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After presenting a brief summary of the key points made in the paper Prof Griera 

raises a number of questions, which we have numbered below for ease of reference. 

The points are very constructive and helpful and all will be taken into account in the 

preparation of a revised manuscript. 

1)   In Fig. 4, in which we compare the intact and residual strengths  of Pennant and Darley Dale 

sandstones in both axial extension and shortening configurations. In the same way as for  

measurements of friction coefficient on sawcut samples, friction coefficient on surfaces 

produced by failure of the intact rock is similarly lower in axial extension than shortening. 

However, the reviewer draws attention to the fact that there is no such marked trend when 

comparing the so-called ‘internal’ friction angle between extensional and shortening loading 

regimes. We do not have a particular explanation for this. It is true that for a given least 

principal stress,  differential stress at intact rock failure is higher in extension than in 

shortening, and this is likely attributable to the higher mean stress in extension , in accord 

with what has been previously reported. But for frictional sliding the effect goes the other 

way. 

2) The question is asked “How do you reconcile the deviation between the failure envelope 

(defined from the combination of shear stress and normal stress on the failure planes 

produced) compared to  the tangent to the envelope of Mohr circles at failure?”. This relates 

to fig.5.  In  the case of both rock types, in axial shortening the fault angle is larger than the 

imaginary plane defined by the normal to the tangent to the Mohr circles, and vice-versa in 

extension. The difference suggests that the ultimate fault plane may be defined by a linkage 

between an en-echelon array of small scale shear surfaces that are perhaps formed the peak 

of the stress-strain curve. We cannot prove this because the damage done in fault formation 

destroys any microstructural evidence. A series of tests terminated at various stages through 

the failure process on a very stiff machine would be required to investigate this question. 
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3) This point raises the question of the axial ratio of the sample in our results. For the reasons 

the referee cites, we used a length : diameter ratio = 2.5 : 1, as is common practice, to 

reduce the impact of specimen end-effects on ultimate failure. 

4) This question argues that our discussion of the effects of specimen mechanical anisotropy is 

not supported by experimental results. This is correct, as in this study we have not 

investigated the effects of anisotropy by means of deformation of specimens cored in 

different directions relative to bedding. We report that that whilst these rocks show no 

visible anisotropy it does not mean that mechanical anisotropy may be totally absent. We 

include the (short) section on anisotropy to point out that by changing the orientation of 

maximums stress relative to bedding (extension vs shortening tests), there may be present a 

hidden effect of anisotropy in the results in addition to the effect of the difference in stress 

state. It also seemed opportune to point out that a more complete investigation of 

anisotropy will require tests on cores taken in different orientations in addition to changes in 

the relative orientation of principal stresses, and that there might be a non-unique best 

fitting failure criterion even for a given rock type. 

5) The reviewer points out that equation 7 makes no physical sense. This is a good point. The 

intention was to find an arbitrary function based on the Mogi empirical approach that would 

reconcile the extensional and contractional results. In retrospect it is not useful to seek a 

simple reconciliation, which disguises the fact that whilst we know end-member friction 

coefficients, we do not know anything about how they vary between these extremes in 

advance of making experiments with different values of the intermediate principal stress.  

In the light of the referee’s comment we have therefore adopted the following approach: 

To show how 2 relates to 1 and 3  we can usefully define a ratio C according to 

2 = 3 +C (1 – 3), from which C = (2 – 3)/(1 – 3) 

For now we must make the simplest possible assumption, that the friction coefficient (C) 

varies linearly with2 between 1 (contraction tests) and 2 (extensional tests), as shown in 

new Fig. 15a, from which we can write 

(C) = 1 (1 – C) + 2 C 

Sliding will be activated on any weak plane such that for given values of 1 and 3 and C the 

orientation of the weak plane plots along the friction line (C). 

Jaeger (1964) describes the extension of the Mohr circle construction into 3 dimensions. Fig. 

15b shows the relations that exist between the stress state and the frictional sliding line  

 = (C) n , with an example of one slip plane upon which the stress state ( , n)  will meet 

the slip condition. Taking the reference frame to coincide with the principal stress directions 



1, 2 and 3, any slip plane is described by a set of corresponding direction cosines of the 

normal to the plane, l = cos , m = cos  and  n = cos  . For convenience, thinking of 1 as 

vertical,  is measured in the vertical plane from 1 and the other two angles to the normal 

to the plane from 2  and 3  respectively. Resolved maximum shear stress and normal stress 

( , n)  on the slip plane are the coordinates of the point of intersection of the two Mohr 

circles defined by angles 2 and 2, respectively measured from 1 and 3 on Fig. 15b. 

   The slip vector is expected to be parallel to the maximum resolved shear stress, thus in 

general oblique slip is expected in a 3D stress field. Bott (1955) and Jaeger (1964) derived 

equations for the resolved dip- and strike-parallel shear stress components,   dip and strike . 

Expressed in terms of C and (1 – 3) these are: 

 

dip    =  n (m2 C(1 – 3) – (1 – n2) (1 – 3)) / √(l2 + m2) 

strike=   l m C (1 – 3)/ √(l2 + m2) 

 

The maximum shear stress   is given by     =   √ (strike
2 + strike

2 ). 

The pitch angle  between the  horizontal on the plane (strike) and the slip vector is given by  

tan dip    / strike = nmC / (l (m2 C – (n2 + m2 ))).  In this way the variability of the friction  

coefficient can be incorporated to describe slip propensity in a polyaxial stress field. 

 

6) Remaining minor points that need comment: 

It is not clear what the reviewer means by ‘residuals not shown on Fig. 12’, but we have tried 

to clarify the caption as appropriate. 

The reviewer finds our reference to the shape of the Mogi (1971) failure criterion as being in 

the form of ‘inclined ellipses’ and wonders if this means the failure criterion may not be 

convex. Yes, it is possible for stresses at failure to be two-valued in this criterion, as 

discussed by Colmenares and Zoback (2002). 

The lack of statements of correlation coefficients on linear fits is criticised. This is because r-

squared is so close to unity for good linear fits the value does not tell us anything. We state 

that errors of measurement (as standard error on the dependent variable) is generally 

smaller than the point size shown. This is more meaningful for strongly linear correlations. 

The determination of beta parameter for the Mogi 1967 fits should be clear from the caption 

to fig. 11, as the value that brings the best fits for the extensional and contractional data into 

coincidence. 

On fig. 10 the dashed lines are tie lines to indicate association between pairs of points. 



New fig. 15 
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