Reply to: Anonymous Referee #1
On the manuscript: Cyclic fracturing during spine extrusion at Unzen volcano, Japan by O.D. Lamb et al.

The revised manuscript and supplementary files are attached after the comment responses.

Original reviewer comments are in black and replies are in blue.

General Comments
This manuscript presents some insightful observations on the generation of seismicity during spine growth that will be of interest to the general volcanological community using clearly defined scientific methods. The entire manuscript is concerned with cyclicity that occurs over a four month period identified by analysing over 12 000 events. However, the detailed analysis comprising the bulk of the paper on which the conceptual model and the majority of conclusions are drawn is conducted on two clusters of events consisting of only 668 events. The evidence presented that the same cyclicity is present in this small subset of events is weak and needs to be improved.

The final conceptual model is well presented but there are several aspects that I would like to see further discussed (see specific comments). I also feel that a lack of correlation with physical observations of spine growth weakens any conclusions reached. Overall the manuscript is well written, there are however a few minor typographical errors (see technical corrections). Ultimately in its current state I would rate the manuscript as Excellent (1) for Scientific significance, Good (2) for Scientific quality, and Good (2) for Presentation quality but aspects of the conceptual model need clarifying.

The reviewer notes that this is an insightful study and that the scientific approach is robust. While the reviewer appreciates the conceptual model, specific concerns are raised in the following comments which we will address individually below. We would like to thank the reviewer for their constructive comments on this study. Regarding the above statement, we would like to clarify the point that this manuscript is not focused solely on cyclicity. The main point is the seismological analysis of repeating waveforms during spine extrusion, and combining that with geological and experimental observations to produce the conceptual model. However, the relevance of the two clusters studied in detail during the period of high extrusion rate is significant; indeed, these are the two largest clusters throughout the spine eruption. The importance of repeating waveforms during volcanic eruptions is examined in depth in section 4.2 of the manuscript. To clarify the emphasis of this manuscript and the processes detailed within, we propose to modify the title to “Repetitive fracturing during spine extrusion at Unzen volcano, Japan”.

Specific Comments
P2113 – L10 – Can you sufficiently observe the low frequency behaviour suggested in these events on a 1Hz vertical component seismometer? I would like to see this discussed.

The reviewer here refers to the 1Hz vertical component seismometers that were used to collect the data. We should state that the low frequency content of the waveforms discussed here are between 1
and 5 Hz, therefore they are not limited by the instrument. To illustrate this, we have modified Figure 3 to include the frequency spectrograms of the cluster waveform stacks. Additionally, we do not discuss the exact low frequency content of the waveforms, only the relative difference between each cluster. Therefore, any instrument limitations do not affect our results.

P2121 – L15 I am unconvinced by these key observations, it could be interpreted that the cyclicity “glides” from ~40h – ~100h over the full period of October – February, with a second period of cyclicity that glides from ~100h – ?, it disappears in early December due to the scale of the plotted spectrogram (see technical corrections). Perhaps this is a consequence of the figure scale. The ~100h ‘cycle’ the reviewer points out is likely a methodological artefact. The peak actually sits a little above the 100 hour line and roughly corresponds to the size of the moving window (336 hours) used to calculate the spectrogram. As stated in the text, this window size with a 99% window overlap provides the best compromise between achieving sufficient temporal resolution and maintaining a long-enough window for robust analysis. Additionally, the window was found to be the most efficient and created the least noise in the dataset. Previous statistical investigations using this method (e.g. Nicholson et al., 2013), use windows that are 5-10% the size of the time-series being analysed; this is replicated on our investigation. A full investigation of the effects of parameter choices for STFT analysis can be found in the supplementary materials of Nicholson et al. (2013): http://dx.doi.org/10.1016/j.epsl.2013.05.032

Also, why is the previously identified 24hr cycle (P2121 L5) from the MTM spectra (Figure 2) not present (with the exception of possibly the first half of October). This needs to be explained.

The unobvious presence of 24-hour cycles in the spectrogram is likely an effect of the scale used to plot the PSD which result 24-hour cycles almost blending into the background noise. Note how in Fig 3C, the peak for the 24-hour cycle is at the same power as other peaks, but is only highlighted due to the use of the red noise model.

P2121 – Focusing on the two largest clusters is sensible, but do these clusters really dominate the data set? Point three states they only make up 11% of events in this period. I would consider re-wording this.

Point one has been reworded to clarify that the clusters only dominate the waveform correlation results, not the entire dataset.

It is also unclear to me whether these clusters exhibit the previously identified cyclicity defined by the entire data set, particularly given the events plotted in Fig 3, which shows cluster 1 to be fairly continuous over the first half of its lifetime, not following the patterns of a 40h cycle. This may be a function of the scale at which Figure 3 is plotted, but regardless, the occurrence of “strong cyclicity approximately corresponding to that seen in the STEF analysis” (Point 5) needs to be made more explicit or the use of these events during the remaining manuscript is questionable.

The reviewer is correct that the ~40 hr cyclicity in cluster 1 is not clear from Fig 3A; however it can be seen more clearly in Fig 3D, appearing from ~16 October (which is consistent with the onset of the 40 hr power spectral density peak in Fig 1a). From here on we see clear peaks in event rate with an approximately 40 hour cyclicity. Unfortunately the terminology in point 5 was not clear, rather the cycles were approximately 40 hours, not that the cycles of these clusters approximately followed the
The occurrence of both clusters also shows strong cyclicity, corresponding to the approximately 40 hour cycles identified in the STFT analysis of the hourly event counts (Sect. 3.2). In addition we have added 24 hr tick marks on both plots Fig 3A and D to aid the reader in following the timeline.

In addition we have added 24 hr tick marks on both plots Fig 3A and D to aid the reader in following the timeline.

P2129 – I have some comments and queries on the conceptual model that I would like to be addressed. What would be an estimate of the increase in normal stress from the densification and cooling of the spine, does this match the required increases in normal stress identified in experimental work required for significant increases in seismic velocity to account for a time lag of 0.1s-0.2s (Figure 4(b))? Or to cause the location of these events to migrate to the shallower level suggested (~100m). An estimate of the changes in normal stress required to do this would be beneficial.

The reviewer has raised an interesting point, and after internal discussion it has caused us to somewhat re-evaluate our analysis slightly. First we have concluded that the previous velocity estimate we used was too high. This is because the ultrasonic measurements were made on small cores of intact rocks, which cannot fully account for large-scale heterogeneities present in volcanic systems. For this reason we have chosen to modify our analysis to use the values derived from borehole measurements made during the Unzen Scientific Drilling Project (see Ikeda et al. 2008, JVGR). We find that reassessment of the seismic analysis using these values does not alter the results significantly and our conclusions remain the same. Figure 5 has been modified to include the new displacement calculations.

We agree with the reviewer that an estimate of the increase in normal stress would be beneficial to the manuscript. Unfortunately, we believe we cannot realistically constrain the increase in normal stress resulting from both the densification and cooling of the spine. There are too many unknowns that would make any attempt to estimate unfeasible. First, we do not know exactly the density difference; Kueppers et al. (JVGR 2005) measured the density distribution of erupted rocks in pyroclastic deposits but no systematic estimates have been performed for the spine, although field observations support a denser material in the spine than in the earlier lobes. Second, the surface area of the marginal fault(s), the angle of spine inclination in the dome, and the depth of the source region, etc, remain unconstrained. Third, thermal densification could be measured but as the effect is smaller than changes in density induced by veiscularity, its magnitude is not quantified here. Owing to these shortcomings, we wish to refrain from attempting a quantification.

The assumption that the opposite of the above would be true on the western margin of the spine due to “unloading” the contact is reasonable, but rather than the assumptions being that this will only result in a reduction of seismic velocity and/or deepening of the event location, it should also be mentioned that a reduction in the normal stress across this contact could likely also result in aseismic slip. As an aside this may be a possible explanation as to why the events in cluster 2 stop first as observed in Figure 3.

The reviewer makes an interesting observation (regarding the premature ending of cluster 2) and perhaps a valid point (although a reduction in normal stress does not necessarily imply no friction); this has been added to the text in section 4.4.

It is hard to tell from the conceptual model presented in figure 6 whether the statement that the lower frequency content of cluster 2 can be explained by the presence of fluid is valid. It appears that the source to receiver path from cluster 1 would also pass through this region, causing a similar low
frequency component to be present in the coda for cluster 2 events. The location of the FG1 Receiver needs to be further discussed to validate this statement.

The reviewer makes a good point regarding the frequency content in the waveforms for cluster 1 considering it should be passing through the fluid-rich source zone of cluster 2. However, we would argue that the lower frequency content for cluster 2 comes from its source region and not the pathway. Additionally, the receiver sits ~600 m from the 150 m long spine. This means the pathways for waveforms from each cluster source region only vary by approximately 150-250 m, which should not have any discernible path effect on the waveform codas.

If these events do represent frictional controlled slip of the spine at the Condit margins (spine extrusion) the gliding cycles from ~40h to ~100h should correlate with an overall decrease in extrusion rate over the same period, unless the extrusion of the spine became more aseismic with time, this is not discussed and this link to physical observations (if available) would greatly improve the manuscript.

One of the key points of this manuscript is combining the seismic with field and experimental observations so we thank the reviewer for helping us with this. We have added a sentence to section 4.1 to link differences in effusion rates to differences in cycle periods. However, the effusion rate dataset in Nakada et al. (1999) is not of sufficient resolution to explain the ‘gliding’ cycles seen in our work.

**Technical Corrections**
P2113 – L9, “< 1k to where” -> “< 1km from where”

Done.

P2144, Figure 1(b) I am unsure of the vertical scale on Figure 1, is this Log scale, and does it really plot up to 672h as suggested in the caption? Please make clearer.

The spectrogram is calculated with frequency (cycles/hour) on y-axis, but for clarity it is relabelled to cycle periods (1/frequency). I have reversed this to frequency on the right-hand y-axis to make this clear.

Yes, it does plot up to 672 hours. This is the known limit because of the Butterworth filter applied to the time-series before the spectrogram calculation. This is explained in section 2.3 and has been added to the caption of figure 1.

P2126 – L27, “this occurs conduit margins” -> “this occurs at conduit margins”

Done.

P2128 – L 16, “damage in and close to volcanic conduit” -> “damage in and close to the volcanic conduit”

Done.
Revised manuscript and supplementary files

In the following revised manuscript, new text is blue and underlined, and deleted text is red and crossed-through. Citations coloured in black, but surrounded by blue or red text, are part of the edit; their black colour is due to an issue with latexdiff.
Cyclic-Repetitive fracturing during spine extrusion at Unzen volcano, Japan

O.D. Lamb¹, S. De Angelis¹, K. Umakoshi², A.J. Hornby¹, J.E. Kendrick¹, and Y. Lavallée¹
¹Dept. of Earth, Ocean and Ecological Sciences, University of Liverpool, Jane Herdman Building, 4 Brownlow Street, Liverpool, L69 3GP, UK
²Graduate School of Fisheries Science and Environmental Studies, Nagasaki University, Nagasaki, Japan

Correspondence to: Oliver D. Lamb (o.lamb@liv.ac.uk)

Abstract. Rhythmic seismicity associated with spine extrusion is a well-documented phenomenon at a number of dome-forming volcanic systems. At Unzen volcano, Japan, a four year dome-forming eruption concluded with the emplacement of a spine from October 1994 to February 1995, offering a valuable opportunity to further investigate seismogenic processes at dome-forming volcanoes. Using continuous data recorded at a seismic station located close to the dome, this study explores trends in the seismic activity during the extrusion of the spine. We identify a total of 12,208 seismic volcano-seismic events in the period between October 1994 and February 1995. Hourly event counts indicate cyclic activity with periods of ∼40- to ∼100-hours, attributed to pulsatory ascent defined by strain localisation and faulting at the conduit margins. Waveform correlation revealed two strong clusters (a.k.a. multiplets, families) which are attributed to fracturing along the margins of the shallow, ascending plug spine. Further analysis indicates variable seismic velocities during the spine extrusion, as well as migration of the cluster sources along the spine margins. Our interpretation of the results from seismic data analyses is supported by previously published field and experimental observations, suggesting that the spine was extruded along an inclined conduit with brittle and ductile failure-deformation occurring along the margins. We infer that changes in stress conditions acting on the upper and lower spine margins led to deepening and shallowing of the faulting sources, respectively. We demonstrate that the combination of geophysical, field and experimental evidence can help improve physical models of shallow conduit processes.

1 Introduction

Lava dome growth and collapse represent a major volcanic hazard globally (Sparks 1997). The transition from effusive to explosive activity of a dome may be rapid and can generate destructive pyroclastic flows (Calder et al. 2002). This range of behaviour presents a significant challenge for forecasting and hazard mitigation; for example, the 1991-1995 eruption at Unzen, Japan (see section...
Continuous monitoring of growing and unstable lava domes is thus central to risk mitigation. The movement of magma during dome-building eruptions is a rich source of geophysical signals, particularly earthquakes. Analysis of shallow (<3km) volcanic-earthquakes has highlighted the importance of discerning their characteristics for the purpose of hazard assessment (Neuberg 2000, Chouet and Matoza 2013). Volcanic earthquakes are conventionally classified as either high-frequency or low-frequency. High-frequency signals, or Volcano-Tectonic events, reflect shear failure in a volume of rock due to stress variations during magma movement (Chouet et al. 1994, Lahr et al. 1994). are typical earthquakes within a volcanic edifice or in the crust beneath it (Chouet et al. 1994, Lahr et al. 1994, Chouet and Matoza 2013). Their occurrence may be related to the movement of magma (e.g. Wright et al. 2006), or gas (e.g. Hill 1996), or can be the result of local-regional stress interactions (e.g. Roman et al. 2008). Despite extensive research into low-frequency volcanic seismicity, the interpretation of its source mechanisms and propagation effects is still controversial. Typical low-frequency events (1-4 Hz) are ascribed to volumetric sources involving motion of fluids within resonating volcanic conduits and dykes (Chouet 1996). Earthquakes characterised by high-frequency and impulsive onsets with a low-frequency coda, known as hybrids, are often considered part of the low-frequency family of events (Green and Neuberg 2006, Neuberg et al. 2006) suggested that the long ringing coda of these signals are generated by conduit resonance triggered by brittle fracturing of magma, a process that can be preserved in a conduit margin (Tuffen and Dingwell 2005, Kennedy et al. 2009, Kendrick et al. 2012, 2014a). Repeating low-frequency events have been interpreted as the result of stick-slip motion along the margins of a viscous magma plug forced upwards by ascending magma (Iverson et al. 2006, Lensky et al. 2008, Iverson 2008, De Angelis 2009, Power and Lalla 2010, Varley et al. 2010, De Angelis and Henton 2011), and possibly regulated by frictional melting (Kendrick et al. 2014b, Harrington and Brodsky 2007). noted that Hybrid events recorded at different volcanic systems all exhibit corner frequencies and magnitudes consistent with brittle-failure sources. A recent study by Bean et al. (2013), employing a more proximal instrument network (<500m from volcanic vent), proposed that slow-rupture failure of weak volcanic materials can produce low-frequency events.

Cyclic behaviour has been commonly observed in volcano-seismicity during dome-forming eruptions (e.g. Voight et al. 1999, Lachowycz et al. 2013, Lamb et al. 2014). Various physical parameters may contribute to short-term cyclicity, including: wall-rock elasticity (Maeda 2000, Costa et al. 2007, 2012, outgassing pulses (Voight et al. 1999, Waite et al. 2008, Massol and Jaupart 2009, Collinson and Neuberg 2012, Michaut et al. 2013), and magma failure and frictional slip (Lavallée et al. 2008, De Angelis and Henton 2011, Lavallée et al. 2012b, Thomas and Neuberg 2012, Chouet and Matoza 2013, Kendrick et al. 2014a, b). Indeed, it is believed that it is frictional properties that control the final part of magma ascent (Kendrick et al. 2014b, Horby et al. 2015, Lavallée et al. 2015), which is driven by buoyancy. In tectonic settings, variations in
fault-normal stresses can produce wide-ranging fault products, such as gouge, cataclasite, pseudotachylyte, and mylonite (Ben-Zion and Sammis 2003). In volcanic settings, it is challenging to understand the conditions which result in failure and particularly the influence of faulted rocks on slip behaviour (Kendrick et al. 2014b). Frictional sliding is velocity dependent and may be velocity strengthening, which promotes stable aseismic slip, or velocity weakening (i.e. likely to produce earthquake instabilities; Dieterich 1979). Comminution during slip produces fault gouge, which results in a reduction in friction with increasing slip velocity, as determined experimentally for ash gouge by Lavallée et al. (2014). Gouge may be fluidised by dilation during rupture and form cataclasites, which have been observed in volcanic settings (Tuffen and Dingwell 2005; Cashman et al. 2008; Kennedy et al. 2009; Kendrick et al. 2012, 2014a; Gaunt et al. 2014; Plail et al. 2014).

In this study, we present a detailed characterisation of the seismicity associated with the extrusion of a spine during the late stage of the 1991-95 dome-building eruption at Unzen volcano, Japan. We use the results from our methods, together with previously published field and experimental constraints, to develop a conceptual model of the processes occurring during the magma ascent and spine extrusion.

1.1 Unzen eruption and spine extrusion

Following almost 200 years of dormancy at Unzen volcano, Japan, a new period of activity began with a swarm of Volcano-Tectonic earthquakes to the west of the volcano in November 1989 (Nakada et al. 1999; Umakoshi et al. 2001). The hypocentral distribution of Volcano-Tectonic events subsequently progressively evolved eastwards, towards the volcano at the surface (Umakoshi et al. 2001). Eventually, eruptive activity at the surface began in November 1990, with the first months dominated by phreatic and phreatomagmatic activity as magma approached the surface (Nakada et al. 1999). In May 1991 exogenic dome growth began, with a brief phase of spine extrusion, followed by a series of 13 viscous, dacitic lava lobes (Nakada et al. 1999). Vulcanian explosions occurred during the initial dome eruption stages in June and August 1991, when the effusion rate was at its highest (Nakada et al. 1999). The growing lava dome was structurally unstable and experienced repeated partial collapses that generated pyroclastic density currents, forcing the evacuation of over 10,000 local residents. This activity continued until February 1995, by which point effusion had ceased and seismicity returned to background levels (Nakada et al. 1999; Umakoshi et al. 2008).

Protracted spine growth defined the last five months of the eruption, beginning in mid-October 1994 and growing at an average rate of 0.8 m per day in November (Nakada et al. 1999; Yamashina et al. 1999; Hornby et al. 2015). Extrusion proceeded obliquely, with the 20-30 m diameter spine inclined at an angle of 45° towards the east-south-east (Kohno et al. 2008). The final dimensions of the spine were 150 m long, 30 m wide, and 60 m high (Nakada et al. 1999), with a record of ductile and brittle deformation preserved along the spine margins (Smith et al. 2001). The exposed shear zone bounding the upper margins of the inclined spine was up to 10 metres thick and comprised of sheared...
dacite, cataclasite and breccias (Hornby et al., 2015), whereas the underside has less pervasive damage and shows slickensides on the surface (Calder et al., 2015). Seismic activity during the spine extrusion was relatively low (Umakoshi et al., 2008) and shallow (<0.5 km; Umakoshi et al., 2008) but periodic increases in event output were observed synchronous with tilt oscillation on the volcanic edifice (Yamashina et al., 1999), constrained to originate from a fluctuating pressure source at 0.7-1.3 km depth (Kohno et al., 2008).

2 Data and Methods

2.1 Data source

The seismic data used for this investigation was collected by the Shimabara Earthquake and Volcano Observatory (SEVO; Shimizu et al., 1992). Three stations were installed < 1 km from where the dome would eventually emerge and all were equipped with a 1 Hz vertical component seismometer (see Figure 3 in Umakoshi et al., 2008). Signals were telemetered to SEVO and recorded continuously with a sampling rate of 100 Hz. For the last five months of the eruption, the most complete dataset was recorded by station FG1. The station also lies close to the spine (~600m) and was positioned in line with the direction of spine inclination. Here we analysed the complete high-resolution dataset from station FG1 for our investigation.

2.2 Automatic Event Detection

Single station detection was performed from October 1st 1994 to February 28th 1995 on to extract all types of seismic events from continuous vertical channel data using a conventional short-term average, long-term average (STA/LTA) algorithm (Allen, 1978). Using a single station improves the chronology of the progression of seismic events as it includes events not large enough to be detected at multiple stations. However, it is well known that the STA/LTA technique is prone to false alarms or missed events, depending on the choice of parameters. To help alleviate this issue, we tested different STA/LTA parameters on a 24 hour period of the seismic record. Once triggers were identified, we used a multi-parametric filter to remove false triggers from the record. Details of the parameters for the STA/LTA algorithm and the trigger filter can be found in Appendix A. The STA/LTA calculation and waveform correlation below were implemented within the framework of a Matlab toolbox tailored for large datasets (GISMO; Reyes and West, 2011). The STA/LTA algorithm is widely used for automatic detection of volcanic earthquakes from a large dataset (e.g. Matoza et al., 2009; Thelen et al., 2010; De Angelis and Henton, 2011; Ketner and Power, 2013). Amongst others, the single-station detection approach was successfully employed for the analysis of continuous seismic data recorded during the 2009 eruption of Redoubt volcano, USA, where it

1Now known as the Institute of Seismology and Volcanology, Faculty of Sciences, Kyushu University.
allowed a fine-scale view of variations in seismic behaviour as potential indicators of impending explosions (Ketner and Power, 2013).

2.3 Statistical Analysis

Volcanic time-series are inherently non-linear and can show cyclicity over a range of timescales (e.g. Odbert et al., 2014). Superposition of multiple cycles within a dataset can obscure the true make it difficult to observe and interpret individual signals. The Fast-Fourier Transform (FFT) offers an efficient means of examining the characteristics of a time-series (Danielson and Lanczos, 1942) via the Power Spectral Density estimate, which highlights the strength of periodic components in the signal (Percival and Walden, 1993). Here the Power Spectral Density is estimated using the Multitaper Method (MTM), demonstrated to be the most robust method when there is no prior knowledge of the signal-generating source (Thomson, 1982). The SSA-MTM Toolkit presented by Ghil et al. (2002) was used to perform the spectral analyses. A detrending correction was used to prepare the data by rendering the time-series approximately stationary, then either padded with zeroes at either end or truncated to a length of \( n^2 \), for integer \( n \), as required for FFT. The significance of spectral peaks were assessed against a statistical Red Noise Model (Mann and Lees, 1996), considered appropriate for systems with background noise heavily influenced by long-term processes. It is impossible to completely characterise the nature of the noise without prior knowledge of the source, therefore the red noise model acts only as a guide to interpretation. Here only peaks above the 99% confidence threshold are considered significant for discussion.

MTM analysis requires statistical stationarity over the whole data window, which is not a common feature of many geophysical systems and can result in spectra which are difficult to interpret. Short-term Fourier Transform (STFT) analysis calculates a series of Power Spectral Density estimates using a moving window of specified length with results illustrated using spectrograms. An assumption of stationarity is only required within an individual sample window, therefore spectrograms are useful for tracking changes in the spectral content of a time-series (Odbert and Wadge, 2009). In other words, the STFT spectrogram is a series of PSD estimates overlapping each other, instead of a single PSD estimate as produced by MTM analysis. The choice of parameters (window length and overlap) is critical and has been optimised for our analysis. A window length of 336 hours (14 days) with 99% overlap provided the best compromise between achieving sufficient temporal resolution and maintaining a long-enough window for robust analysis. The frequency distribution of each window was normalised to unity in order to remove the influence of changes to absolute spectral power, thereby allowing direct comparison of the relative frequency distributions between contiguous windows. For the analysis, a high-pass Butterworth filter with a cut-off of 672 hours was applied to the time-series to enhance the clarity of shorter period cycles of interest in the final spectrogram. Comparison between spectrograms generated from both non-filtered (Supplementary Figure 1) and filtered data indicated that the use of the filter did not affect either the timing or the frequency of...
spectral peaks. This combination of methods has not been previously used at Unzen volcano but has been successfully applied to geophysical datasets from other volcanic systems (Odbert and Wadge, 2009; Nicholson et al., 2013; Lamb et al., 2014). At Soufrière Hills volcano (Montserrat), this combination of methods identified cyclic patterns in tiltmeter displacement (Odbert and Wadge, 2009), SO2 flux (Nicholson et al., 2013) and seismic event rates (Lamb et al., 2014). Lamb et al. (2014) also described similar sub-annual cyclic patterns in a dataset from Volcán de Colima (Mexico), attributed to cyclic motion of magma within the system and expansion and contraction of a feeder dyke.

### 2.4 Waveform Correlation

Assessment of waveform similarity is useful for investigating trends in earthquake activity within large datasets. Repeating waveforms are significant because they represent the product of earthquakes generated by the same source in the same location. Small, impulsive earthquakes that accompanied spine extrusion at Mount St Helens from 2004 to 2008 were dubbed ‘drumbeats’ due to their rhythmic occurrence (Iverson et al., 2006; Iverson, 2008). These waveforms were hypothesised to derive from ‘stick-slip’ motion of the magma plug as it was forced upwards (Iverson et al., 2006; Iverson, 2008). The margins of this magma plug experienced strain localisation, and the surface textures (deformation features) of the extruded spine can provide the key to sub-surface deformation that may help regulate magma ascent (Kennedy et al., 2009; Kendrick et al., 2012). Here we explore the role of repeating earthquakes as an indicator of the conditions along the margins of the spine at Unzen.

We use cross-correlation to measure the similarity of waveforms in the event catalogue constructed using the single-station detection method (Sect. 2.2). To calculate waveform cross-correlation, we extract a 5-second window of data beginning at the picked arrival time. All waveforms are filtered with a 0.5 to 20 Hz passband Butterworth filter to minimise background noise and increase the signal-to-noise ratio. Five seconds of data following the arrival is sufficient to include the largest amplitude section of most waveforms while minimizing the effect of background noise. Changes in window length of a few seconds has a minor influence on the calculated correlation coefficient (not shown here). In the chosen period of analysis, each waveform is compared to every other waveform and the pair is designated a correlation value between 0 and 1; i.e. a value of similarity where 0 is completely different and 1 is identical. We identify clusters (repeating earthquakes, a.k.a. families, multiplets) using a hierarchical clustering method similar to that used by Buurman and West (2010).

Based on visual inspection of the cluster tree, we choose a correlation threshold of 0.8 and a minimum number of five events to define clusters. The value is equal to or higher than in comparable studies (e.g. Green and Neuberg, 2006; Buurman and West, 2010; Rodgers et al., 2013). Further discussion of the choice of parameters is found in Appendix B. Previously, waveform correlation has detected low-frequency clusters during swarms at Soufrière Hills volcano which were linked to a fixed shallow conduit source in the volcanic system (Green and Neuberg, 2006). Buurman and
West (2010) found clusters of waveforms closely tied to explosions at Augustine volcano (USA) and proposed that the method has considerable potential as an automated real-time volcanic explosion monitoring tool.

### 2.5 Singular Value Decomposition

Since the original dataset is derived from only three seismic stations, it is not possible to accurately calculate locations, and thus, absolute magnitudes and earthquake energies. However, we can assess the relative magnitudes between events of a cluster because the entire cluster must derive from the same source (e.g., Green and Neuberg [2006]). To determine the relative earthquake amplitudes and relative time lags within the two largest clusters we apply a method based on standard matrix factorization; the singular value decomposition (SVD). The method was proposed by Rubinstein and Ellsworth (2010) and used on clusters located around Parkfield, Northern California. SVD estimates relative earthquake size for repeating earthquakes by taking advantage of the waveform similarity of all the events within the sequence. The method uses the entire waveform, which reduces the uncertainty in earthquake size and produces a measurement which is consistent from event to event within a cluster. The technique robustly computes earthquake size while exploiting the information from the whole waveform, unlike the parametric information used in most standard magnitude estimation methods. The SVD can be used to describe a matrix $M$ (i.e. a group of horizontal vectors) in terms of two sets of basic vectors (input $U$ and output $V$) and set of nonnegative singular values $\sum$ ascribed to the weight of the output-basis vector, as in the following relationship:

$$M = U \sum V'$$

$U$ is a matrix that maps the weight applied to each output-basis vector for each data vector. Each column $\vec{U}_i$ of $U$ gives the relative amplitude of the associated output-basis vector ($\vec{V}_i$) for each data vector. When the input data consists of repeating events, the similarity of their waveforms means that most of the data’s power is explained by the first output basis vector (a.k.a. the first principal component). If we assume that all variables except size and arrival times are exactly the same, the other output-basis vectors will only be describing background noise. This means that the relative amplitude, and therefore moment, of the seismograms is described by the first input-basis vector. However, this can only be true when the SVD is applied to seismograms filtered such that the frequency content is below the corner frequency of the event that is being examined. Rubinstein and Ellsworth (2010) demonstrate that estimating the moment using SVD has much less uncertainty than the whole-network estimates of moment based on coda duration. A more detailed methodology, and a discussion of the associated errors and pitfalls of the method is presented in Rubinstein and Ellsworth (2010).

To find the relative time lags of the earthquakes in each cluster, we employed a cross-correlation method using the first output-basis vector calculated by SVD as a reference. That is, all waveforms
in each cluster are cross-correlated with the first-output basis vector, under the assumption that the first output-basis vector is effectively the mean waveform and representative of an unperturbed background state. The results of this method should reflect temporal variations in velocity relative to such unperturbed background levels.

### 2.6 Coda Wave Interferometry

While it is not possible to calculate source locations, coda wave interferometry (CWI) has the advantage in using repeating waveforms from a single station to provide an estimate of source separation. By exploiting the cross-correlation properties of the repeating waveforms with the use of CWI, it is possible to separate temporal changes of the material and source properties from the spatial variation of the earthquake source. The migration of a seismic source results in a change in distance to scatterers in the surrounding medium, affecting the arrival times of the waves that interfere to produce the seismic coda. De Angelis (2009) used this method to infer a source migration of 235 m over 24 hours for repetitive low-frequency earthquakes at Soufrière Hills volcano. The correlation coefficient, $R$, is related to the variance of the travel-time perturbation, $\sigma_\tau$, and to the frequency, $\bar{\omega}^2$, according to the following relationship (Snieder, 2003):

$$R = 1 - \frac{1}{2} \bar{\omega}^2 \sigma_\tau^2$$  \hspace{1cm} (2)

The frequency can be calculated from the seismogram data, $u(t)$:

$$\bar{\omega}^2 = \frac{\int_{t-T}^{t+T} u^2(t')dt'}{\int_{t-T}^{t+T} u^2(t')dt'}$$  \hspace{1cm} (3)

where the integral is performed over a window of length $2T$ centred at time $t$. The relationship between the variance of the travel time-perturbation and inferred source migration depends on the source mechanism. Snieder and Vrijlandt (2005) have demonstrated this relationship for different types of source such as an explosive, point or fault plane. If displacement occurs, for instance, along the fault plane, the source dislocation, $\delta$, is given by:

$$\delta = \left[ 7 \left( \frac{2}{v_p^6} + \frac{3}{v_s^6} \right) / \left( \frac{6}{v_p^8} + \frac{7}{v_s^8} \right) \right]^{\frac{1}{2}} \sigma_\tau$$  \hspace{1cm} (4)

where $v_p$ and $v_s$ are $P$- and $S$-wave velocities in the medium.

We applied equation (4) to 36-hour waveform stacks from clusters identified by waveform correlation (Sect. 2.4), to maximise temporal resolution and reduce the computing power required. Waveform stacking also improves the signal-to-noise ratio and improves correlation. The correlation coefficient was calculated for different frequency bands (1-5 Hz, 1-10 Hz) and time windows (1-5 s, 7-11 s) between each waveform stack and the first stack, and converted to source displacement. The calculations were based on a $P$-wave velocity of 5-4.5 km s$^{-1}$ and $S$-wave velocity of 2.6 km s$^{-1}$, consistent with experimentally measured velocities in rock samples from Unzen volcano.
at various pressure and temperature conditions. [Scheu et al., 2006] measured velocities during the Unzen Scientific Drilling Project [Ikeda et al., 2008]. These velocities are slightly smaller than these measured by [Ohmi and Lees, 1995] in blocks of 2 km x 2 km x 2.5 km, but using these higher velocities does in laboratory samples from Unzen [Scheu et al., 2006] and passive seismic source experiments at Unzen [Ohmi and Lees, 1995]. They are also higher than those inferred during an active seismic source experiment deployed a few kilometres to the west of Unzen [Matsumoto et al., 2012]; our chosen values represent a compromise between these measurements. However, it must be noted that these velocities do not account for macroscale fractures and fracture density along the seismicity pathways. Therefore our velocity values represent the upper limit of the range of actual velocities. To test the sensitivity of the equations, we used the higher velocities of [Ohmi and Lees, 1995] and find they do not change the results significantly (Supplementary Figure 2). Therefore equation (4) is sensitive to the seismic velocities employed—but uncertainties do not appear to affect the results dramatically. The velocities represent a second-order effect in comparison to the scarce knowledge of the source dynamics. The CWI method relies on a series of simplifying assumptions: the velocity field is considered isotropic and the medium locally homogenous, mode conversion at the surface is ignored and the source separation must be less than a wavelength; a full discussion of the limitations of the method is presented by [Snieder and Vrijlandt, 2005]. However, results from its application have been validated by comparison with other techniques such as the double-difference relocation method [Snieder and Vrijlandt, 2005].

3 Results

3.1 Single-station Detection

After filtering out false triggers, a total of 12,208 seismic events were detected; hourly event counts are plotted in Fig. 1. Two key observations of the dataset are:

1. The event rate for all types of events begins with peaks of 10-20 events per hour in October 1994, and decreases to less than 5 events per hour by the end of the eruption in February 1995.

2. Peaks at regular time intervals in October and November 1994 indicate cyclic activity during this period. This type of activity is the focus of the analysis using FFT techniques (Sect. 2.3, 3.2).

3.2 Fast-Fourier Transform

MTM analysis was carried out on the complete record of hourly event counts from single-station detection analysis to provide a first-pass assessment of the cyclic character of the dataset (Fig. 2A). The Power Spectral Density estimate reveals two peaks that appear significant above the 99% noise confidence threshold: 40- and 24-hours. However, analysis of the first and last four weeks of the dataset (Fig. 2B, C) reveals the cyclic components are not wholly persistent throughout the dataset.
Figure 1. (A) The hourly event record of events detected from continuous data recorded at station FG1 at Unzen from 1st October 1994 to 28th February 1995. (B) The STFT spectrogram for the hourly event count time-series plotted in (A). Spectrograms are plotted from 20- to 672-hour (4 weeks) cycle periods; the maximum defined by the high-pass Butterworth filter. The Power Spectral Density of each window has been normalised to unity. The last two weeks of November 1994 is dominated by a peak cyclicity whose period (>100 hours) lies close to the size of the moving window (336 hours); it is therefore considered a methodological artefact.

The 40-hour cyclic component does not appear in the Power Spectral Density estimate for the last four weeks of the dataset (Fig. 2C). Although this cyclic instability brings into question the assumption of statistical stationarity (required by definition of MTM spectral analysis), STFT analysis only requires the time-series to remain stationary within each window (described in Sect. 2.3). We therefore used the STFT method to explore the temporal variability of the hourly event count in more detail.

Inspection of the spectrogram from the hourly event count (Fig. 1B) highlights the following key observations:

1. Mid-October to mid-November 1994 is dominated by a strong ~40-hour cyclicity. This period behaviour does not appear again in any other part of the spectrogram time-series.

2. From December to the end of January the cycle period ‘glides’ from ~50-hours to ~100-hours.

3. The 24-hour periodicity noted in the MTM analysis (Fig. 2) is present in the spectrogram, but is not clear against the background noise.
Figure 2. MTM spectra showing time-series Power Spectral Density of the daily event counts of (A) the whole hourly event count time-series (01/10/94 - 28/02/95), (B) the first four weeks (01/10/94 - 29/10/94), and (C) the last four weeks of the time-series (31/01/95 - 28/02/95). The Power Spectral Density is plotted against various confidence levels of the Red Noise Model. Peaks exceeding at least the 99% confidence level are annotated with corresponding cycle period in hours.
3.3 Waveform Correlation

For waveform correlation, we focused on 5,738 events detected during the period of 1st October to 15th November 1994 to explore the emergence of the spine and its strong 40-hour pulsatory extrusion (Fig. 3A). The key observations are:

1. The dataset was dominated by two clusters: Two large clusters dominate the results of the waveform correlation. The clusters, henceforth known as cluster 1 and 2, are highlighted and their waveforms contain a strong low-frequency component (Fig. 3A, B and C).

2. Waveform stacks for clusters 1 and 2 show opposite arrival polarities (Fig. 3B, C).

3. Cluster 1 (487 events) and 2 (181 events) are by far the largest of 29 significantly larger than the other 27 clusters detected during this period; by comparison the third largest cluster has 32 events.

4. The occurrence of both clusters also shows strong cyclicity, approximately corresponding to that seen, corresponding to the approximately 40-hour cycles identified in the STFT analysis of the hourly event counts (Sect. 3.2).

5. 84% of events in this period (01/10/94 - 15/11/94) did not fall under our criteria of being part of a cluster, thus the clusters represent a fraction of the seismic record (Fig. 3D).

3.4 Cluster characteristics

For each cluster, the frequency index for each waveform (calculated for single-station detection filtering; Sect. 2.2) was plotted over time (Fig. 4A). There is a clear division in the frequency component of each cluster, with cluster 2 containing waveforms with more low-frequency components. SVD of the waveforms in cluster 1 and 2 show that during their lifetimes, the relative amplitudes (and by extension, relative moment) remain substantially unchanged (Fig. 4B). In contrast, relative time differences for each cluster show opposite trends (Fig. 4C). Cluster 1 has a positive trend, indicating that the events are arriving sooner relative to the mean cluster waveform; whereas for cluster 2, a negative trend indicates that the events are arriving later relative to the mean waveform (Fig. 4C).

CWI was applied to the bandpass-filtered stacked waveforms from each cluster. Displacements calculated in the 1-5 s window of the waveforms, filtered at 1-5 Hz, are relatively stable during the early stages of both clusters (Fig. 5B, E). However, the last week of each cluster is defined by displacements of over 100 m. The displacements calculated after the 5-10 Hz filter show greater scattering but smaller displacements (Fig. 5C, F). The codas (5-9 s) in both bandpass filters do not reflect these changes, with relatively stable movement throughout each cluster’s lifetime (Fig. 5B, C, E, and F). This indicates little or no motion of the scatterers in the source-receiver path.
Figure 3. (A) Catalogue of cluster occurrence in our dataset from 1st October to 15th November 1994. Each plotted point represents an earthquake, and earthquakes on the same line are part of the same cluster. Only clusters with 5 or more events are shown. The two largest clusters, Clusters 1 and 2, are plotted with red squares and blue triangles respectively. (B) The waveform stack of all events in cluster 1 overlain on a frequency spectrogram of the stack. (C) The waveform stack of all events in cluster 2, overlain on a frequency spectrogram of the stack. (D) Hourly event rates for all events (grey) and events in Clusters 1 and 2 (black) during the period of 1st October to 15th November 1994.

4 Discussion

4.1 Cyclic variations in seismicity

Single-station detection with a STA/LTA algorithm detected a total of 12,208 volcano-seismic events between 1st October 1994 and 28th February 1995 at Unzen volcano (Fig. 1A). Our count is in good agreement with previous results published by Nakada et al. (1999) and Umakoshi et al. (2008). Furthermore, good visual correlation between the temporal pattern of earthquake rates and real-time seismic amplitude measurements reinforces our confidence in the results of the detection algorithm (Supplementary Figure 3). However, our rates are much higher than those of Yamashina et al. (1999), who used data recorded 5 km south-west of the vent and which likely did not detect many smaller events during the activity. A combination of MTM and STFT analysis on hourly event counts revealed a strong ~40-hour cyclicity during the extrusion of a spine (Fig. 1B). We also see a ‘gliding’ in the cycle period from ~40-hours in mid-November up to ~100-hours at the end of January 1995. The ~40-hour periodicity is very similar to that previously described in seismicity and tilt data (Nakada et al., 1999; Yamashina et al., 1999). However, the ~100-hour cycle at the end of January 1995 is longer than the ~60-hour period described by Nakada et al. (1999).

Numerous studies of seismicity during dome-forming eruptions have described characteristic se-
Figure 4. (A) The frequency index of earthquakes in clusters 1, 2, and 3-29. (B) Relative amplitudes of earthquakes in clusters 1 and 2, as measured using singular value decomposition. (C) The relative time difference (i.e. time lag) of each earthquake in clusters 1 and 2, as measured using cross-correlation against the first principal component. In each panel the linear best fit for each cluster are plotted. Relative amplitudes and time differences were not calculated for clusters 3-29.

Figure 5. Stacked waveforms (left column) and source displacements between the first stack and all other stacks for data bandpassed between 1-5 Hz (middle column) and 5-10 Hz (right column). The top and bottom row are for cluster 1 and 2 respectively.

Sequences of earthquakes that correlate with changes in surface activity (e.g. Chouet 1996, Iversen et al. 2006, Neuberg et al. 2006, Buurman and Westl 2010, Ketner and Power 2013, John-
This has been modelled to reflect frictional processes along conduit walls as the ascending magma releases accumulated energy by faulting and/or pulsatory ascent (Denlinger and Hoblitt, 1999; Voight et al., 1999; Iverson et al., 2006; Neuberg et al., 2006; Iverson, 2008; Lensky et al., 2008; Moore et al., 2008; Kennedy et al., 2009; Kendrick et al., 2012; Pallister et al., 2013; Kendrick et al., 2014b; Scharff et al., 2014). Yamashina et al. (1999) proposed a cyclic upward movement of the Unzen spine due to periodic variations in pressure in the conduit and Umakoshi et al. (2011) invoked a similar model to explain a short period 1-2 hour cycle during an earlier phase of the eruption in May 1991. Pressurization below a relatively impermeable plug has been commonly cited as the driving force for fracture propagation at the conduit margins (Voight et al., 1999; Johnson et al., 2008; Massol and Jaupart, 2009; Lyons et al., 2012). Various physical parameters may contribute to The increase in observed cycle periods between May 1991 and November 1994 is likely due to a decrease in the effusion rate from $>2$ to $<0.3 \text{ m d}^{-1}$ through the same period (Nakada et al., 1999). This is a similar mechanism to that inferred by Voight et al. (1999) to explain cycles of a similar periodicity at Soufrière Hills volcano, and later successfully modelled by Costa et al. (2012). The gradual decline and eventual halting of effusion by February 1995 would also explain the observed ‘gliding’ of the cycle periodicity. The short-term cyclicity during dome forming eruptions, including: wall rock elasticity (Maeda, 2000; Costa et al., 2007; 2012), outgassing pulses (Voight et al., 1999; Waite et al., 2008; Massol and Jaupart, 2009; Collinson and Neuberg, 2012; Michaut et al., 2013), and magma failure and frictional slip (Lavallée et al., 2008; De Angelis and Henton, 2011; Lavallée et al., 2012b; Thomas and Neuberg, 2012; Chouet and Maoza, 2013; Kendrick et al., 2014a, b). Indeed, it is believed that it is frictional properties that control the final part of magma ascent (Kendrick et al., 2014b; Hornby et al., 2015; Lavallée et al., 2015), which is driven by buoyancy. In tectonic settings, variations in fault-normal stresses can produce wide-ranging fault products, such as gouge, cataclasite, pseudotachylite, and mylonite (Ben-Zion and Sammis, 2003). In volcanic settings, cyclicity at Unzen could also be explained by the presence of an elastic-walled dyke (e.g. Costa et al., 2007); indeed, a dyke was emplaced beneath the dome in the challenge is in understanding the conditions which result in failure and particularly the influence of faulted rocks on slip behaviour (Kendrick et al., 2013b). Frictional sliding is velocity dependent and may be velocity strengthening, which promotes stable aseismic slip, or velocity weakening (i.e. likely to produce earthquake instabilities; Dieterich 1976). Comminution during slip produces fault gouge, which results in a reduction in friction with increasing slip velocity, as determined experimentally for ash gouge by Lavallée et al., 2014a. Gouge may be fluidized by dilation during rupture and form cataclasites, which have been observed in volcanic settings (Tuffen and Dingwell, 2005; Cushman et al., 2008; Kennedy et al., 2009; Kendrick et al., 2012, 2014a; Gaunt et al., 2014; Plail et al., 2014). Given the extremely dynamic temperature and stress conditions—early stages of the eruption (Yamashina and Shimizu, 1999; Umakoshi et al., 2011)—however, the calculated thickness of the dyke (13 m; Yamashina and Shimizu, 1999), coupled with the low extrusion rate in November 1994,
would not be able to account for the cycle period observed here (see Figure 6 in Costa et al. [2007]).

Given the high ambient temperatures in the shallow magma column, it is likely that slip could lead to the generation of pseudotachylite (e.g., Kendrick et al., 2012, 2014b). Pseudotachylite generation greatly alters local temperature increases during slip events are likely to produce pseudotachylite (e.g., Kendrick et al., 2012, 2014b), greatly altering fault properties (Otsuki, 2003; Di Toro et al., 2006; Nielsen et al., 2010; Hornby et al., 2015; Lavallée et al., 2015). A recent study has shown that slip velocities as little as 0.1 m.s\(^{-1}\) are sufficient to induce frictional melting (Kendrick et al., 2014a) — a threshold regularly met during faulting in the seismic events related to the spine extrusion at Unzen volcano (Hornby et al., 2015). However, it is difficult to infer the importance of each mechanical contribution to the cyclicity detected above, as our description of these signal’s trigger mechanisms remains incomplete. Here, using a combination of waveform correlation, SVD and CWI we have attempted to get a better understanding of this problem.

### 4.2 Repeating waveforms

Waveform correlation was carried out on the period around the extrusion of the spine instead of the entire period to focus on repetitive events related to its upward movement. 29 clusters were detected between 1\(^{st}\) October and 15\(^{th}\) November 1994 (Fig. 3B). The two largest clusters, which emerge coincidentally with the first observation of the spine (Yamashina et al., 1999), also feature a strong ~40-hour periodicity similar to that detected in our FFT analysis (Sect. 3.2). The similar cluster waveforms (Fig. 3B, C) and the cyclic, non-destructive source character of the seismicity suggests a common process occurring within a similar setting. In addition, the opposing arrival polarities of each stacked cluster waveform (Fig. 3B,C) indicates opposite failure directions. Therefore, we propose that each cluster derives from low-frequency events from brittle shear failure on opposite sides of the ascending magma plug at Unzen volcano.

It is the rheology of magma that helps drive this process; during ascent the rheology evolves as magma crystallises and vesiculates, becoming increasingly brittle as it both vesiculates and outgasses (Caricchi et al., 2007). This behaviour, on short timescales in the upper conduit, provides exceptionally dynamic rheological conditions that favour strain localisation and failure (Lavallée et al., 2008). Providing a hypothesised source for repeating volcanic earthquakes during the delicate interplay of magma across the glass transition (e.g., Neuberg et al., 2006). As magma undergoes a similar pressure temperature path through time, the conditions of failure would remain constant and failure would be achieved at a similar depth in the conduit, thereby generating seismicity from a recurring source (Thomas and Neuberg, 2012). Field examination of eruptive products elsewhere have exposed the importance of multiple fault processes (Tuffen et al., 2003; Tuffen and Dingwell, 2005; Kendrick et al., 2012, 2014b; Plail et al., 2014), where magma fracture is followed by friction, inducing comminution, brecciation, cataclasis (Kennedy et al., 2009), frictional melting and viscous remobilisation near the conduit margin (Kendrick et al., 2014a). These
findings support the view that the bulk of the magma is able to ascend as a plug, where brittle fracturing along the margins of the ascending spine is responsible for seismicity, including the repetitive ‘drumbeats’ observed during the 2004-08 eruption at Mount St Helens [Iverson et al., 2006; Iverson 2008; Kendrick et al., 2012]. These mechanisms have been observed or, in some instances, inferred at other volcanic systems such as Augustine [Power and Lalla 2010], Volcán de Colima [Varley et al., 2010] and Soufrière Hills volcano [Green and Neuberg 2006; Neuberg et al., 2006; Lensky et al., 2008; Hammer and Neuberg 2009; De Angelis 2009; De Angelis and Henton 2011; Kendrick et al., 2014a].

At Unzen, the gas flux scaled relatively consistently with magma extrusion rate throughout the eruption, with no marked increase during spine growth (e.g. Hirabayashi et al., 1995), therefore we exclude the movement of hydrothermal fluids as a source for the repetitive seismicity at Unzen (see e.g., Waite et al. 2008; Matoza and Chouet 2010). In contrast, evidence of brittle failure along the spine margins at Unzen is present in field observations and laboratory measurements. Parallel-plate viscometry experiments have indicated that under the temperature and stress conditions in the conduit at Unzen, the magma’s rheology would have induced brittle failure in regions of high strain rate [Goto 1999; Cordonnier et al., 2009]. Indeed, the brittle failure of magma at high temperature is integral to magma discharge (Lavallée et al. 2008; Tuffen et al., 2008; Smith et al., 2011) and occurs when the strain-rate surpasses the melt’s timescale of relaxation (Webb and Dingwell 1990). In the crystal-rich Unzen magma (56% crystal content; Cordonnier et al., 2009) there is a wide transitional area between viscous flow and brittle failure, where cracks nucleate, propagate and coalesce as catastrophic failure is approached (Cordonnier et al., 2012). As magma failure-the shear failure of magma directly results from strain localisation (Lavallée et al., 2012a), this occurs at conduit margins, creating a marginal damage zone that enhances permeability and hence the degassing capability of the magma column (Watts et al., 2002; Gaunt et al., 2014; Kendrick et al., 2014b; Plail et al., 2014). It is thought that lava domes may evolve from endogenous to exogenous growth through the development of such damage zones (Hale and Wadge, 2008; Cordonnier et al., 2009); and indeed, sheet-like layers of different porosities were described in rocks within the Unzen spine (Kueppers et al., 2005) along with a variety of cataclastic and brecciated fault rocks that preserve a record of brittle and ductile deformation along the margins of the spine (Smith et al., 2001; Calder et al., 2015; Hornby et al., 2015).

4.3 Source variations

Since our dataset only includes data from three stations, it is not possible to calculate the location of each earthquake in the record, which would aid our understanding of the source processes for the clusters. Instead, we employed the SVD method (Rubinstein and Ellsworth, 2010) to calculate relative amplitudes (and by extension, relative moments) and relative time differences (Fig. 4). While
relative amplitudes for both clusters remain the same throughout each lifespan (Fig. 4B), the relative time differences have positive and negative trends for Cluster 1 and 2, respectively (Fig. 4C). This suggests changes in either seismic velocity or source-receiver distance. The presence of a cluster generally implies a relatively stable source volume for the earthquakes, allowing for displacement within a quarter-wavelength (Geller and Mueller 1980). However, De Angelis (2009) used CWI to estimate a source migration of 235 m for a cluster at Soufrière Hills volcano, Montserrat. Determining relative relocation for the cluster events at Unzen volcano is difficult due to the low number of stations available, but published locations have shown that the vast majority of earthquakes during our period of analysis occurred in the shallow subsurface (<1 km below summit; Nakada et al., 1999; Umakoshi et al., 2008).

Using CWI, we analysed the stacked waveforms from Cluster 1 and 2 to assess changes in relative source locations (Fig. 5). We measured displacements of up to 100 m from the original position towards the end of each cluster’s lifetime. However, displacements measured in the codas are relatively small, remaining close to zero. This shows that the position of scatterers remained relatively fixed during this period. Additionally, the calculated displacements are sensitive to which bandpass filter is used (Fig. 5B, C, E and F). However, as each waveform stack indicates a low-frequency nature (1-5 Hz, Fig. 5B, C) we do not consider displacements in the higher bandpass filter as relevant. The results presented in Figure 5 do not account for errors that are due to the choice of source models and seismic velocities (see Sect. 2.6). For the former, it is reasonable to expect the displacement occurs along a fault plane rather than an explosive or point source; no explosions were reported at Unzen during the spine formation (Nakada et al., 1999). Using seismic velocities measured in Unzen dome rock samples in various pressure and temperature conditions (see Sect. 2.6 here; Scheu et al., 2006) consistent with those measured during the Unzen Scientific Drilling Project (see Sect. 2.6 here; Ikeda et al., 2008) we estimate that these displacements cannot explain the entire relative time difference trend seen in Fig. 4C. Therefore, we ascribe the relative time differences in both clusters (Fig. 4C) to source displacements and an increase and decrease in seismic velocities for Cluster 1 and 2, respectively. Such characteristic opposite trends must derive from a common phenomenon with different conditions, as described by our conceptual model (Sect. 4.4).

### 4.4 A conceptual model

The displacement in the cluster sources and changes in seismic velocity at the source requires a mechanistic understanding. There are multiple processes by which the seismic velocity in a volcanic edifice can change: damage in and close to the volcanic conduit, the presence of hydrothermal fluids, or changes in stress and temperature conditions (e.g., Scheu et al., 2006; Heap et al., 2015). Damage around the margins of spines is reported at Mount St Helens (Kennedy et al., 2009; Kendrick et al., 2012; Pallister et al., 2013) and Unzen volcano (Smith et al., 2001; Hornby 2018).
It is highly unlikely that the source location for Cluster 1 was becoming less damaged during the cluster lifespan, but variable loading of damaged rocks may affect material response, for example as fractures perpendicular to the principal stress close, seismic velocity can be increased (e.g., Heap et al., 2014). On the other hand, it is likely that the source location for cluster 2 was becoming increasingly damaged by both the thermal and cyclic stressing associated with the eruption (Kendrick et al., 2013; Schaefer et al., 2015). The frequency content of each cluster suggests the presence of fluids around the source regions, with higher fluid content around the source for Cluster 2 (Fig. 4A), despite no reports of significant changes in the flow of hydrothermal fluids towards the end of the eruption (Hirabayashi et al., 1995). However, we do not believe it can explain the observed opposite trends in time lag for the events in Clusters 1 and 2, though hydrothermal fluids may contribute towards mechanical weakening of the rocks (e.g., Heap et al., 2015). We therefore propose a model where the extrusion of an inclined spine can lead to both variations in seismic velocities at the cluster sources and migration of each source (Fig. 6). In this model the source regions for each low-frequency cluster are located on the eastern and western margins of the spine, for Cluster-cluster 1 and 2 respectively. The spine, rising in a pulsatory manner, undergoes volatile exsolution leading to densification and a loss in buoyancy. The dense, eastward-inclined spine then exerts an increasing amount of normal stress on the eastern, lower margin, and a decreasing amount on the western, upper margin. The inclination of the spine is evident from the inclined distribution of seismic hypocentres (Umakoshi et al., 2001) and pressure sources beneath the volcano (Kohno et al., 2008). Experimental work on Unzen dome samples by Scheu et al. (2006) has shown that under isothermal conditions, an increase in normal stress increases the $P$- and $S$-wave velocities. Each seismic event in the cluster is the result of a shear stress increase above the material strength or the frictional resistance on the surface of the spine, which are equally affected by normal stress (Byerlee, 1978). On the eastern, lower margin of the spine, an increase in the normal stress occurred throughout extrusion and cooling and densification resulted in a shallowing of the cluster source as the failure criteria was met at the same stress conditions at increasingly shallower depth. On the western, upper margin the opposite effect is seen, the source deepened to where failure conditions were met as the spine sunk away from the contact, unloading it from below and decreasing normal stress. Furthermore, a reduction in normal stress across the western margin could introduce a degree of aseismic slip, causing cluster 2 to cease first. Therefore, the response of the magma subjected to differing stress-strain conditions on the upper and lower spine margin could in-part explain the difference in occurrence times and rates between clusters 1 and 2. Additionally, the locations of each cluster source on opposite sides of the plug explains the opposite arrival polarities seen in the cluster waveform stacks (Fig. 3B, C). The lower frequency content in the waveforms from Cluster-cluster 2 (Fig. 4A) could result from the greater presence of fluids which would serve to further compromise rock strength and seismic velocity in and around the western margin, during greater fluid saturation due to degassing of the...
Figure 6. (A) An E-W cross-section of the conceptual model for spine extrusion and cluster source locations at Unzen volcano in October/November 1994, looking North. The inset shows a map-view of the spine at the surface of the lava dome. Squares indicate the locations for Panels B and C. (B) Detailed view of the source region for cluster 2, showing how it moves progressively deeper over time (t1,t2,t3) in response to the decrease in normal stress. (C) Detailed view of the source region for cluster 1, showing how it moves progressively shallower over time (t1,t2,t3) in response to the increase in normal stress. Please see Sect. 4.4 for more details and explanations.

magma through the upper surface of the spine as the failure point propagates ever deeper towards the base of the magma plug. These stress variations form a minor contribution to the variations in seismic velocity in the source region for Cluster 2, dominated by the decreasing normal stress due to the inclined spine.
5 Conclusions

We have characterised the seismicity of spine extrusion during the last stage of the 1991-1995 dome-forming eruption at Unzen volcano, Japan. Using a single-station detection approach, we identified 12,208 seismic events between October 1994 and February 1995. Two Fast-Fourier Transform analysis methods (Multitaper Method and Short-term Fourier Transform) revealed strong ∼40-hour cycles in hourly counts during the emergence of the spine. By the end of January 1995, the cycle ‘glided’ to a ∼100-hour period. The cycles were linked to pulsatory extrusion of the spine, in-part governed by the frictional properties of the magma plug and driven by magma supply from below. Waveform correlation of the dataset revealed two strong cyclic clusters of low-frequency volcano-seismic events during the spine extrusion, interpreted as repeated fracturing events at the spine margins. A combination of singular value decomposition and coda wave interferometry revealed changes in seismic velocities in the Unzen edifice during the extrusion. Our conceptual model proposes that late-stage densification of the inclined magma spine resulted in increasing normal stresses on the lower margin, serving to close preferentially aligned fractures, and the opposite effect on the upper margin, where pervasive damage resulted from unloading from below as the spine slumped. This results in increasing and decreasing seismic velocities respectively, as well as a migration of the source regions along the conduit walls as failure criteria are met. This study highlights the application of single-station detection, statistical analysis, waveform correlation, singular value decomposition, and coda wave interferometry to deduce subtle variations during eruptions. We anticipate that the application of such mechanism-based interpretation of geophysical signals, combined with field and experimental evidence, will help improve physical models needed to inform future assessment of hazards during lava dome eruptions.

Appendix A: Single-station detection parameters

A complete list of the parameters used for the Short-term Average, Long-term Average (STA/LTA) algorithm used in single-station detection is provided in Table 1. Events associated with noise and low signal-to-noise ratio were stripped from the overall event set; Table 2 lists the metric threshold values used. The metric values were chosen after characterisation of noise manually picked from the data. Of the 18,292 events originally detected, 6084 of these were removed by filtering.

Appendix B: Waveform correlation parameters

The choice of parameters for waveform correlation can affect the resulting clusters and their characteristics. Table 3 lists the different output results for various parameters that could be used for waveform correlation.
correlation. Supplementary figures 4 - 10 contain the cluster lifespan plots for the parameters not used.

For our research, we use a correlation coefficient threshold of 0.8 and a minimum of 5 events to define a cluster. From 1st October to 15th November, this assigns 16% of all events to a cluster (Table 3). This lies inside the range of values reported in previous publications (10% to 25%; Thelen et al., 2011; Rodgers et al., 2013, 2015). Therefore our parameters, while strict, do not exclude an unusual amount of events from clusters. One exception is Green and Neuberg (2006) who assigned 50% of a particular type of low-frequency seismic events at Soufrière Hills volcano during a specific period of time. As this is an analysis of a particular type of event, therefore it cannot be directly compared to our values.

Acknowledgements. This work was funded by the European Research Council (ERC) starting grant ‘Strain Localisation in Magmas’ (SLiM, project no. 306488). We would like to acknowledge the comments and suggestions by the three anonymous reviewers and the editor which greatly improved this article.
References


dome extrusion at Unzen Volcano, Japan, Journal of Volcanology and Geothermal Research, 206, 70–79,

Varley, N. R., Arámbula-Mendoza, R., Reyes-Dávila, G., Sanderson, R., and Stevenson, J.: Generation of Vulca-
nian activity and long-period seismicity at Volcán de Colima, Mexico, Journal of Volcanology and Geother-

Voight, B., Sparks, R., Miller, A. D., Stewart, R. C., Hoblitt, R. P., Clarke, A., Ewart, J., Aspinall, W. P., Baptie,
Young, S. R.: Magma Flow Instability and Cyclic Activity at Soufriere Hills Volcano, Montserrat, British

Waite, G. P., Chouet, B. A., and Dawson, P. B.: Eruption dynamics at Mount St. Helens imaged from broadband
seismic waveforms: Interaction of the shallow magmatic and hydrothermal systems, Journal of Geophysical

Watts, R. B., Herd, R. A., Sparks, R. S. J., and Young, S. R.: Growth patterns and emplacement of the an-
desitic lava dome at Soufriere Hills Volcano, Montserrat, Geological Society, London, Memoirs, 21, 115–

Webb, S. L. and Dingwell, D. B.: Non-Newtonian rheology of igneous melts at high stresses and strain rates:
Experimental results for rhyolite, andesite, basalt, and nephelinite, Journal of Geophysical Research, 95,

rift segmentation at continental rupture in the 2005 Afar dyking episode., Nature, 442, 291–294,
doi:10.1038/nature04978 2006.

Yamashina, K. and Shimizu, H.: Crustal deformation in the mid-May 1991 crisis preceding the extrusion of
a dacite lava dome at Unzen volcano, Japan, Journal of Volcanology and Geothermal Research, 89, 43–55,

Yamashina, K., Matsushima, T., and Ohmi, S.: Volcanic deformation at Unzen, Japan, visualized by a time-
Table 1. STA/LTA parameters used in single-station event detection

<table>
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>L_{STA}</td>
<td>0.8 s</td>
<td>Length of short-term window</td>
</tr>
<tr>
<td>L_{LTA}</td>
<td>7 s</td>
<td>Length of long-term window</td>
</tr>
<tr>
<td>t_{on}</td>
<td>1.5</td>
<td>Trigger-on threshold</td>
</tr>
<tr>
<td>t_{off}</td>
<td>1</td>
<td>Trigger-off threshold</td>
</tr>
</tbody>
</table>

Table 2. Extreme metric values used for SSD noise removal. P2P refers to peak-to-peak amplitude.

<table>
<thead>
<tr>
<th>Metric</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency Index</td>
<td>&gt; 0.5</td>
</tr>
<tr>
<td>Root-mean square amplitude (RMSA)</td>
<td>&lt; 50 counts</td>
</tr>
<tr>
<td>P2P/RMSA</td>
<td>&gt; 20</td>
</tr>
<tr>
<td>Duration</td>
<td>&lt; 2 s</td>
</tr>
<tr>
<td>Centre Frequency</td>
<td>&lt; 1 Hz, &gt; 50 Hz</td>
</tr>
</tbody>
</table>

Table 3. Parameters used for waveform correlation and their output values using the 5,738 events detected from 1st October to 15th November 1994. CC stands for correlation coefficient.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>CC threshold</th>
<th>No. of events limit</th>
<th>Number of clusters</th>
<th>Size of largest cluster</th>
<th>% of all events in clusters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>≥ 2</td>
<td>762</td>
<td>514</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.7</td>
<td></td>
<td>579</td>
<td>505</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>0.8</td>
<td></td>
<td>275</td>
<td>487</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>0.9</td>
<td></td>
<td>90</td>
<td>372</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>≥ 5</td>
<td>144</td>
<td>514</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.7</td>
<td></td>
<td>85</td>
<td>505</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>0.8</td>
<td></td>
<td>29</td>
<td>487</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>0.9</td>
<td></td>
<td>18</td>
<td>372</td>
<td>11</td>
</tr>
</tbody>
</table>
Supplementary Figure 1: (A) The hourly event record of events detected from continuous data recorded at station FG1 at Unzen from 1st October 1994 to 28th February 1995. (B) The STFT spectrogram for the hourly event count time-series plotted in (A), without any Butterworth filter applied to the time-series. (C) The STFT spectrogram of the hourly event count time-series plotted in (A), without any normalisation applied to each window.
Supplementary Figure 2: Source displacements between the first stack and all other stacks for data bandpassed between 1-5 Hz (A and C) and 5-10 Hz (B and D) for cluster 1 (A and B) and cluster 2 (C and D).
Supplementary Figure 3: 10-minute averaged Real-time Seismic Amplitude Measurements of the continuous data from station FG1.
Supplementary Figure 4: Cluster lifespan plot for CC threshold of 0.6 and 2 or more events. Each line connects events within a single cluster. Clusters are plotted by age in ascending order.
Supplementary Figure 5: Cluster lifespan plot for CC threshold of 0.7 and 2 or more events. Each line connects events within a single cluster. Clusters are plotted by age in ascending order.
Supplementary Figure 6: Cluster lifespan plot for CC threshold of 0.8 and 2 or more events. Each line connects events within a single cluster. Clusters are plotted by age in ascending order.
Supplementary Figure 7: Cluster lifespan plot for CC threshold of 0.9 and 2 or more events. Each line connects events within a single cluster. Clusters are plotted by age in ascending order.
Supplementary Figure 8: Cluster lifespan plot for CC threshold of 0.6 and 5 or more events. Each line connects events within a single cluster. Clusters are plotted by age in ascending order.
Supplementary Figure 9: Cluster lifespan plot for CC threshold of 0.7 and 5 or more events. Each line connects events within a single cluster. Clusters are plotted by age in ascending order.
Supplementary Figure 10: Cluster lifespan plot for CC threshold of 0.9 and 5 or more events. Each line connects events within a single cluster. Clusters are plotted by age in ascending order.