ma-
chine learning technique provides a methodology for (non-)linear function estimation
and classification problems (Vapnik, 1995). In general, the supervised machine learn-
ing approach involves the construction of a convincing model of the distribution of class
labels in terms of predictor features for the whole image on basis of a reduced exam-
ple data set (i.e., training stage) or past experience (Alpaydin, 2004; Kotsiantis, 2007).
The resulting classifier is then used to optimize a performance criterion and assign
class labels to the testing data. Representative generalization is an important prop-
erty of a classifier or classification algorithm, because it offers information about as
yet unknown data. The Support Vector Machine (SVM) algorithm as one capable ex-
ample of such classifiers was first developed by Vapnik (1995) as an extension of the
Generalized Portrait algorithm. The SVM algorithm is firmly grounded in the frame-
work of statistical learning theory, which improves the generalization ability of learning
machines for unknown data.

The success with any classification technique depends on the quality of the uXCT
images used as input and, therefore, a less noisy and artefact-free image is always
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desirable. However, in reality, this is not the case when using a bench-top laboratory
uXCT technology. In polychromatic X-ray tomography, the average energy of the X-ray
beam increases as the beam propagates through a geomaterial, whereby low-energy
X-ray photons are preferentially attenuated. This results in a beam spectrum succes-
sively depleted at lower energies as it passes through thicker parts of the geomaterial.
Consequently, the spectrum of the X-ray beam hardens and becomes less attenuated
further into the material. This effect is called beam hardening (BH) and implies that the
grey levels of the projection data are non-linear with respect to the shape of a cross-
sectional linear profile. Consequently, the reconstructed uXCT image features some
visual distortions such as pronounced edges (“cupping effect”’) and other artefacts
(Schlter et al., 2014). The cupping artefact shows an apparently higher attenuation
coefficient at the outer regions than in the inner part of a round rock core, even if both
regions are composed of the same mineral. The presence of BH artefacts therefore
causes problems in 3-D image processing and hampers correct image analysis and
phase quantification due to a biased multiphase image segmentation process. How-
ever, such artefacts applies for polychromatic X-ray sources only and, more recently,
monochromatic synchrotron-based uXCT has been introduced as a powerful tool for
effective BH-free visualization of the microstructural features of geomaterials at a voxel
resolution down to the sub-micron level (Fusseis et al., 2014; Leu et al., 2014). How-
ever, access to this advanced technique is limited by experimental sites and available
beamtime. Therefore, most uXCT studies must rely on bench-top devices resulting in
the artefacts mentioned.

A variety of both hard- and software measures have been developed to eliminate BH
artefacts. These include physical pre-filtering to pre-harden the X-ray photon spectrum,
the dual-energy approach, and a variety of computational pre- and post-processing im-
age corrections (Schllter et al., 2014). A major prerequisite for success with the latter
software approaches is that the correction method should not rely on any prior knowl-
edge of the material properties, i.e., it should not depend on known attenuation coef-
ficients. Commonly, there is no prior quantitative information available on the number
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and distribution of phases present in a geological sample. The most common technique
for BH correction in pre-processing is linearization, but this is preferable for monopha-
sic material cases. Although the most commonly used algorithm for the reconstruction
of uXCT data is based on filtered back-projection (Feldkamp et al., 1984), an iterative
forward projection can be used with modern imaging software like Octopus, which al-
lows incorporation of BH modelling algorithms (Brabant et al., 2012). In this alternative
reconstruction approach, the attenuation coefficients are not simply added but multi-
plied with factors to simulate BH depending on the accumulated attenuation over the
distance the beam has penetrated through the sample. This pre-processing correction
thereby minimizes the underestimation of the attenuation coefficient as the beam pro-
gresses through it. However, a major drawback of this promising method is that there
is currently no way to determine the two necessary iterative parameters a and g auto-
matically (Brabant et al., 2012), resulting in the manually adjusted output being a highly
subjective result.

In principle, the idea of a surface fitting approach in uXCT image post-processing
for BH-correction has already been introduced earlier (Krumm et al., 2008; lassonov
et al., 2010; Jovanovi¢ et al., 2013), however, without a more detailed outline how to
be realized in practice. Therefore, a quite simple algorithm is suggested that fits a 2-
D quadratic polynomial function for accurate removal of BH artefacts upon classically
filtered back-projection reconstructed slices. Our novel BH-correction algorithm is fol-
lowed by a pixel-based phase classification introducing the machine learning algorithm
approach.

2 Material and methods

2.1 Micro-tomography

The custom-built uXCT scanner used at our laboratory (ProCon CT-Alpha, Germany) is
equipped with a microfocus X-ray tube (Feinfocus, Germany) and contains a diamond-
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coated anode target with a focal spot size of a few um. X-ray data acquisition is per-
formed with a 2048 x 2048 pixel (“2k”) flat panel CCD detector of size 105mm x 105mm
(Hamamatsu, Japan). The geological test object was a cylindrical evaporite rock core
30 mm in diameter composed of an anhydrite and clay mineral matrix with halite-sealed
veins. The X-ray source voltage was set at 130kV, and the beam was slightly pre-
hardened with 0.15 mm silver foil. A rotation step of 0.45° with one-second exposure
time corresponds to 800 projections for full 360° data acquisition at a spatial resolution
of 42 um. Precise centro-symmetrical alignment of the cylinder along the vertical axis
is an important prerequisite for success with the BH correction procedure.

The workflow of our post-reconstruction image processing approach including BH
correction and the novel segmentation approach is illustrated in Fig. 2. The recon-
struction of the 3-D data set was performed on-the-fly by the Feldkamp filtered back-
projection algorithm (Feldkamp et al., 1984). This classical 3-D cone beam reconstruc-
tion algorithm follows three main steps: (i) pre-weighting the projection rays accord-
ing to their position within the beam cone, (ii) filtering the projections along horizontal
detector lines using a discrete filtering kernel; and (iii) performing a weighted back-
projection of the filtered projections along the cone with a weighting factor. Raw pro-
jections were corrected for dark current and flat field variations, followed by non-local
mean filtering, ring removal, and filtered back projection reconstruction using the imag-
ing software package Octopus (https://insidematters.eu/octopus; Vlassenbroeck et al.,
2007). The uXCT images are rarely perfect representations of the attenuation coeffi-
cients, because they are also biased by scatter and noise. Therefore, image denoising
was additionally performed as an initial correction operation. A suitable smoothing filter
should reduce the noise level with minimal alteration of edged features in the image.
We applied a 3-D median filter technique with window size mask (3 x 3 x 3 in 3-D),
which replaces a singular pixel value with the median value considering the next neigh-
bourhood pixels. The median filter acted to smooth noisy regions and to improve the
preservation of their boundary structures (Gallagher et al., 1981), and is routinely im-
plemented on uXCT images (Culligan et al., 2004; Kaestner et al., 2008; Khan et al.,
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2012; Sell et al., 2013; Landry et al., 2014; Herring et al., 2015). After reconstruction
of the raw data, a 3-D digital image of dimensions x,y,z = 1417 x 1417 x 900 voxels
was generated (Fig. 3), but a reduced image of only 450 voxels in the z-direction was
ultimately used as a reference for the image correction and classification processing.

2.2 Mathematical basis of the surface fitting algorithm

Our post-reconstruction method corrects the BH artefact by fitting a 2-D polynomial,
i.e., a quadratic surface to the reconstructed uXCT image data (2-D slice). The surface
fitting (i.e., second-order polynomial) approach has a mathematical expression of the
form:

P(Xi, V) = @4 + @xX + agy + a,x? + agxy + agy®,k=1,2,.. ,N (1)

for some choice of unknown coefficients a4, a,, . . ., a¢. The solution for all a coefficients
determines the best fit of the polynomial of Eq. (1) to a given set of data points (re-

constructed grey-scale values). The final BH-corrected image is the residual of the
data points, i.e. the difference between the surface elevation values and the original
image values. Consider f, € (X, V), k =1,2,...N as arbitrary data points on the 2-D
slice (uXCT image), then the normal equations for fitting a polynomial (Eqg. 1) can be
expressed in a matrix-vector form:
1 xe oy X oxan ¥ El [ 11]
1 X2 Yo X5 XoVo Vi a2 f2
as
M= ,a= = (2
a4
as
|1 Xv Vv Xy XnWN ,V/%/_ [ 96 | [ v ]
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Equation (2) can be solved to yield the solution vector a by:
M™Ma=M'f 3)

The solution of Eq. (3) for the vector a determines the best fit of the polynomial of
Eq. (1) to a given set of data points. The Matlab code of this surface-fitting approach
for BH correction is listed in the Appendix.

2.3 Mathematical basis of the LS-SVM classification algorithm

Once BH-correction of a uXCT image by surface fitting has been accomplished, a pixel-
based multi-classification can efficiently be performed by utilizing supervised machine
learning of the least square support vector machine (LS-SVM) type. The LS-SVM
method is derived from non-linear support vector machines (Suykens et al., 1999).
The NL-SVM method maps the input vector into the high-dimensional feature space
by non-linear mapping associated with a kernel function (often called “kernel trick”,
refer to Egs. 14 and 15). The aim is to construct the optimal separating hyperplane,
also known as maximum-margin hyperplane in the higher-dimensional feature spaces.
This idea of the maximum-margin hyperplane is obtained from statistical learning the-
ory and provides a probabilistic test error bound that is minimized when the margin is
maximized (see graphical representation of NL-SVM, Fig. 1). The parameters of the
maximum-margin hyperplane are derived by solving a quadratic programming (QP)
optimization problem. Suykens and co-workers (2002) proposed the idea of modifying
Vapnik’s SVM formulation by adding a least squares term to the cost function, which
transformed the problem from solving a QP problem to the practically more convenient
solving of a set of linear equations. This modification significantly reduces the effort in
complexity and thus the computational cost, which may otherwise become excessive.

The basic mathematical formulation of the non-linear SVM classifier and its least
square version is presented here only in brief. For further details, please refer to the
classical literature (Vapnik, 1995, 1999; Chapelle et al., 1999; Suykens et al., 1999).
For classification problems, let {y,-,x,-}f-v=1 be given a training set of N data points (here:
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each points are accounted as image pixel values), where x; € R” is the jth inputs in
n-dimensional vector space, and y; € R is the associated output class labels such that
y; € {-1,+1}. Consider ¢(x;) : R" — R represents a mapping (linear or nonlinear) to
a high dimensional feature space which is formulated as:

wiox,)+b>1, ify =+1, (4)
and

wig(x)+b>-1, ify,=-1, (5)
which is equivalent to

Vi [quo(x,-)+b] >1, i=1,..,N, (6)

where w € R” is an adjustable weight vector parameter, and b € R is a bias term. The
slack variable ¢; > 0 is introduced in the case of the violation of Eq. (6).

vi[wTebq) +b] 2 1-¢. =1, N, )

In real data classification problems, a perfect linear separation is impossible due to
overlapping classes. Therefore, a limited number of misclassifications should be toler-
ated around the margin. In LS-SVM for function estimation the following optimization
problem is formulated:

N

. 1 1

minJ,(w,e) = EwTw V3 A (8)
" i=1

subject to the equality constraints:

7 [quo(x,-) +b] =-1+e;, i=1,.,N, 9)
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where e; = ([e4, €5, .. .eN]T) represents the estimation error for some misclassification
tolerance in the case of overlapping distributions, and y is a positive regularization
constant in the cost function defining the trade-off between a large margin and mis-
classification error. In the case of the primal problem expressed in terms of the feature
map, the parameter w may have a range over an “infinite-dimensional” parameter set.
Therefore, the dual problem for the LS-SVM represents a solution in terms of the kernel
function by means of Lagrange multipliers a; = ye;, which can be positive or negative
due to the equality constraints. This means that no sparseness property remains in the
LS-SVM formulation, and every training data value is treated as a support vector. The
Lagrangian

N
e(w,b,e;a) = Jy(w,b,e)- > ayy, [quo(x,-) + b] -1+e;}, (10)
=1

Is given by the following conditions for optimality:

g_ue/ =0 — w = vaﬂa/inD(X/),

%=0 - >lLay=0
1 (11)
(%2=0 - y[wiet)+b|-1+e,=0, i=1,.,N

These can be written as a linear system:

0o -Z' 0
o -vT _

vl =1 -

/I 0

(12)

N © © ~
<X O ©O o
R ® o I
-| O O
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T

where Z =[@(x;)"ys...00xp) ' yalT, Y =Dys. ]’ 1=[1..1]", e =[e;...e,]", and

a=la;.. .aN]T. Elimination of w and e gives

B HEE

Hence,

(13)

(14)
(15)

Y = yiy0(0) T e(x) = Hx;, X)),
=yiyiH(x; X)), i,/=1,..,N

satisfy the Mercer’s condition. This relation is also often termed as kernel trick since no
explicit construction of the mapping ¢(x;) is needed. It enables the LS-SVM to work in
a high-dimensional feature space, without actual performing calculation in this space.
Hence, the non-linear LS-SVM classifier in dual space ultimately takes the form:

N
y(x) =sign [ D aiyiH(x,x;) + b] : (16)

i=1

In our model approach, only the Gaussian Radial Basis Function (RBF) kernel is im-
plemented in the LS-SVM classifier due to its high accuracy in function estimation and
data set classification (Van Gestel et al., 2002; Selvaraj et al., 2007; Caicedo and Van
Huffel, 2010):

H(x,x;) = exp <—||x—x,-||2/02>, (17)
where o is the bandwidth of the Gaussian RBF kernel. For the LS-SVM approach to
be realized in practice, a public-domain toolbox is used (www.esat.kuleuven.be/sista/

Issvmlab/) that contains Matlab/C implementations for a number of algorithms.
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3 Results
3.1 Correction for beam hardening effects

In presence of a BH artefact, the reconstructed grey-scale values vary across the rock
core from higher values at the periphery to lower values in the central region for the
same mineral phase (e.g., clay minerals, Fig. 4b). Therefore, the attenuation cross-
section function across a sample consequently becomes a parabolic curve rather than
a linear line (Jovanovi¢ et al., 2013). Visual inspection of the image of our evaporite
rock sample showed that the grey-scale values of the anhydrite mineral in the cen-
tral region may overlap with the grey-scale values of clay minerals at the periphery,
and would significantly hamper the correct differentiation between both phases. In or-
der to adjust unequivocally a unique grey-scale level for each phase, we applied the
quadratic 2-D polynomial function (Eq. 1) to our image (Fig. 4a). This polynomial ap-
proximation constructs the surface that best fits the cloud of data points subject to the
coefficients determined by Eq. (3). The residual data values were extracted as the dif-
ference between the values of the original data and those of the fitted surface. The
plots of the residual data values indicate the difference in grey-scale levels of different
phases (Fig. 4c), where the peaks represent a higher grey-scale level of anhydrite min-
eral clearly differentiated from the base level data values representing clay minerals.
The image was again reconstructed from the residual data values, which ultimately
leads to the efficient removal of the BH artefact in comparison with the original image
(compare Fig. 4b and d).

3.2 LS-SVM multi-classification for phase analysis

Upon successful removal of the BH artefacts, the LS-SVM algorithm was tested for the
multi-classification task. For comparison, the performance of the LS-SVM algorithm
was also evaluated on the same image but with uncorrected BH artefacts. In our LS-
SVM approach, the direct voxelized input of an original uXCT image was mapped into
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a feature vector for training and for testing data points. The rock core uXCT image
was classified into the three major phases: halite, anhydride, and clay minerals. To per-
form a pixel-based classification, certain regions at different locations were manually
selected, as marked by letters “A” to “F” in Fig. 5a. The selection of all pixel values
for each phase was performed carefully to avoid boundaries overlapping with each
other phase and to limit the misclassification rate. The total number of data points thus
trained for all phases was 1755, which is only 0.1 % of the remaining pixels of a 2-D
slice. The remaining 1570 149 pixels were treated as an unknown data set (test data).
It is important to include a possible range of grey-scale level in a training data set, in
order to provide maximum information with true class labels, otherwise the classifier
considers the output to be undecided. The generalization performance of the LS-SVM
algorithm requires tuning of a set of hyperparameters (e.g., the regularization constant
y and the RBF kernel parameter o). These tuning parameters were obtained by com-
bining a coupled simulated annealing (CSA) and a standard simplex method. First,
CSA was used to determine the appropriate starting points to be transferred to the
simplex optimization routine to tune the result. Finally, optimal values of y = 4.6 and
o = 1.7 were determined on the training data set by applying a leave-one-out routine
with a 10-fold cross-validation score function and encoding scheme of one-versus-one.
The remaining data set of 1570 149 pixels was tested based on the predictor feature
vector of the training class labels thus obtained. The output of the data values classified
in this way was again reconstructed to give an image in which each distinguished at-
tenuation level was labelled by a single integer value (1, 2, and 3 for the three phases
halite vein, anhydrite, and clay minerals, respectively) as illustrated in Fig. 5b and c.
From visual inspection, the LS-SVM performs quite well on the BH-corrected image,
in which the label class of each phase distribution is well matched with the mineral
distribution in the original image, but fails to perform in this way on the image with BH
artefacts.
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4 Discussion

In principle, any classification results can be biased, and this bias can be evaluated
by a performance measure based on the Receiver Operating Characteristic (ROC)
method. The ROC is a statistical measure of the performance of a binary classifica-
tion test. It provides tools to select optimal models in the analysis of decision-making
(Fawcett, 2006). An ROC curve can be constructed by plotting the specificity (“false
positive rate”) against the sensitivity (“frue positive rate”) by varying the decision thresh-
old over its entire range. In our LS-SVM model scheme, only binary classification ROC
function is integrated. Therefore, the multiphase classification problem was first decom-
posed into binary classification tasks, i.e., a binary classification between, for example,
anhydrite and halite, and between anhydrite and clay minerals, to measure the ROC
relationship for LS-SVM both with and without BH-artefact corrected images. Note that
ROC was implemented only on the training set data to minimize computational costs.
In addition to the ROC parameters of sensitivity and specificity, another important per-
formance measure calculated was the area under the ROC curve (AUC, Hanley et al.,
1982; Selvaraj et al., 2007; Luts et al., 2010). A typical plot of the ROC curve is shown
in Fig. 6. The calculated parameters of AUC and accuracy were 0.998 and 99.82 %
for the BH corrected image, but as low as 0.963 and 88.71 % in the presence of a BH
artefact. Therefore, the performance measure results based on the pixel-based grey-
value training data set demonstrate that the probabilistic bias rate was higher in the
BH-affected images, and this consequently caused misclassification of the test data
(Fig. 5c¢). This finding provide evidence that BH correction is an important intermediate
step in obtaining a good classifier performance using our LS-SVM approach. Moreover,
for an optimal classification result, it is always desirable to include the full grey-scale
range (“pixel value”) of each individual phase to be trained in order to avoid misclassi-
fication, i.e., an undecided data classification as undesired output.
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5 Conclusions

In this study, polychromatic X-ray source generated uXCT images of cylindrically
shaped samples (rock cores) were evaluated for the efficient removal of the beam-
hardening artefact and optimized multiphase classification. Due to the nature of the
BH artefact present in uXCT images, the reconstructed grey-scale data values for the
same mineral phase show a non-linear (parabolic) curve from the periphery to the cen-
tre of the rock cores. The 2-D polynomial surface function was fitted to a slice image
in order to extract residual data values in terms of the difference between the original
data values and the fitted surface points. This novel approach is quite flexible for any
geomaterial of any shape; the method could also be applied to non-cylindrical samples,
and is computationally fast. A drawback is that in cases of multi-component geological
material of extremely low density (e.g., organic material), or high density (e.g., ore), the
fitting of the surface function to the cloud of data points may over- or underestimate
the range of grey-scale values of each individual phase, which will subsequently affect
the correct phase classification. A 3-D (volume) fitting is necessary to overcome this
problem of data extremes.

The advanced machine learning technique of the least square support vector ma-
chine (kernel-based learning) method is proposed as an efficient routine to segment
the uXCT images on the basis of a direct pixel-based classification task. Without any
reduction in dimensionality or any requirement of prior knowledge, the radial basis
function kernel yields good classification results for BH-corrected images with a high
accuracy rate (less misclassification), but fails to classify phases in the presence of
BH artefacts. Our method is sensitive to the selection of data points (pixels) at different
locations, and to the number of data values of each individual mineral selected for train-
ing. Therefore, the presence of artefacts and inadequate data value selection for a spe-
cific mineral may affect correct image classification, and may become computationally
costly as the result of the high dimensionality of the feature vector. In a companion
paper, a comparison is presented of our LS-SVM method with other supervised and
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unsupervised machine learning techniques for uXCT image segmentation (Chauhan
et al., 2016).

Appendix: Matlab code of beam hardening (BH) correction by the quadratic
surface fitting approach

function [M_corr Surfacefit] = BHC_function(A)
% Quadratic surface equation of second order polynomial
% P(Xy, Vi) = aq +apsx +asy + ,374)(2 +agXxy + a6y2, k=1,2,..,N,
% To find coefficients “a” of best fit to a function expressed by: M Ma = M'f
% M_corr = BH corrected image
% Surfacefit = Surface fit values
% First convert uXCT image grey-scale values into a matrix “A”
% Image input parameters

nX=1417; % X dimension of the input image
nY=1417; % Y dimension
limitval=1;

zshift=15000; % This can be changed according to image grey-scale range
(here 16bit: 0-65 535)

% Main function

[r,c,v]=find(A > limitval);

M=zeros(size(c,1),6);

M(:,1)=1;

M(:,2)=c; % x indices
M(:,3)=r; % y indices
M(:,4)=c."2;

M(:,5)=c.™r;

M(:,6)=r."2;
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cyl=A > limitval; % To extract the grey-scale value of only the object material
of the 2-D slice.

R=cyl.*A;

[m,n,f]l=find(R);

a=(M"*M)"(=1)*(M™f);

p=a(1).*M(:,1)+ a(2).*M(;,2)+ a(3).*"M(:,3)+ a(4).*M(:,4)+ a(5).*M(:,5)+ a(6).*M(:,6);

corr=f-p + zshift;

S= sparse(r, c,corr, nX,nY);

M_corr=full(S);

p1=sparse(r, c,p, nX,nY);

Surfacefit=full(p1);

M_corr=uint16(M_corr);

end
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Figure 1. Graphical presentation of the NL-SVM approach, with (a) complex binary pattern
classification problem in input space, and (b) non-linear mapping into high-dimensional feature
space where a linearly separable data classification take place.
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Figure 2. Workflow chart of our proposed uXCT image post-processing method that combines

BH correction with an LS-SVM segmentation algorithm.
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Anhydrite

Figure 3. 3-D reconstruction of a wuXCT image of computational domain size
1417 x 1417 x 900 voxels, each with edge length 42 um, diameter of the whole image is 3 cm.
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Figure 4. BH correction after noise filtering, where (a) depicts the 2-D polynomial surface, fit-
ted to the original image grey-scale values (b). The red to blue colour range represents the
elevation of the fitted surface from higher to lower grey-scale values. (¢) depicts the plot rep-
resenting the residual grey-scale range of values as a result of the surface fitting, and (d) the
reconstruction of the BH-corrected image.
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Figure 5. Pixel-based image classification using LS-SVM, where (a) depicts locations of pixels
selected for training in the original uXCT image, (b) the output of multi-classification on the
BH-corrected image, (c¢) the output of multi-classification in the presence of BH artefacts. Dark
color represents the halite vein, grey color the anhydride phase, and light color the clay mineral
region of the evaporite rock core (rock core diameter 3 cm).
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Figure 6. ROC curve analysis of LS-SVM classifier performance on the BH corrected image

(left), and the BH-uncorrected image (right).
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