RESPONSE TO REVIEWER' COMMENTS (Manuscript SE-2014-131)

We have received the comments of the reviewers and we thank them for the helpful contribution to improve our manuscript. The original comment of the reviewers (black type) and our answers (red type) are reported below.

Reviewer 1

This manuscript represents a good advance related to the litter contribution to soil organic carbon in agricultural processes. The authors have done a great work to present all the methodological and analysis in a presentable and interesting way. However, some typographical mistake with the English version should be considered by the authors. Furthermore, the manuscript has been lacking the conclusion section and requires a more in-depth discussion. In any case, all of this could be solved. I consider that it is a good one manuscript to have in considered in Solid Earth after the revision processes.

Page 604 line 23 the reference was added

In the table 2 p-value was added

"Fig 3" was added in the chapter 3.3

The figure 1 was changed according to the comments.

In the figure 3 the size of number and letters was changed. Statistical information were added

The English was checked by native speaker

The conclusion were added

Reviewer 2

Comments to SED 7, 595-616 (2015) "Liitter contribution to soil organic carbon in the agriculture abandons processes" by Novara et al. Although the paper addresses relevant scientific issues within the aims of SE, at the moment their various sections are not well linked among them. Indeed, Introduction seems an assemblage of generic sentences which do not focus on precise topics.

Even research objectives must be formulated less vaguely. However, the most problematic section is M&M and the reason will be explained later, while the most difficult section to understand is "Results", also for the "cryptic" English. Finally, Discussion often results unrelated to reported results and lacks of Conclusions

The adopted experimental design is rather complex but some crucial points need to be clarified by Authors.

For example: 1) soil characterization (soil pH value is too low for high content in limestone; based on reported granulometry, the textural class is sandy-clay-loam;

The content of CaCO3 was added in material and method. The texture was changed as sandy-clay-silty

2) the earthworm effect is only presumed, since no earthworm biomass has been measured and followed during the experiment;

We agree with the reviewer regard no measurement of earthworm biomass were done. The difference between the two treatments (grid and no grid) are not presumed but measured as described in M&M, data analysis chapter.

3) litter respiration (the described measurement procedure is not persuasive under many aspects: the used NaOH volume is not enough to trap all the CO2 declared being produced during 1-week incubation by litters; on the other hand, Authors seem not having replaced NaOH solution by fresh one before each trapping; the carbonate deriving by CO2 trapping was not apparently precipitated before titration of residual NaOH; methylorange indicator works at acidic pH ranges, which is not the case here);

The NaOH trap was placed inside the bottle 24h before titration for CO_2 measurement. The methylorange is commonly used to tritation with HCl (strong acid)

4) there is no indication for calculating MRT,

It was added in M&M "The mean residence time in days, (MRT) was determined as a reciprocal of the rate constant (k) of first order decay (Equation 1)."

for defining Cextr and for determining it (Table 2); The C extr was changed as readily mineralizable and it is explained in the equation 1

5) procedures for ADF, ADL, NDF determinations are not reported, and even their definitions, rather equivocal within literature, are lacking; moreover, based on performed analyses, particularly cellulose content, the quality of the 4 litters, so different for the duration of abandons, did not change, what is rather unexpected;

M&M was improved, a reference was added.

6) statistics is quite poor and significant differences among various experimental factors are not unequivocally deducible. More details were added in M&M

In conclusion, the deep reviewing of the manuscript is not possible, and even unrecommended, without properly answering the above questions.

2

Litter contribution to soil organic carbon in the processes of agriculture abandon

A. Novara¹, J. Rühl¹, T. La Mantia¹, L. Gristina¹, S. La Bella¹, T. Tuttolomondo¹

¹Department of Scienze Agrarie e Forestali – University of Palermo, viale delle Scienze – 90128
 Palermo – Italy

5 Correspondence to: A. Novara (agata.novara@unipa.it)

6 **Key words:** ¹³C isotopic signature; earthworm; SOC; litter.

7 Abstract

The mechanisms of litter decomposition, translocation and stabilization into soil layers are 8 fundamental processes in the functioning of the ecosystem, as they regulate the cycle of soil organic 9 matter (SOM) and CO₂ emission into the atmosphere. In this study the contribution of litters of 10 different stages of Mediterranean secondary succession on Carbon sequestration was investigated, 11 analyzing the role of earthworms in the translocation of SOM into soil profile. For this purpose δ^{13} C 12 difference between meadow C4-C soil and C3-C litter were used in a field experiment. Four 13 undisturbed litters of different stages of succession (45, 70, 100 and 120 since agriculture abandon) 14 were collected and placed on the top of isolated C4 soil cores. 15

The litter contribution to C stock was affected by plant species and it increased with the age of the stage of secondary succession. 1 year after the litter position, the soil organic carbon increased up to 40% in comparison to soils not treated with litter after 120 years of abandon.

The new carbon derived from C3-litter was decomposed and transferred into soil profile thanks to earthworms and to the leaching of dissolved organic carbon. After 1 year the carbon increase attributed to earthworm activity ranged from 6% to 13% in the soils under litter of fields abandoned for 120 and 45 years, respectively.

23

24 Introduction

The major input of vegetative C to forest soil is represented by litter, hence changes in litter inputs are likely to have important consequences for soil C dynamics (Sayer et al., 2007). Generally, it has been recorded that an accumulation of litter corresponds to an increase of the carbon storage in the soil; for instance, an accumulation of litter and a consequent increase in the carbon content of the soil has been recorded following the processes of abandonment (Costa and La Mantia, 2005).

Therefore, the mechanisms of litter decomposition, translocation and stabilization into soil layers are fundamental processes in the functioning of the ecosystem as they regulate the cycle of soil organic matter (SOM), CO_2 emission into the atmosphere, carbon sequestration into the soil and nutrients mineralization (Maisto et al., 2011; Smolander et al., 2008; Fioretto et al., 1998, 2005).

The decomposition of litter is affected by the quality of the residues (Smith et al., 2008), that 34 determines different mineralization rates. Soluble substances and labile compounds of litter are 35 rapidly degraded in the early stages of decomposition by fast growing microorganisms that may 36 require a high concentration of nitrogen (Swift et al., 1979). Cellulose and lignin, the most abundant 37 38 components of forest litter, are decomposed slowly (Fioretto et al., 2005). Together with bacteria and fungi, invertebrates are responsible for the main functions of the soil ecosystems, including C cycle 39 (Dix and Webster, 1995; Schimel et al., 1999). Several). Authors have attributed earthworm the role 40 of creating favorable conditions for microbial activity, through the fragmentation of litter and mixing 41 of organic matter with soil mineral portion. (Tiunov et al., 2001; Wurst et al., 2004). 42

Earthworms also affect both amount and distribution of SOM and cause anincrease in the rates of 43 SOM decomposition. Earthworms, in fact, transport large quantities of C from the surface of the soil 44 to the lower horizons, effectively mixing the soil and significantly increasing both the rates of the 45 humification trough litter fragmentation and of the overall decomposition (Lee 1985; Alban and 46 Berry 1994; Edwards and Bohlen 1996; Burtelow et al. 1998; Li et al. 2002, Pulleman et al., 2005; 47 Steven et al, 2007). On the contrary, Alban and Berry (1994) and Burtelow et al. (1998) found that an 48 earthworm invasion resulted in a C loss in the upper soil layer. On the contrary, Other fundamental 49 processes for the stabilization of SOM are the leaching of fresh litter compound and of recently 50 formed dissolved organic matter (DOM) from organic layers to mineral soil and the sorption of 51 DOM into mineral surfaces (Sollins et al., 1996; Kaiser and Guggenberger, 2000; Kalbitz and Kaiser, 52 2008). In case of prolonged leaching, however, the litter can become more resistant to 53 decomposition, as a consequence of the significant loss of soluble organic compounds, readily 54 degradable (Mangenot and Tuotain, 1980). 55

In this study, the objectives were i) determining the role of litter in SOC sequestration; ii) analyzing the mechanisms of C translocation from litter to soil; iii) singling out the amount of C leached and the role of earthworms in this process through isotopic analysis.

59

60 2 Material and Method

61 **2.1 Experimental layout, soil and litter sampling**

The experiment was carried out in the fields of the Department of Agricultural and Forestry Sciences, University of Palermo, Italy (38°06'N, 13°20'E, 50 m a.l.s.). According to World Reference Base for Soil Resources (WRB, 2006), the soil used was shallow Aric regosol, rich in

limestone (46% of CaCO₃) with a pH value of 7.61, with a sandy-clay-silty texture (53.9% sand, 65 22.6% silt and 23.4% clay) and organic matter content of 1.40%. The climate was semiarid 66 Mediterranean with a dry period of 4–5 months (mean temperature: minimum 13.7 °C, maximum 67 22.1°C; mean annual rainfall: 531 mm). 68

The field plot used in the experiment was a Cynodon meadow. The soil under Cynodon was a 69 C₄ soil under isotopic steady state, since it had been covered with Cynodon (C₄ photosynthetic 70 pathway plant) for more than 15 years. The δ^{13} C of the experimental soil was -14.5±1.8. Cynodon 71 meadow was established with an inter-specific Bermudagrass hybrid (C. dactylon x C. 72 73 transvalaalensis), cv Tifway 419.

Agronomic management of the turf grass included monthly application of 50 kg ha⁻¹ of N, 10 74 kg ha⁻¹ of P and 40 kg ha⁻¹ of K fertilizer from April to October. Irrigation was carried out during the 75 spring-summer season with a sprinkler system in order to reinstate evapo-transpiration (determined 76 by a Class A evaporimeter and rainfall). The turf grass was maintained at a height of 30-35 mm using 77 a reel lawn mower 2-3 times a week. The cuttings were removed without grass-cycling or mulching. 78

Plastic cores (n. 30), 20 cm diameter and 40 cm height, were installed in the meadow soil, 79 80 after a careful removal of the grasses in March 2013 (Fig. 1). The cores were 30 cm buried, with a 10 cm surface collar. In 15 of the installed cores, a grid (0.1 mm) was placed on top of the soil core to 81 82 avoid the earthworms crossing. Undisturbed different litters (4 litters of C3 plant) were placed on top of soil. In all, 30 cores were placed (5 litters treatments (4 litters + 1 no litter) *2 grid (grid and no 83 grid)*3 replicas). Soil samples were collected in February 2014. The 30 cm soil core was divided in 84 four sub-samples (each 7.5 cm soil thickness). The soil was dried, 2 mm sieved and the organic 85 fragments were removed. 86

Litters were collected with cores (20 cm diameter) in 4 different successional stages of a 87 secondary succession in Pantelleria island, Italy (Sicily, 36°44'/36°50' N, 11°57'/12°03' E). The 88 selected stages for litter collection were: Maquis 45 years since abandon (L45), Maquis 70 years 89 since abandon (L70), Maquis 100 years since abandon (L100) and Forest 120 years since abandon 90 (L120). The abandonment age of the sampled successional stages was determined by evaluating 91 92 aerial photographs taken during 1955 and 1968 (produced by Istituto Geografico Militare, Florence) and 1987 (Regione Siciliana) (La Mantia et al., 2008). The sampled areas were located in direct 93 proximity to each other and were characterized by comparable abiotic conditions (aspect, slope, soil 94 type, rock outcrop, stone cover, etc.). The land covers where litters were placed are described in table 95 1. 96

- 97
- 98

99 2.2 Litter analysis

Dry biomass weight and its chemical composition (ADL- acid detergent lignin, NDF - neutral detergent fibre, cellulose) were determined using Van Soest sequential method for each collected litter (Van Soest et al., 1991).

The litter respiration rates (mg $CO_2 day^{-1} dry$ litter) were measured during the incubation 103 experiment, using a method of alkali absorption in a closed chamber. Three replicates in each litter 104 treatment with three blank samples were measured. Ten grams of litter were placed inside 1 l glass 105 bottle. A 30 ml 0.1 N NaOH solution was used to trap the CO₂ which was released inside the bottle. 106 The CO₂-trapped solution titrated with HCl solution using phenolphthalein and methyl-orange as 107 colour indicator. During the 7 days of incubation, CO₂ measurements were done after 24, 48, 60, 96, 108 and 1 week from the start of incubation. Twenty-four hours before the CO₂ sampling, all flasks were 109 ventilated for 30 minutes with fresh air, NaOH trap was placed inside the bottle and then sealed with 110 rubber stoppers. The C mineralization rate was expressed in mg CO₂-C g⁻¹ TOC day⁻¹ and was fitted 111 to the following first-order decay function: 112

113

114 Mineralized
$$C = C_r e^{-kt}$$
 (Eq. 1)

115

where C_r is the readily mineralizable C at time zero (i.e. the intercept value), k is the decay rate constant and t is the time. The amount of total C mineralized was calculated through the linear interpolation of two neighbouring measured rates and the numerical integration over time as reported in the following equation:

120

121

$$CO_2 - C = \sum_i^n \left[(r_i + r_{i+1}) * \frac{d}{2} \right] + \dots + \left[(r_{n-i} + r_n) * \frac{d}{2} \right]$$
(Eq. 2)

where *i* is the date of the first measurement of CO_2 -C rate, *n* is the date of the last measurement of CO₂-C rate, r is the CO₂-C rate expressed as mg CO₂-C kg⁻¹ dry soil, and d is the number of days between the two consecutive CO₂ rate measurements.

The mean residence time in days, (MRT) was determined as a reciprocal of the rate constant (k) offirst order decay (Equation 1).

127

128 2.3 Chemical analysis

For each soil sample the C content and δ^{13} C abundance were measured. δ^{13} C isotopic signature of litter biomass was also analysed. For SOC and the δ^{13} C analysis, an EA-IRMS (elemental analyser isotope ratio mass spectrometry) was used. The reference material used for

analysis was IA-R001 (Iso-Analytical Limited standard wheat flour, δ^{13} CV-PDB = -26.43 ‰). IA-132 R001 is traceable to IAEA-CH-6 (cane sugar, δ^{13} CV-PDB = -10.43 ‰). IA-R001, IA-R005 (Iso-133 Analytical Limited standard beet sugar, δ^{13} CV-PDB = -26.03 ‰), and IA-R006 (Iso-Analytical 134 Limited standard cane sugar, δ^{13} CV-PDB = -11.64 ‰) were used as quality control samples for the 135 analysis. The International Atomic Energy Agency (IAEA), Vienna, distribute IAEA-CH-6 as a 136 reference standard material. 137

The results of the isotope analysis are expressed as a δ value (‰) relative to the international 138 Pee Dee Belemnite standard as follows: 139

$$\delta(\%_0) = \frac{R_s - R_{st}}{R_{st}} * 1000$$
(Eq. 3)

141

140

where $\delta = \delta^{13}C$, $R = {}^{13}C/{}^{12}C$, s = sample, and st = standard. 142

143

2.4 Data calculation 144

Natural abundance of δ^{13} C was used to determine the proportion of C in SOC derived from 145 the new C input (C_3 -C). These proportions were calculated with the mixing equation (Gearing, 1991) 146 147 separately for grid and no grid plots:

148 New Carbon Derived =
$$f(NCD)(\%) = \frac{(\delta^{13}Cnew - \delta^{13}Cold)}{(\delta^{13}Clitter - \delta^{13}Cold)}$$
 (Eq. 4)

where NCD is the fraction of new C derived, $\delta^{13}C_{new}$ is the isotope ratio of the soil sample, 149 $\delta^{13}C_{\text{litter}}$ is the isotope ratio of different litters, and $\delta^{13}C_{\text{old}}$ is the isotopic ratio of the previous 150 vegetation (Cynodon). 151

Carbon derived from worms was calculated as the difference between NCD in grid and no 152 153 grid treatments.

The mass of new carbon additions was calculated according to Eq. 5. 154

155

156 New Carbon
$$(g kg^{-1}) = Csoil (g kg^{-1}) * (1 - New Carbon Derived)$$
 (Eq. 5)

157

The standard deviation of the δ^{13} C and C values were calculated for each depth and treatment. For the 158 average value, Duncan test was used at p<0.05 (SAS software, 2001). 159

- 160
- 3. Results 161

3.1 Litter characteristics 162

The plant litter collected during the stages of secondary succession differed in the total weight 163 and C content. The highest weight of litter biomass was in L120 with values of 1113±90 gm⁻², 164

followed by L100, L45 and L70 with values of 1027 ± 77 gm⁻², 915 ± 104 gm⁻² and 946 ± 82 gm⁻², respectively. The highest C content of litter was in L45 and decreased with the increase of the age of abandon (Fig. 2); however, L120 contributed with the highest C litter input (total C litter /core) due to the higher weight in comparison to other litters of the stages of secondary succession.

- The results of litter incubation experiment showed the lowest cumulative CO_2 emission for L45 and L100 (32mg CO_2 -C g⁻¹), followed by L70 (35 mg CO_2 -C g⁻¹) and L120 (40 mg CO_2 -C g⁻¹).
- 171 The MRT (mean residence time) was not significantly different among litter ages, except for L120 172 (Table 2). These findings were confirmed by the readily mineralizable C which was highest in L120
- 173 (Table 2). The composition of litter was not statistically different among successional stages

regarding Cellulose and ADL content (Table 2). The NDF value was, instead, significantly higher in
L120 in comparison to litters of other successional stages.

176

177 **3.2 Soil carbon content and distribution**

The total amount of SOC differed under the two treatments (grid and no grid) and time of abandon. The SOC was significantly higher in soils where L120 was placed on the top of soil cores, followed by the other litter treatments (Table 3). Comparison between grid and no grid treatment showed highest C content in soil cores without grid for all litters.

After one year of litter permanence, the SOC under L120 increased on average (0-30cm) by 26%
and 40% in grid and no grid treatment respectively, in comparison to no litter treatment.

Such C increase was smaller in grid treatment for the other litters (L45, L70 and L100) with a value of about 12%. In no grid treatment, the SOC increased by 22%, 23% and 15% in soil under L100, L70 and L45 respectively, in comparison to no-litter treatment. SOC decreased with the increase of the soil depth, but on average the difference between the first and the deepest soil layer was more pronounced in no grid treatment (Table 3).

189

190 **3.3**¹³C isotopic signature in soil profile

Soil δ^{13} C value changed significantly after litter positioning (Figure 3). The baseline is represented by soil without litter, where the δ^{13} C values ranged between -14.0±0.3‰ and -16.0±0.4‰ in the top and deepest soil layer, respectively. After litter position, δ^{13} C was depleted due to C₃ litter input. The most depleted soil was L120 with average (grid and no grid treatment) values of -18.6‰ and -21.6‰ in the top and deepest soil layer, respectively (Figure 3). For the others litter treatments the value ranged between -15.0‰ and -20.5‰. The effect of litter input on C stock was highlighted by estimates of C derived from litter (C₃ plant) in the meadow soil (C₄ soil). After 1 year of litter permanence, C originated from litter input was 32.4%, 34.2%, 38.5% and 49.8% of total SOC in L45, L70, L100 and L120, respectively.

The new soil C derived (C₃-SOC) was lower for all litter treatments in soil with grid. The portion of C₃-C in soil with grid was, in fact, 12.4%, 23.1%, 23.4% and 40.7% of total C in L45, L70, L100 and L120, respectively (Figure 4). Considering only the C₃-C of SOC for each litter treatment, it was highlighted that the contribution of earthworms to the incorporation of new C₃-SOC was in percentage higher in L45, it decreased with the age of litter and it decreased for each treatment with the increase of the soil depth. The difference of C₃-C between no grid, grid treatment and depth assess the earthworm contribution to soil C increase and distribution.

207

208 4. Discussion

209 4.1 Litter contribution to SOC stock

Previous studies in the island of Pantelleria demonstrated the potential of land cover in the 210 change of C stocks (Novara et al., 2014; Saiano et al., 2013). In fact, land abandon determines the 211 increase in litter layer and SOC. In natural ecosystems, unlike ecosystem, on arable lands, litter is 212 not incorporated into the soil. For this reason it was hypothesized that SOC increase is due to C 213 leaching and/or to earthworm contribution. Such hypothesis was confirmed by the present 214 experiment, where the effect of plant litter contribution to SOC stock was isolated from other soil and 215 environmental parameters. In line with several reports in other ecosystems (Lal., 2005), it has been 216 recorded that the SOC stock depends on C litter input, as well as on litter quality. The incubation 217 experiment of litters showed differences in readily mineralizable C, litter composition (NDF %) and 218 consequently C litter mineralization rate. The litter of L120 had a higher amount of readily 219 mineralizable C, in comparison to other litters, and it was easily decomposed and transferred to SOC 220 pool. The faster mineralization rate of L120 could be attributed both to a different composition of 221 plant species (lower content of sclerofille) (Gianguzzi, 1999) and to a variation in the micro-climatic 222 conditions (Wang et al., 2010; Sheffer et al., 2015) due to a higher accumulation layer on the soil 223 surface. As far as the effect of plant species on the litter mineralization rate is concerned, several 224 studies found a lower litter decomposition rate in Q. ilex in comparison to other Mediterranean 225 species, like Myrtus and Cistus (Berg at al., 1996; Fioretto et al., 2005). Likewise, Maisto et al., 226 (2011) found a slower decomposition of Q. ilex in comparison to Ph. angustifolia, while no 227 significant difference in the decomposition rate was recorded between Q. ilex and Pistacia lentiscus. 228 In these studies the lower decomposition of Q. ilex was attributed to higher lignin content. Our results 229 230 confirm those of other researches with regard to the higher lignin content of Q. ilex, but this was not tightly associated to lower decomposition rates. In fact, L120, where the main species was Q. ilex, was the litter with a higher decomposition rate. Therefore, other aspects could explain the differences in the decomposition rates, like the percentage of a species in each stage of succession, the age of litter, and the thickness of litter.

235

236 **4.2 Influence of earthworm on soil carbon**

Plant litter is the main source of SOM in soils under secondary succession. 237 The transformation of C litter into SOM is caused by the decomposition of plant biomass and its 238 incorporation into the soil profile. The responsible of this mechanisms are bacteria and fungi, 239 forming up to 90% of the soil microbial biomass (Dix and Webster, 1995; Schimel et al., 1999) and 240 faunal groups. Our observations highlighted the annual contribution to SOM derived from litter and it 241 singled out the activity of decomposition through the difference of isotopic signature between 242 previous SOC-C (C_4 soil) and the new C_3 -C input originated from litter. The ¹³C litter recovery in the 243 soil profile was higher in L120 (89%), followed by L45 (63%), L100 (60%) and L70 (52%). Firstly, 244 the activity of microbial biomass in soil samples where the grid was placed between litter and soil 245 was highlighted. In this case, the new C₃-C represented the C-pool originated by fungi and bacterial 246 decomposition, transferred into the soil depth, mainly through dissolved organic carbon. Such 247 decomposition and incorporation activity contributed to C increase up to 77.6 g core⁻¹ year⁻¹ in L120 248 treatment (Fig. 5). On the other hand, the difference between soil core with and without litter gave 249 information about the contribution of earthworms to litter decomposition and incorporation into the 250 soil. In several studies, the introduction of earthworms in cold temperate forests resulted in a decline 251 of SOC (Bohelen et al., 2004, Alban and Berry 1994). The results of the present study instead suggest 252 that earthworms have the potential to increase SOC. After 1 year, earthworm activity increased SOC 253 by 13.5%, 11.3%, 11.1% and 5%, in L120, L100, L70 and L45, respectively. The effects of 254 earthworm activity on the recovery of soil C released from litter could be attributed to different 255 mechanisms: (i) the mixture of undecayed particulate C into the soil; (ii) the creation of preferential 256 flowpaths in the soil increasing nutrient transportation; (iii) protection of C in soil aggregates created 257 by earthworm feeding (Bohlen et al., 2004; Fahey et al., 2013). 258

259

260 Conclusions

This study highlights the effects of vegetation succession on C dynamics in soil after the termination of its agricultural use. Based on δ 13C signature of C3-C of litter and C4-C of meadow soil, the annual contribution of vegetation input to C stock was estimated. Moreover, the effect of DOC leaching and earthworm activities on C storage in soil depth have also been evaluated. Hence, in order to understand the ecosystem processes of C sequestration in semiarid environments a better understanding of the impact of above-ground biomass on soil community is still needed.

- 268
- Acknowledgements. This research was financially supported by the MIUR through the PRIN "CARBOTREES" project.
- 271 **References**
- Alban, D.H., and Berry, E.C.: Effects of earthworm invasion on morphology, carbon, and nitrogen
 of a forest soil, Appl. Soil Ecol., 1, 243–249, 1994.
- Berg, B., Ekbohm, G., Johansson, M.B., McClaugherty, C., Rutigliano, F.A., Virzo de Santo, A.:
 Maximum decomposition limits of forest litter types: a synthesis, Can. J. Botany., 74, 659–672,
 1996.
- Bohlen, P.J., Pelletier, D.M., Groffman, P.M., Fahey, T.J., Fisk, M.C.: Influence of Earthworm
 Invasion on Redistribution and Retention of Soil Carbon and Nitrogen in Northern
 Temperate Forests. Ecosystems, 7, 13–27, 2004.
- Burtelow, A.E., Bohlen, P.J., Groffman, P.M.: Influence of exotic earthworm invasion on soil
 organic matter, microbial biomass and denitrification potential in forest soils of the northeastern
 United States, Appl. Soil, Each. 0, 107, 202, 1008.
- 282 United States. Appl. Soil. Ecol., 9, 197–202, 1998.
- 283 Costa, G., La Mantia, T.: Il ruolo della macchia mediterranea nello stoccaggio del carbonio
 284 atmosferico, Foresta@ 2 (4), 378-387, 2005.
- Dix, N. J. and Webster, J., Chapman and Hall: Fungal Ecology, London, 549 pp, 1995.
- Edwards, C.A., Bohlen, P.J., Chapman and Hall: The Biology and Ecology of Earthworms, London.
 1996.
- Fahey, T.J., Yavitt, J.B., Sherman, R.E., Maerz, J.C., Groffman, P.M., Fisk, M.C., Bohlen, P.:
 Earthworm effects on the conversion of litter C and N into soil organic matter in a sugar maple
 forest, Ecol. Appl., 23, 1185-1201, 2013.
- Fioretto, A., Di Nardo, C., Papa, S., Fuggi, A.: Lignin and cellulose degradation and nitrogen
 dynamics during decomposition of three leaf litter species in a Mediterranean ecosystem., Soil
 Biol. Biochem., 37, 1083–1091, 2005.
- Fioretto, A., Musacchio, A., Andolfi, G., Virzo De Santo, A.: Decomposition dynamics of litters of
 various pine species in a Corsican pine forest, Soil Biol. Biochem., 30, 721–727. 1998.
- Fitter, A.H., Gilligan, C.A., Hollingworth, K., Kleczkowski, A., Twyman, R.M., Pitchford, J.W.,
 NERC Soil Biodiversity Program, Biodiversity and ecosystem function in soil, Funct. Ecol., 19,
 367–377, 2005.

- Gearing, J.N.: 1991. The study of diet and trophic relationships through natural abundance 13C. In:
 Coleman, D.C., Fry, B. (Eds.), Carbon Isotope Techniques. Academic Press, San Diego, pp. 201–
 218.
- Gianguzzi L.: Vegetazione e bioclimatologia dell'isola di Pantelleria (Canale di Sicilia). Braun Blanquetia, 22, 1-70, 1999.
- Huang, C.Y., Hendrix, P.F., Fahey, T.J., Bohlen, P.J., Groffman, P.M.: A simulation model to
 evaluate the impacts of invasive earthworms on soil carbon dynamics, Ecol. Model., 221, 2447–
 2457, 2010.
- Kaiser, K., Guggenberger, G.: The role of DOM sorption to mineral surfaces in the preservation of
 organic matter in soils, Org. Geochem., 31, 711–725, 2000.

Kalbitz, K., Kaiser, K.: Contribution of dissolved organic matter to carbon storage in forest mineral
soils, J. Plant. Nutr. Soil Sc., 171, 52–60, 2008.

- La Mantia T., Rühl J., Pasta S., Campisi D., Terrazzino G., (2008) Structural analysis of woody
 species in Mediterranean old fields. Plant Biosystems, Vol. 142, n. 3: 462-471.
- Lal., R.: 2005. Forest soils and carbon sequestration Forest Ecology and Management, 220, 242–258
- Lee, K.E.: Earthworms: Their Ecology and Relationships with Soils and Land Use. Academic Press,
 New York, 333–349, 1985.
- Li, D., Zhu, H., Liu, K., Liu, X., Leggewie, G., Udvardi, M., Wang, D.: Purple acid phosphatases of
 Arabidopsis thaliana, Comparative analysis and differential regulation by phosphate deprivation,
 J. Biol. Chem., 227, 27772-27781, 2002.
- Maisto, G., De Marco, A., Meola, A., Sessa, L., Virzo De Santo, A.: Nutrient dynamics in litter
 mixtures of four Mediterranean maquis species decomposing in situ, Soil Biol. Biochem., 43,
 520 530, 2011.
- Mangenot, F., Toutain, F., Pesson, P. (Ed.): Les Litieres Forestieres et Leur Evolution, Actualites d'
 Ecologie Forestiere: Sol, Flore, Faune 3-59. Gauthier-Villar, Paris, 1980.
- Novara, A., La Mantia, T., Ruhl, J., Badalucco, L., Kuzyakov, Y., Gristina, L., Laudicina, V.A.:
 Dynamics of soil organic carbon pools after agricultural abandonment, Geoderma, 235-236, 191198, 2014.
- Pulleman, M.M., Six, J., Uyl, A., Marinissen, J.C.Y., Jongmans, A.G.: Earthworms and management
 affect organic matter incorporation and microaggregate formation in agricultural soils. Appl. Soil
 Ecol., 29, 1–15, 2005.
- Saiano, F., Oddo, G., Scalenghe, R., La Mantia, T., Ajmone-Marsan, F.: DRIFTS Sensor: Soil
 Carbon Validation at Large Scale (Pantelleria, Italy). Sensors, 13, 5603-5613, 2013.
- 332 SAS Institute 2001. SAS/STAT, Release 8.01. SAS Institute, Cary, NC.

- Sayer, E.J., Powers, J.S., Tanner, E.V.J.: Increased litterfall in tropical forests boosts the transfer of
 soil CO₂ to the atmosphere, PLOS ONE, 12: e1299, doi:10.1371/journal.pone.0001299, 2007.
- 335 Schimel, J.P., Gulledge, J.M., Clein-Curley, J.S., Lindstrom, J.E., Braddock, J.F.: Moisture effects on
- microbial activity and community structure in decomposing birch litter in the Alaskan taiga, Soil.
 Biol. Biochem., 31, 831–838, 1999.
- Sheffer, E., Canham, C.D., Kigel, J., Perevolotsky, A.: Countervailing effects on pine and oak leaf
 litter decomposition in human-altered Mediterranean ecosystems. Oecologia, 2015. DOI
 10.1007/s00442-015-3228-3
- Smith, P.: Land use change and soil organic carbon dynamics, Nutr. Cycl. Agroecosys., 81, 169–178,
 2008.
- 343 Smolander, A., Levula, T., Kitunen, V.: Response of litter decomposition and soil C and N
- transformations in a Norway spruce thinning stand to removal of logging residue, Forest Ecol
 Manag, 256, 1080–1086, 2008.
- Sollins, P., Homann, P., Caldwell, B.A.: Stabilization and destabilization of soil organic matter:
 mechanisms and controls, Geoderma, 74, 65–105, 1996.
- Steven, J. Fonte, Angela, Y.Y. Kong, Chris van Kessel, Paul, F. Hendrix, Johan Six.: Influence of
 earthworm activity on aggregate-associated carbon and nitrogen dynamics differs with
 agroecosystem management, Soil. Biol. Biochem, 39, 1014–1022, 2007.
- Swift, M.J., Heal, O.W., Anderson, J.M., University of California Press: Decomposition in Terrestrial
 Ecosystems, 5, Berkeley, 167-219,1979.
- Tiunov, A.V., Bonkowski, M., Alphei, J., Scheu, S.: Microflora, Protozoa and Nematoda in
 Lumbricus terrestris burrow walls: a laboratory experiment, Pedobiologia, 45, 46–60, 2001.
- Van Soest P.J., Robertson J.B., Lewis B.A. (1991): Methods for dietary fiber, neutral detergent fiber,
 and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci., 74, 3583–3597.
- Wang, S., Ruan, H., Han, Y.: Effects of microclimate, litter type, and mesh size on leaf litter
 decomposition along an elevation gradient in the Wuyi Mountains, China. Ecol Res., 25, 1113–
 1120, 2010. DOI 10.1007/s11284-010-0736-9
- WRB World Reference Base for Soil Resources 2006, first update 2007. World Soil Resources
 Reports No. 103. FAO, Rome
- Wurst, S., Dugessa–Gobena, D., Langel, R., Bonkowski, M., Scheu, S.: Combined effects of
 earthworms and vesicular–arbuscular mycorrhizas on plant and aphid performance, New Phytol.,
 163, 169–176, 2004.
- 365

368 Figure Caption

- 369 Figure 1. Sampling area of litter in Pantelleria secondary succession (numbers represent litter in field
- abandoned for 120, 100, 70 and 40 years, respectively) and experimental design in meadow field.
- 371 Numbers indicate the age since abandon

372 373

Figure 2. C litter content (%) (black columns) and C litter input (g) for each core (grey columns) in
L45, L70, L100 and L120 treatments.

Figure 3. δ13C value at different depth in no grid (a) and grid (b) treatment. The green line represents
no litter treatment, while blue, red, grey and black represent litter in fields abandoned for 120, 100,
70 and 40 years, respectively.

Figure 5. C content in each core (L45, L70, L100 and L120) originated from C4-SOC (grey columns), C₃-SOC from worm activity (yellow columns), C₃-SOC from DOC leaching (orange columns) and C litter (green columns).

396 Table 1. Characteristics of litter collected in Pantelleria island.

Successional	Years since	Vegetation (Main species)	Soil Use during XX	Current use
stages	abandon		century	
1	45	High-maquis (Pistacia lentiscus, Quercus ilex, Phillyrea	No use after	No use
		latifolia, Calicotome infesta, Erica arborea, Cistus	abandon	
		salvifolius)		
2	70	Maquis-forest (Quercus ilex, Pistacia lentiscus,	Coppice	No use
		Phillyrea latifolia)		
3	100	Forest (Quercus ilex, Pistacia lentiscus)	Coppice	No use
4	120	Forest (Quercus ilex, Smilax aspera)	High forest	No use

401	Table 2. Biomass composition (% of dry biomass) of litters in different stages of secondary
402	succession (L45, L70, L100 and L120). Abbreviations: ADF = acid detergent fibre, NDF = neutral
403	detergent fibre, C min= readily mineralizable carbon, MRT=mean residence time. In the same
404	column different letters indicate differences for $P \le 0.05$.

Litter	$C \min_{(mg kg^{-1})}$	MRT days	\mathbf{R}^2	Cellulose	ADL	NDF
L45	154.1 c	25.0 a	0.92	19.0	28.9 b	44.6 b
L70	163.2 c	26.0 a	0.86	17.6	24.1 c	39.3 c
L100	150.7 b	26.0 a	0.90	18.2	30.5 a	44.4 b
L120	217.0 a	22.0 b	0.92	19.9	31.4 a	51.4 a

			Grid					No gr	id			
soil depth (cm)	no litter	L45	L70	L100	L120	no litter	L45	L70	L100	L120	Grid average	No grid Average
0-7.5	1.5	1.8	1.8	1.8	1.9	1.6	1.9	1.8	2.0	2.4	1.8 a	1.9 a
7.5-15	1.4	1.5	1.6	1.5	1.7	1.4	1.9	1.9	2.0	2.1	1.5 b	1.9 a
15-22.5	1.3	1.6	1.3	1.4	1.6	1.3	1.6	2.1	1.6	1.7	1.4 b	1.7 a
22.5-30	1.2	1.1	1.3	1.2	1.5	1.2	0.9	0.9	1.1	1.4	1.3 b	1.1 b
Average	1.3d	1.5c	1.5c	1.5c	1.7b	1.4a	1.6c	1.7b	1.7b	1.9a		

411 Table 3. Average of soil organic carbon (%) at different soil depths. For each treatment different

412 letters indicate differences for $P \le 0.05$.

1	Litter contribution to soil organic carbon in the <u>processes of</u> agriculture abandon	_	Definizione stile
2	A Novara ¹ I Rühl ¹ T La Mantia ¹ I Gristina ¹ S La Bella ¹ T Tuttolomondo ¹	$\overline{\ }$	Eliminato: s processes
2			Formattato: Tipo di carattere: Non Grassetto
3 4	^a Department of Scienze Agrarie e Forestali – University of Palermo, viale delle Scienze – 90128 Palermo – Italy	_	Formattato: Portoghese (Brasile)
5	Correspondence to: A. Novara (agata.novara@unipa.it)	_	Formattato: Tipo di carattere: 14 pt, Grassetto, Inglese (Stati Uniti)
6	Summary	_	Formattato: Tipo di carattere: 12 pt
7	Key words: ¹³ C isotopic signature; earthworm; SOC; litter.	_	Formattato: Tipo di carattere: 14
8	Abstract	/	Formattato: Tipo di carattere: 12 pt. Non Grassetto
9	The mechanisms of litter decomposition, translocation and stabilization into soil layers are		Formattato: Regola lo spazio tra
10	fundamental processes in the functioning of the ecosystem, as they regulate the cycle of soil organic		Regola lo spazio tra caratteri asiatici e numeri
11	matter (SOM) and CO_2 emission into the atmosphere. In this study, the contribution of litters of	()	Eliminato: M
12	different stages of Mediterranean secondary succession on Carbon sequestration was investigated,	())	Eliminato: Mechanisms
13	analyzing the role of earthworms in the translocation of SOM into soil profile. For this purpose δ^{13} C	$\langle \rangle$	Eliminato: functioningas i
14	difference between meadow CAC soil and C2C litter were used in a field experiment. Four		Eliminato: it
14	unterence between meadow C4-C son and C5-C inter were used in a neid experiment. Four	\mathbb{N}	Eliminato: sthe cycle of soil
15	undisturbed litters of different stages of succession (45, 70, 100 and 120 since agriculture abandon)		Eliminato: on
16	were collected and placed on the top of isolated C4 soil cores.		Eliminato: on
17	The litter contribution to C stock was affected by plant species and <u>it</u> increased with the age of		
18	the stage of secondary succession, 1 year after the litter position, the soil organic carbon increased up		Eliminato: The soil organic
19	to 40% in comparison to <u>soils not treated</u> with litter <u>after</u> 120 years <u>of</u> abandon.		Eliminato: since
20	The new carbon derived from C3-litter was decomposed and transferred into soil profile	$\overline{\langle}$	Eliminato: no litter treatment
20		\backslash	Eliminato: soil treatment
21	thanks to earthworms and to the leaching of dissolved organic carbon, After 1 year, the carbon		Eliminato: ofafter 120 years sin
22	increase attributed to earthworm activity ranged from 6% to 13% in the soils under litter of fields		Eliminato: leaching After I yea
23	abandoned for 120 and 45 years, respectively.	\searrow	
24			Eliminato: in field
21		\mathbb{N}	Eliminato: since
25	Introduction		Eliminato: since
26	The major input of vegetative C to forest soil is represented by litter, hence, changes in litter	$\langle \rangle$	Formattato: Tipo di carattere: 14 pt, Grassetto
27	inputs are likely to have important consequences for soil C dynamics (Sayer et al., 2007). Generally,	$\left(\right)$	Formattato: Tipo di carattere: 12 pt, Non Grassetto
28	it has been recorded that an accumulation of litter corresponds to an increase in the presence of		Formattato: Regola lo spazio tra
29	carbon, in the soil; for instance, an accumulation of litter and a consequent increase in the carbon	$\langle $	testo asiatico e in alfabeto latino, Regola lo spazio tra caratteri asiatici e numeri
30	content of the soil has been recorded following the processes of abandonment (Costa and La Mantia,	A	Eliminato: andencechanges
31	2005).		Formattato: Tipo di carattere: 10

(...

(...

...

pt

layers are fundamental processes in the functioning of the ecosystem, as they regulate the cycle of 87 soil organic matter (SOM), CO₂ emission into the atmosphere, carbon sequestration into the soil and 88 nutrients mineralization (Maisto et al., 2011; Smolander et al., 2008; Fioretto et al., 1998, 2005). 89 The decomposition of litter is affected by the quality of the residues (Smith et al., 2008), that 90 determines different mineralization rates. Soluble substances and labile compounds of litter are 91 rapidly degraded in the early stages of decomposition by fast growing microorganisms that may 92 require a high concentration of nitrogen (Swift et al., 1979). Cellulose and lignin, the most abundant 93 components of forest litter, are decomposed slowly (Fioretto et al., 2005). Togethertogether with 94 bacteria and fungi, invertebrates are responsible forof the main functions of thesoil ecosystems, 95 including C cycle (Dix and Webster, 1995; Schimel et al., 1999). Several), S authors have attributed 96 97 earthworm the role of creat favorable conditions for microbial activity, through the fragmentation of litter and mixing of organic matter with soil mineral portion. (Tiunov et al., 2001; Wurst et al., 2004). 98 Earthworms also affectboth amount and distribution of SOM and cause an increase in the rates of 99 SOM decomposition. Earthworms, in fact, transport large quantities of C from the surface of the soil 100 to the lower horizons, effectively mixing the soil and significantly increasing both the rates of the 101 humidification trough litter fragmentation and of the overall decomposition (Lee 1985; Alban and 102 Berry 1994; Edwards and Bohlen 1996; Burtelow et al. 1998; Li et al. 2002, Pulleman et al., 2005; 103 Steven et al, 2007). On the contrary, Alban and Berry (1994) and Burtelow et al. (1998) found that an 104 earthworm invasion resulted in a C loss in the upper soil layer. On the contrary, Other fundamental 105 processes for the stabilization of SOM are the leaching of fresh litter compound and of recently 106 107 formed dissolved organic matter (DOM) from organic layers to mineral soil and the sorption of 108 DOM into mineral surfaces (Sollins et al., 1996; Kaiser and Guggenberger, 2000; Kalbitz and Kaiser, 2008). In case of prolonged leaching, however, the litter can become more resistant to 109 decomposition, as a consequence of the significant loss of soluble organic compounds, readily 110 degradable (Mangenot and Tuotain, 1980). 111 In this study, the objectives were i) determining the role of litter in SOC sequestration; ii) analyzing 112 the mechanisms of C translocation from litter to soil; iii) singling out the amount of C leached and 113

Therefore, the mechanisms of litter decomposition, translocation and stabilization into soil

114 115

86

116 2 Material and Method

117 2.1 Experimental layout, soil and litter sampling

therole of earthworms in this process through isotopic analysis.

Eliminato: M
Eliminato: Mechanisms
Eliminato: ,are
Eliminato: it
Eliminato: s
Eliminato: decadiment
Eliminato: slowlydecomposed
Eliminato: The mainly responsible for the decomposition of litter are bacteria and fungi forming up to 90% of the soil microbial biomass. Generally, fungi are the most abundant primary decomposers at the soil–litter interface in terrestrial ecosystems, and therefore play an important role in the global carbon cycle (Dix and Webster, 1995; Schimel et al., 1999).
Eliminato: The invertebratesTt
Eliminato:
Eliminato: of
Eliminato: can, also, act in
Eliminato: function ing includ
Eliminato: to arthworm the role
Eliminato: to
Eliminato: e
Eliminato: ing
Eliminato: a
Eliminato: have also been shown t
Eliminato: e
Eliminato: increase humification
Eliminato: ratestrough litter
Eliminato: ¶
Eliminato: is
Eliminato: is
Eliminato: asdissolved organic
Eliminato: onto
Eliminato: calcitrant
Eliminato: recalcitrant
Eliminato: Another mechanism of
Eliminato: e
Eliminato: determinethe
Eliminato: individuate
Eliminato: individuate
Eliminato: through isotopic analysis
Formattato
Formattato

The experiment was carried out in the fields of the Department of Agricultural and Forestry Sciences, University of Palermo, Italy (38°06'N, 13°20'E, 50 m a.l.s.), According to World Reference Base for Soil Resources (WRB, 2006), the soil used was shallow Aric regosol, rich in limestone (46% of CaCO3) with a pH value of 7.61, with a sandy-clay-siltysilty texture (53.9% sand, 22.6% silt_and 23.4% clay) and organic matter content of 1.40%. The climate was semiarid Mediterranean with a dry period of 4–5 months (mean temperature: minimum 13.7 °C, maximum 22.1°C; mean annual rainfall: 531 mm).

The field plot used in the experiment was a *Cynodon* meadow. The soil under *Cynodon* was a C₄ soil under isotopic steady state, since it <u>had</u> been covered with *Cynodon* (C₄ photosynthetic pathway plant) for more than 15 years. The δ_1^{13} C of the experimental soil was -14.5±1.8. *Cynodon* meadow was established with an <u>inter-specific</u> Bermudagrass hybrid (*C. dactylon* x *C. transvalaalensis*), cv *Tifway* 419.

Agronomic management of the turf grass included monthly application, of 50 kg ha⁻¹ of N, 10 264 kg ha⁻¹ of P and 40 kg ha⁻¹ of K fertilizer from April to October, Irrigation was carried out during the 265 spring-summer season with a sprinkler system in order to reinstate evapo-transpiration (determined 266 by a Class A evaporimeter and rainfall). The turf grass was maintained at a height of 30-35 mm using 267 a reel lawn mower 2-3 times a week. The cuttings were removed without grass-cycling or mulching. 268 Plastic cores (n. 30), 20 cm diameter and 40 cm height, were installed in the meadow soil, 269 after a careful removal of the grasses in March 2013 (Fig. 1). The cores were 30 cm buried, with a 10 270 271 cm surface collar. In 15 of the installed cores, a grid (0.1 mm) was placed on top of the soil core to avoid the earthworms crossing. Undisturbed different litters (4 litters of C3 plant) were placed on top 272 of soil. In all, 30 cores were placed (5 litters treatments (4 litters + 1 no litter) *2 grid (grid and no 273

grid)*3 replicas). Soil samples were collected in February 2014. The 30 cm soil core was divided in
four <u>sub-samples</u> (each 7.5 cm soil thickness). The soil was dried, 2 mm sieved and the organic
fragments were removed.

Litters were collected with cores (20 cm diameter) in 4 different consecutive stages of a 277 secondary succession in Pantelleria island, Italy (Sicily, 36°44'/36°50' N, 11°57'/12°03' E). The 278 selected stages for litter collection were: Maquis 45 years since abandon (L45), Maquis 70 years 279 since abandon (L70), Maquis 100 years since abandon (L100) and Forest 120 years since abandon 280 (L120). The abandonment age of the sampled consecutive stages was determined by evaluating aerial 281 photographs taken during 1955 and 1968 (produced by Istituto Geografico Militare, Florence) and 282 1987 (Regione Siciliana) (La Mantia et al., 2008). The sampled areas were located in direct 283 proximity to each other and were characterized by comparable abiotic conditions (aspect, slope, soil 284

Eliminato: The soil is
Eliminato: an Aric regosol
Eliminato: a
Eliminato: according
Eliminato: loam
Eliminato: loam
Eliminato: is
Eliminato: is
Eliminato: is
Eliminato: is
Eliminato: has
Eliminato: has
Eliminato: by
Eliminato: by
Eliminato: δ
Eliminato: interspecific
Formattato: Tipo di carattere: Non Corsivo
Eliminato: fertilizer application from April to October
Eliminato:
Eliminato: evapotranspiration
Eliminato: ly
Eliminato: grasscycling
Eliminato: ly grasses
Eliminato: leading
Eliminato: leading
Eliminato: whole of

Eliminato: subsamples

Eliminato: successional Eliminato: successional

Eliminato: A
Eliminato: Abandonment
Eliminato: successional
Eliminato: successional

318	type, rock outcrop, stone cover, etc.). The land covers where litters were <u>placed</u> are described in table		
319	1.		Formattato: Tipo di carattere:
320			Grassetto
321			
322	2.2 Litter analysis		Formattato: Tipo di carattere: Non
323	Dry biomass weight and its chemical composition (ADL- acid detergent lignin, NDF - neutral	l	Grassetto
324	detergent fibre, cellulose) were determined using Van Soest sequential method for each collected		
325	litter (Van Soest et al., 1991))		Eliminato: .
326	The litter respiration rates (mg CO_2 day ⁻¹ dry litter) were measured during <u>the</u> incubation		
327	experiment, using <u>a method of</u> alkali absorption in a closed chamber. Three replicates in each litter		Eliminato: n
328	treatment with three blank samples were measured. Ten grams of litter were placed inside 1 l glass	\square	Eliminato: an
329	bottle A 30 ml 0.1 N NaOH solution was used to trap the CO ₂ which was released inside the bottle	T T	Eliminato: method
32)	The CO terms d solution titrated with UCl solution wine should the bin and wethed source as		Eliminato: evolved
330	The CO ₂ -trapped solution intrated with HCI solution using phenoiphthalein and methyl-orange as		Eliminato: evolved
331	colour indicator. During the 7 days of incubation, CO ₂ measurements were done after 24, 48, 60, 96,		Eliminato: was measured was
332	and 1 week from the start of incubation. Twenty-four hours before the CO ₂ sampling, all flasks were	l	
333	ventilated for 30 minutes with fresh air, NaOH trap was placed inside the bottle and then sealed with		Eliminato:
334	rubber stoppers. The C mineralization rate was expressed in mg CO ₂ -C g ⁻¹ TOC day ⁻¹ and was fitted		Eliminato: as
335	to the following first-order decay function:		Eliminato: as
336			
337	Mineralized $C = C_r e^{-kt}$ (Eq. 1)		
338			
339	where C_r is the readily mineralizable C at time zero (i.e. the intercept value), k is the decay		
340	rate constant and t is the time. The amount of total C mineralized was calculated through the linear		
341	interpolation of two neighbouring measured rates and the numerical integration over time as reported		
342	in the following equation:		
3/3	(Fa 2)		
344	· (Eq. 2)		Eliminato: $c O_2 - c = \sum_i [(r_i + r_{i+1}) * \frac{d}{2}] + \dots + [(r_{n-i} + r_n) * \frac{d}{2}]$
345	where <i>i</i> is the date of the first measurement of CO ₂ -C rate. <i>n</i> is the date of the last measurement of	, i	
346	CO ₂ -C rate, r is the CO ₂ -C rate expressed as mg CO ₂ -C kg ⁻¹ dry soil, and d is the number of days		
347	between the two consecutive CO_2 rate measurements.		
348	The mean residence time in days. (MRT) was determined as a reciprocal of the rate constant (k) of	_	Eliminato:
3/0	first order decay (Equation 1)		
250	Inst order decay (Equation 1).		
350			Formattato: Nessuna
351	2.3 Chemical analysis		Formattato: Tipo di carattere: Non
			Grassetto, Inglese (Regno Unito)

366	For each soil sample the C content and $\delta^{13}C$ abundance were measured. $\delta^{13}C$ isotopic		
367	signature of litter biomass was also analysed. For SOC and the δ^{13} C analysis, an EA-IRMS		Eliminato: ,
368	(elemental analyser isotope ratio mass spectrometry) was used. The reference material used for		Eliminato: ,
369	analysis was IA-R001 (Iso-Analytical Limited standard wheat flour, δ_{13}^{13} CV-PDB = -26.43 ‰). IA-		Eliminato: standard
370	R001 is traceable to IAFA-CH-6 (cape sugar δ^{13} CV-PDB = -10.43 %) IA-R001 IA-R005 (Iso-		Eliminato: δ
570	$\frac{1}{1000} = 10000000000000000000000000000000$		Eliminato: δ
371	Analytical Limited standard beet sugar, \underline{o} CV-PDB = -26.03 ‰), and IA-R006 (Iso-Analytical	<	Eliminato: standard
372	Limited <u>standard</u> cane sugar, δ_{\perp}^{13} CV-PDB = -11.64 ‰) were used as quality control samples for the		Eliminato: δ
373	analysis. The International Atomic Energy Agency (IAEA), Vienna, distribute IAEA-CH-6 as a	\backslash	Eliminato: standard
374	reference standard material.		
375	The results of the isotope analysis are expressed as a δ value (‰) relative to the international		
376	Pee Dee Belemnite standard as follows:		
277	(Eq. 2)		
377	(LQ. 3)	<	Eliminato: $\delta(\%_0) = \frac{1}{R_{st}} * 1000$
378			Formattato: Inglese (Stati Uniti)
379	where $\delta = \delta^{13}C$, $R = {}^{13}C/{}^{12}C$, s = sample, and st = standard.		grammatica
380			
381	2.4 Data calculation		Formattato: Nessuna
202	Natural abundance of δ^{13} C was used to determine the properties of C in SOC derived from		Formattato: Tipo di carattere: Non Grassetto, Inglese (Regno Unito)
302	Natural abundance of θ C was used to determine the proportion of C in SOC detrived norm		Eliminato: that was
383	the new C input (C ₃ -C). These proportions were calculated with the mixing equation (Gearing, 1991)		Eliminato: by
384	separately for grid and no grid plots:		Eliminato: by
385	(Eq. 4)	_	Eliminato: New Carbon Derived = $(\delta^{13} Cnew \delta^{13} Cnew \delta^{13$
386	where NCD is the fraction of new C derived, $\underline{\delta}_{r}^{13}C_{new}$ is the isotope ratio of the soil sample,		$f(NCD)(\%) = \frac{(\delta^{13}Clitter \cdot \delta^{13}Cold)}{(\delta^{13}Clitter \cdot \delta^{13}Cold)}$
387	$\delta^{13}C_{\text{litter}}$ is the isotope ratio of different litters, and $\delta^{13}C_{\text{old}}$ is the isotopic ratio of the previous		Eliminato: δ
388	vegetation (Cynodon)	$\overline{\ }$	Eliminato: δ
280	Carbon derived from worms was calculated as the difference between NCD in grid and no		Eliminato: o
200	carbon derived from worms was calculated as <u>the</u> difference, between fred in gift and no		
390	grid treatments.		
391	The mass of new carbon additions was calculated according to Eq. 5.		
392			
393	New Carbon $(g kg^{-1}) = Csoil (g kg^{-1}) * (1 - New Carbon Derived)$ (Eq. 5)	/	Formattato: Inglese (Stati Uniti)
394			
395	The standard deviation of the δ^{13} C and C values were calculated for each depth and treatment. For		Eliminato: w
396	the average value, Duncan test was used at p<0.05 (SASSAS software, 20012001).		Eliminato: as
397		$\overline{\ }$	Eliminato: Duncan tes
398	3. Results		Eliminato: t
570			

422 **3.1 Litter characteristics**

453

454

423	The plant litter collected <u>during</u> the stages of secondary succession differed in the total weight
424	and C content. The highest weight of litter biomass was, in L120 with values of 1113±90 gm ⁻² ,
425	followed by L100, L45 and L70 with values of $1027\pm77 \text{ gm}^{-2}$, $915\pm104 \text{ gm}^{-2}$ and $946\pm82 \text{ gm}^{-2}$,
426	respectively. The highest C content of litter was in L45 and decreased with the increase of the age of
427	abandon (Fig. 2); however, L120 contributed with the highest C litter input (total C litter /core) due
428	to the higher weight in comparison to other litters of the stages of secondary succession.
429	The results of litter incubation experiment showed the lowest cumulative CO ₂ emission for L45 and
430	L100 (32mg CO ₂ -C g ⁻¹), followed by L70 (35 mg CO ₂ -C g ⁻¹) and L120 (40 mg CO ₂ -C g ⁻¹).
431	The MRT (mean residence time) was not significantly different among litter ages, except forto L120
432	(Table 2). These findings were confirmed by the readily mineralizable C, which was st. (Table 2). The
433	composition of litter was not statistically different among <u>consecutive</u> stages regarding Cellulose and
434	ADL content (Table 2). The NDF value was, instead, significantly higher in L120 in comparison to
435	litters of other <u>consecutive</u> stages.
436	
437	3.2 Soil carbon content and distribution
438	The total amount of SOC differed under the two treatments (grid and no grid) and time of
439	abandon. The SOC was significantly higher in soils, where L120 was placed on the top of soil cores,
440	followed by the other litter treatments (Table 3). Comparison between grid and no grid treatment
441	showed highest C content in soil cores without grid for all litters. <u>RIVEDERE tab 3 per stat.</u>
442	After one year of litter permanenceermanence, 0 the SOC under L120 increased on average (0-30cm)
443	by 26% and 40% in grid and no grid treatment, respectively, in comparison to no litter treatment.
444	Such C increase was smaller in grid treatment for the other litters (L45, L70 and L100) with a value of
445	about 12%. In no grid treatment, the SOC increased by 22%, 23% and 15% in soil under L100, L70
446	and L45, respectively, in comparison to no-litter treatment, SOC decreased with the increase of the
447	soil depth, but on average the difference between the first and the deepest soil layer was more
448	pronounced in no grid treatment (Table 3).
449	
450	3.3 ¹³ C isotopic signature in soil profile
451	
451	Soil δ^{13} C value, changed <u>significantly</u> after litter positioning (Figure 3). The baseline is represented

deepest soil layer, respectively. After litter position, $\delta^{13}C$ was depleted due to C₃ litter input. The

most depleted soil was L120 with average (grid and no grid treatment) values of -18.6‰ and -21.6‰

Eliminato: under
Eliminato: under
Eliminato: highest
Eliminato: highest
Eliminato: highest
Eliminato: to
Eliminato: to
Eliminato: to
Eliminato: lower for
Eliminato: in comparison to others
litters, which were not significantly
different among them for MRT value
Eliminato: readily mineralizable
Eliminato: highe
to others litters, showing, therefore,
Eliminato:
Eliminato: ¶
Eliminato: successional
Eliminato: successional
Eliminato: successional
Eliminato: successional
Formattato
Emmato: age
Eliminato: age
Eliminato: age Eliminato: age since
Eliminato: age Eliminato: age since Eliminato: soil
Eliminato: age Eliminato: since Eliminato: age since Eliminato: soil Formattato: Inglese (Stati Uniti)
Eliminato: age Eliminato: since Eliminato: age since Eliminato: soil Formattato: Inglese (Stati Uniti) Eliminato: from
Eliminato: age Eliminato: since Eliminato: age since Eliminato: soil Formattato: Inglese (Stati Uniti) Eliminato: from Eliminato: position
Eliminato: age Eliminato: since Eliminato: age since Eliminato: soil Formattato: Inglese (Stati Uniti) Eliminato: from Eliminato: position Eliminato: on average (0
Eliminato: age Eliminato: since Eliminato: age since Eliminato: soil Formattato: Inglese (Stati Uniti) Eliminato: from Eliminato: position Eliminato: on average (0 Eliminato: by soil layers
Eliminato: age Eliminato: since Eliminato: age since Eliminato: soil Formattato: Inglese (Stati Uniti) Eliminato: from Eliminato: position Eliminato: on average (0 Eliminato: by soil layers Eliminato: -30cm)
Eliminato: age Eliminato: since Eliminato: age since Eliminato: soil Formattato: Inglese (Stati Uniti) Eliminato: from Eliminato: position Eliminato: on average (0 Eliminato: by soil layers Eliminato: -30cm) Eliminato: in comparison to no lit(
Eliminato: age Eliminato: since Eliminato: age since Eliminato: soil Formattato: Inglese (Stati Uniti) Eliminato: from Eliminato: position Eliminato: on average (0 Eliminato: on average (0 Eliminato: -30cm) Eliminato: in comparison to no lit(Eliminato: ,
Eliminato: age Eliminato: since Eliminato: age since Eliminato: soil Formattato: Inglese (Stati Uniti) Eliminato: from Eliminato: position Eliminato: on average (0 Eliminato: on average (0 Eliminato: on average (0 Eliminato: -30 cm) Eliminato: in comparison to no lit(Eliminato: , Eliminato: after litter position
Eliminato: age Eliminato: since Eliminato: soil Formattato: Inglese (Stati Uniti) Eliminato: from Eliminato: position Eliminato: on average (0 Eliminato: on average (0 Eliminato: -30cm) Eliminato: in comparison to no lit(Eliminato: after litter position Eliminato: after one year of litter (
Eliminato: age Eliminato: since Eliminato: age since Eliminato: soil Formattato: Inglese (Stati Uniti) Eliminato: from Eliminato: position Eliminato: on average (0 Eliminato: after one year of litter (Eliminato: in comparison to no-lit(
Eliminato: age Eliminato: since Eliminato: age since Eliminato: soil Formattato: Inglese (Stati Uniti) Eliminato: from Eliminato: position Eliminato: on average (0 Eliminato: on average (0 Eliminato: by soil layers Eliminato: -30cm) Eliminato: in comparison to no lit(Eliminato: after litter position Eliminato: after one year of litter (Eliminato: in comparison to no-lit(Eliminato: sin comparison to no-lit(Eliminato: n comparison to no-lit(
Eliminato: age Eliminato: since Eliminato: age since Eliminato: soil Formattato: Inglese (Stati Uniti) Eliminato: from Eliminato: position Eliminato: on average (0 Eliminato: after litter position Eliminato: after one year of litter (Eliminato: in comparison to no-lit(Eliminato: .
Eliminato: age Eliminato: since Eliminato: soil Formattato: Inglese (Stati Uniti) Eliminato: from Eliminato: position Eliminato: on average (0 Eliminato: on average (0 Eliminato: -30cm) Eliminato: in comparison to no lit(Eliminato: after litter position Eliminato: in comparison to no-lit(Eliminato: in comparison to no-lit(Eliminato: , Eliminato: , Eliminato: . Formattato (
Eliminato: age Eliminato: since Eliminato: age since Eliminato: soil Formattato: Inglese (Stati Uniti) Eliminato: from Eliminato: position Eliminato: on average (0 Eliminato: on average (0 Eliminato: on average (0 Eliminato: -30cm) Eliminato: -30cm) Eliminato: in comparison to no lit(Eliminato: after litter position Eliminato: after one year of litter (Eliminato: in comparison to no-lit(Eliminato: . Eliminato: . Eliminato: . Eliminato: . Eliminato: . Eliminato: . Eliminato: . Eliminato: significantly
Eliminato: age Eliminato: since Eliminato: soil Formattato: Inglese (Stati Uniti) Eliminato: from Eliminato: position Eliminato: on average (0 Eliminato: on average (0 Eliminato: by soil layers Eliminato: -30cm) Eliminato: in comparison to no lit(Eliminato: after litter position Eliminato: after one year of litter (Eliminato: in comparison to no-lit(Eliminato: . Eliminato: . Eliminato: . Formattato Eliminato: . Eliminato: . Formattato Eliminato: significantly Commento [A1]: Aggiungere (
Eliminato: age Eliminato: since Eliminato: soil Formattato: Inglese (Stati Uniti) Eliminato: from Eliminato: position Eliminato: on average (0 Eliminato: on average (0 Eliminato: on average (0 Eliminato: -30cm) Eliminato: in comparison to no lit(Eliminato: after litter position Eliminato: after one year of litter (Eliminato: in comparison to no-lit(Eliminato: in comparison to no-lit(Eliminato: . Formattato Eliminato: . Formattato Eliminato: significantly Commento [A1]: Aggiungere Eliminato: on

Formattato: Tipo di carattere: Non

in the top and deepest soil layer, respectively (Figure 3). For the others litter treatments the value 505 ranged between -15.0% and -20.5%. 506 The effect of litter input on C stock was highlighted by estimates of C derived from litter (C_3 plant) in 507 the meadow soil (C_4 soil). After 1 year of litter permanence ermanence C originated from litter input 508 was 32.4%, 34.2%, 38.5% and 49.8% of total SOC in L45, L70, L100 and L120, respectively. 509 The new soil C derived (C3-SOC) was lower for all litter treatments in soil with grid. The portion of 510 C₃-C in soil with grid was, in fact, 12.4%, 23.1%, 23.4% and 40.7% of total C in L45, L70, L100 and 511 512 L120, respectively (Figure 4). Considering only the C_3 -C of SOC for each litter treatment, it was highlighted that the contribution of earthwormsearthworm to the incorporation of new C₃-SOC was 513 in percentage higherhighest in L45, it decreased with the age of litter and it decreased for each 514 treatment with the increase of the soil depth. The difference of C_3 -C between no grid grid treatment 515 516 and depth assess the earthworm contribution to soil C increase increase and distribution. 517 4. Discussion 518 4.1 Litter contribution to SOC stock 519 Previous studies in the island of Pantelleria demonstrated the potential of land cover in the 520 change of C stocksstocks (Novara et al., 2014; Saiano et al., 2013). In fact, land abandon determines 521 the increase in litter layer and SOC. In natural ecosystems, unlikeecosystem, on arable landsland, 522 litter is not incorporated into the soil. For this reason it was hypothesized that SOC increase is due to 523 <u>C leaching and/or to earthworm contribution</u>. Such hypothesis was confirmed by the present 524

525 experiment, where the effect of plant litter contribution to SOC stock was isolated from other soil and 526 environmental parameters. In line with several reports in other ecosystems, (Lal., 2005), it has been 527 recorded that the SOC stock depends on C litter input, as well as on litter quality. The incubation experiment of litters showed differences in easily mineralizable <u>C</u>, litter composition (NDF %) and 528 consequently C litter mineralization rate. The litter of L120 had a higher amount of extractable C, in 529 comparison to other litters, and it was easily decomposed and transferred to SOC pool. The faster 530 mineralization rate of L120 could be attributed both to a different composition of plant species (lower 531 content of sclerofille) (Gianguzzi et al., 1999) and to a variation in the micro-climatic conditions 532 533 (Wang et al., 2010; Sheffer et al., 2015), due to a higher accumulation layer on the soil surface. As far as the effect of plant species on the litter mineralization rate is concerned, several studies found a lower 534 535 litter decomposition rate in Q. ilex in comparison to other Mediterranean species, like Myrtus and Cistus (Berg at al., 1996; Fioretto et al., 2005). Likewise, Maisto et al., (2011) found a slower 536 decomposition of Q. ilex in comparison to Ph. angustifolia, while no significant difference in the 537 decomposition rate was recorded between Q. ilex and Pistacia lentiscus. In these studies the lower 538

Eliminato: litters
Eliminato: since
Eliminato: p
Eliminato: osition the
Eliminato: from litter
Eliminato: therefore it was attribute
to earthworms the litter decompositi
Spostato (inserimento) [1]
Eliminato: st
Eliminato: for each treatment
Eliminato: and
Eliminato: role of
Eliminato: to litter incorporation in
Eliminato: .
Eliminato:
Spostato in su [1]: Considering
Formattato
Formattato
Eliminato: island
Eliminato: to
Eliminato: to
Eliminato: the
Eliminato: steady state level
Eliminato: (
Eliminato:
Eliminato: on
Eliminato: the contrary to
Eliminato:
Eliminato: by
Eliminato: by
Eliminato: ecosystem
Eliminato: ,
Eliminato: C
Eliminato: able
Eliminato: attributable
Eliminato: of
Formattato: Inglese (Stati Uniti)
Eliminato: microclimatic condition
Eliminato: Concerning
Eliminato: significative
Eliminato: significative
Eliminato: of
Eliminato: of
Eliminato: were
Eliminato: were

decomposition of *Q. ilex* was attributed to higher lignin content. Our results confirm those of other researches with regard to the higher lignin content of *Q. ilex*, but this was not tightly associated to lower decomposition rates. In fact, L120, where the main species was Q. ilex, was the litter with a higher decomposition rate. Therefore, other aspects could explain the differences in the decomposition rates, like the percentage of a species in each stage of succession, the age of litter, and the thickness of litter.

599

600 4.2 Influence of earthworm on soil carbon

Plant litter is the main source of SOM in soils under secondary succession. The 601 602 transformation of C litter into SOM is caused by the decomposition of plant biomass and its incorporation into the soil profile. The responsible of this mechanisms are bacteria and fungi, 603 604 forming up to 90% of the soil microbial biomass (Dix and Webster, 1995; Schimel et al., 1999) and faunal groups. Our observations highlighted the annual contribution to SOM derived from litter and it. 605 singled out the activity of decomposition through thethe difference of isotopic signature between 606 previous SOC-C (C₄ soil) and the new C₃-C input originated from litter. The ¹³C litter recovery in the 607 soil profile was higher in L120 (89%), followed by L45 (63%), L100 (60%) and L70 (52%). Firstly, 608 the activity of microbial biomass in soil samples where the grid was placed between litter and soil 609 was highlighted. In this case, the new C_3 -C represented the C-pool originated by fungi and bacterial 610 decomposition, transferred into the soil depth, mainly through dissolved organic carbon. Such 611 decomposition and incorporation activity contributed to C increase up to 77.6 g core⁻¹ year⁻¹ in L120 612 treatment (Fig. 5). On the other hand, the difference between soil core with and without litter gave 613 614 information about the contribution of <u>earthworms</u> to litter decomposition and incorporation into the 615 soil. In several studies, the introduction of earthworms in cold temperate forests resulted in a decline of SOC (Bohelen et al., 2004, Alban and Berry 1994). The results of the present study instead suggest, 616 that earthworms have the potential to increase SOC. After 1 year, earthworm activity increased SOC 617 by 13.5%, 11.3%, 11.1% and 5%, in L120, L100, L70 and L45, respectively. The effects, of 618 earthworm activity on the recovery of soil C released from litter could be attributed to different 619 mechanisms: (i) the mixture of undecayed particulate C into the soil; (ii) the creation of preferential 620 flowpaths in the soil increasing nutrient transportation; (iii) protection of C in soil aggregates created 621 by earthworm feeding (Bohlen et al., 2004; Fahey et al., 2013). 622

623

624 Conclusions

This study <u>highlights</u>, the effects of vegetation succession on C dynamics in soil after the
 termination of its agricultural use. Based on δ13C signature of C3-C of litter and C4-C of meadow

Eliminato: ed
Eliminato: research
Eliminato: it
Eliminato: it was not tightly
Eliminato: is
Eliminato: is
Eliminato: n

Formattato: Tipo di carattere: Non Grassetto
Eliminato: principal
Eliminato: principal
Eliminato: s
Eliminato: soil
Eliminato: determined
Eliminato: determined
Eliminato: was
Eliminato: decomposer thanks

Eliminato: st	
Eliminato: highest	
Eliminato: On the hand it was	(
Eliminato: In this case, the new	M

Eliminato: furnished
Eliminato: furnishedinformatior
Eliminato: observation
Eliminato: observation
Eliminato: ,instead
Eliminato: to
Eliminato: in
Eliminato: insoil C released from
Eliminato: ing
Eliminato: mixing
Eliminato: e
Eliminato: create
Formattato: Tipo di carattere: Grassetto
Eliminato: Conclusion¶
Eliminato: ed
Eliminato: highlighted
Eliminato: cessation
Eliminato: cessation
Eliminato: on C dynamics in soil

soil, the annual contribution of vegetation input to C stock was estimated. Moreover, the effect of

713 DOC leaching and earthworm activities on C storage in soil depth <u>have also been evaluated</u>.

714 Hence, in order to understand the ecosystem processes of C sequestration in semiarid

environments, a better understanding of the impact of <u>above-ground</u>, biomass on soil community, is
 still needed.

7	1	7
1	т	1

718 **Acknowledgements.** This research was financially supported by the MIUR through the PRIN 719 "CARBOTREES" project.

720	References

Alban, D.H., and Berry, E.C.: Effects of earthworm invasion on morphology, carbon, and nitrogen
of a forest soil, Appl. Soil Ecol., 1, 243–249, 1994.

Berg, B., Ekbohm, G., Johansson, M.B., McClaugherty, C., Rutigliano, F.A., Virzo de Santo, A.:
Maximum decomposition limits of forest litter types: a synthesis, Can. J. Botany., 74, 659–672,
1996.

 726
 Bohlen, P.J., Pelletier, D.M., Groffman, P.M., Fahey, T.J., Fisk, M.C.: Influence of Earthworm

 727
 Invasion on Redistribution and Retention of Soil Carbon and Nitrogen in Northern

Temperate Forests. Ecosystems, 7, 13–27, 2004.

Burtelow, A.E., Bohlen, P.J., Groffman, P.M.: Influence of exotic earthworm invasion on soil
organic matter, microbial biomass and denitrification potential in forest soils of the northeastern
United States. Appl. Soil. Ecol., 9, 197–202, 1998.

- Costa, G., La Mantia, T.: Il ruolo della macchia mediterranea nello stoccaggio del carbonio
 atmosferico, Foresta@ 2 (4), 378-387, 2005.
- Dix, N. J. and Webster, J., Chapman and Hall: Fungal Ecology, London, 549 pp, 1995.

Edwards, C.A., Bohlen, P.J., Chapman and Hall: The Biology and Ecology of Earthworms, London.
1996.

Fahey, T.J., Yavitt, J.B., Sherman, R.E., Maerz, J.C., Groffman, P.M., Fisk, M.C., Bohlen, P.:
Earthworm effects on the conversion of litter C and N into soil organic matter in a sugar maple
forest, Ecol. Appl., 23, 1185-1201, 2013.

Fioretto, A., Di Nardo, C., Papa, S., Fuggi, A.: Lignin and cellulose degradation and nitrogen
dynamics during decomposition of three leaf litter species in a Mediterranean ecosystem., Soil
Biol. Biochem., 37, 1083–1091, 2005.

Fioretto, A., Musacchio, A., Andolfi, G., Virzo De Santo, A.: Decomposition dynamics of litters of
various pine species in a Corsican pine forest, Soil, Biol. Biochem., 30, 721–727. 1998.

Eliminato: it has been evaluated

Eliminato: environment Eliminato: , Eliminato: aboveground Eliminato: ,

Formattato: Tipo di carattere: Grassetto, Colore carattere: Nero Formattato: Tipo di carattere: Non Grassetto, Colore carattere:

Formattato: Regola lo spazio tra testo asiatico e in alfabeto latino, Regola lo spazio tra caratteri asiatici e numeri

Automatico

Formattato: Colore carattere: Automatico

Formattato: Allineamento carattere: Automatico

Formattato: Tipo di carattere: Times New Roman, 12 pt, Colore carattere: Colore personalizzato(RGB(35;31;32)), Non Espansa / Ridotta

Formattato: Regola lo spazio tra testo asiatico e in alfabeto latino, Regola lo spazio tra caratteri asiatici e numeri

Formattato: Colore carattere: Nero

Formattato: Colore carattere: Automatico

Formattato: Regola lo spazio tra testo asiatico e in alfabeto latino, Regola lo spazio tra caratteri asiatici e numeri

Formattato: Motivo: Trasparente

Formattato: Motivo: Trasparente

750	Fitter, A.H., Gilligan, C.A., Hollingworth, K., Kleczkowski, A., Twyman, R.M., Pitchford, J.W.,		
751	NERC Soil Biodiversity Program, Biodiversity and ecosystem function in soil, Funct. Ecol., 19,		
752	367–377, 2005.		
753	Gearing, J.N.: 1991. The study of diet and trophic relationships through natural abundance 13C. In:		
754	Coleman, D.C., Fry, B. (Eds.), Carbon Isotope Techniques. Academic Press, San Diego, pp. 201-		
755	218.		Formattato: Tipo di carattere: (Predefinito) Times New Roman, 12 pt
756	Huang, C.Y., Hendrix, P.F., Fahey, T.J., Bohlen, P.J., Groffman, P.M.: A simulation model to		
757	evaluate the impacts of invasive earthworms on soil carbon dynamics, Ecol. Model., 221, 2447-		
758	2457, 2010.		
759	Kaiser, K., Guggenberger, G.: The role of DOM sorption to mineral surfaces in the preservation of		
760	organic matter in soils, Org. Geochem., 31, 711-725, 2000.		
761	Kalbitz, K., Kaiser, K.: Contribution of dissolved organic matter to carbon storage in forest mineral		
762	soils, J. Plant. Nutr. Soil Sc., 171, 52-60, 2008.		
763	Lal., R.: 2005. Forest soils and carbon sequestration Forest Ecology and Management, 220, 242–258		Formattato: Inglese (Regno Unito)
764	La Mantia T., Rühl J., Pasta S., Campisi D., Terrazzino G., (2008) - Structural analysis of woody		
765	species in Mediterranean old fields. Plant Biosystems, Vol. 142, n. 3: 462-471.		Formattato: Inglese (Stati Uniti)
766	Lee, K.E.: Earthworms: Their Ecology and Relationships with Soils and Land Use. Academic Press,		
767	New York, 333–349, 1985.		
768	Li, D., Zhu, H., Liu, K., Liu, X., Leggewie, G., Udvardi, M., Wang, D.: Purple acid phosphatases of		
769	Arabidopsis thaliana, Comparative analysis and differential regulation by phosphate deprivation,		
770	J. Biol. Chem., 227, 27772-27781, 2002.		Formattato: hlfld-contribauthor,
771	Maisto, G., De Marco, A., Meola, A., Sessa, L., Virzo De Santo, A.: Nutrient dynamics in litter		(Italia)
772	mixtures of four Mediterranean maquis species decomposing in situ, Soil Biol. Biochem., 43,		Formattato: Bordo: : (Nessun bordo), Motivo: Trasparente
773	520 – 530, 2011.	\square	Formattato: Bordo: : (Nessun
774	Mangenot, F., Toutain, F., Pesson, P. (Ed.): Les Litieres Forestieres et Leur Evolution, Actualites d'	\backslash / \rangle	Formattato: Motivo: Trasparente
775	Ecologie Forestiere: Sol, Flore, Faune 3-59. Gauthier-Villar, Paris, 1980.	$\backslash \backslash$	Formattato: Bordo: : (Nessun
776	Novara, A., La Mantia, T., Ruhl, J., Badalucco, L., Kuzyakov, Y., Gristina, L., Laudicina, V.A.:	())	Formattato: Car. predefinito
777	Dynamics of soil organic carbon pools after agricultural abandonment, Geoderma, 235-236, 191-	$\backslash \rangle$	paragrafo, Tipo di carattere: 12 pt, Inglese (Stati Uniti), Bordo: :
778	198, 2014.		(Nessun bordo) Formattato: Motivo: Trasparente
779	Pulleman, M.M., Six, J., Uyl, A., Marinissen, J.C.Y., Jongmans, A.G.: Earthworms and management		Formattato: Allineamento
780	affect organic matter incorporation and microaggregate formation in agricultural soils. Appl. Soil		Carattere: Automatico
781	Ecol., 29, 1–15, 2005.		testo asiatico e in alfabeto latino, Regola lo spazio tra caratteri
782	Saiano, F., Oddo, G., Scalenghe, R., La Mantia, T., Ajmone-Marsan, F.: DRIFTS Sensor: Soil		asiatici e numeri
783	Carbon Validation at Large Scale (Pantelleria, Italy). Sensors, 13, 5603-5613, 2013.		

784	Sayer, E.J., Powers, J.S., Tanner, E.V.J.: Increased litterfall in tropical forests boosts the transfer of			
785	soil CO ₂ to the atmosphere, PLOS ONE, 12: e1299, doi:10.1371/journal.pone.0001299, 2007.			
786	SAS Institute 2001. SAS/STAT, Release 8.01. SAS Institute, Cary, NC.		Eliminato: ¶	
787	Schimel, J.P., Gulledge, J.M., Clein-Curley, J.S., Lindstrom, J.E., Braddock, J.F.: Moisture effects on		Formattato: Regola lo spazio tra	
788	microbial activity and community structure in decomposing birch litter in the Alaskan taiga, Soil.		Regola lo spazio tra caratteri asiatici e numeri	
789	Biol. Biochem., 31, 831–838, 1999.		Formattato: Motivo: Trasparente	
790	Smith, P.: Land use change and soil organic carbon dynamics, Nutr. Cycl. Agroecosys., 81, 169-178,		Formattato: Motivo: Trasparente	
791	2008.			
792	Smolander, A., Levula, T., Kitunen, V.: Response of litter decomposition and soil C and N			
793	transformations in a Norway spruce thinning stand to removal of logging residue, Forest Ecol		Formattato: Motivo: Trasparente	
794	Manag, 256, 1080–1086, 2008.			
795	Sollins, P., Homann, P., Caldwell, B.A.: Stabilization and destabilization of soil organic matter:			
796	mechanisms and controls, Geoderma, 74, 65-105, 1996.			
797	Steven, J. Fonte, Angela, Y.Y. Kong, Chris van Kessel, Paul, F. Hendrix, Johan Six.: Influence of			
798	earthworm activity on aggregate-associated carbon and nitrogen dynamics differs with			
799	agroecosystem management, Soil. Biol. Biochem, 39, 1014–1022, 2007.		Formattato: Motivo: Trasparente	
800	Swift, M.J., Heal, O.W., Anderson, J.M., University of California Press: Decomposition in Terrestrial			
801	Ecosystems, 5, Berkeley, 167-219,1979.			
802	Tiunov, A.V., Bonkowski, M., Alphei, J., Scheu, S.: Microflora, Protozoa and Nematoda in			
803	Lumbricus terrestris burrow walls: a laboratory experiment, Pedobiologia, 45, 46-60, 2001.			
804	Van Soest P.J., Robertson J.B., Lewis B.A. (1991): Methods for dietary fiber, neutral detergent fiber,			
805	and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci., 74, 3583-3597.			
806	WRB World Reference Base for Soil Resources 2006, first update 2007. World Soil Resources			
807	Reports No. 103. FAO, Rome			
808	Wurst, S., Dugessa-Gobena, D., Langel, R., Bonkowski, M., Scheu, S.: Combined effects of			
809	earthworms and vesicular-arbuscular mycorrhizas on plant and aphid performance, New Phytol.,			
810	163, 169–176, 2004.			
811			Eliminato: Figure	
812			Eliminato: Table 1. Characteristics of succession stages in Pantelleria	
813	Picture,		island where litters were collected. ¶ Successional stages	
816	Caption		Formattato: Tipo di carattere: Non Grassetto, Colore carattere:	
817	Picture, 1. Sampling area of litter in Pantelleria secondary succession (numbers represent litter in field		Automatico	
818	abandoned for, 120, 100, 70 and 40 years, respectively) and experimental design in meadow field.	\searrow	Eliminato: Figure	
819	Numbers indicate the age since abandon		Eliminato: since	

Eliminato: since

830			
831	Picture 2. C litter content (%) (black columns) and C litter input (g) for each core (grey columns) in		Eliminato: Figure
832	L45, L70, L100 and L120 treatments.	$\overline{}$	Eliminato: Figure
922			Formattato: Inglese (Regno Unito)
833			
834	Picture, 3. $\delta 13C$ value at different depth in no grid (a) and grid (b) treatment. The green line	_	Eliminato: Figure
835	represents no litter treatment, while blue, red, grey and black represent litter in fields abandoned for		Eliminato: Figure
			Formattato: Inglese (Regno Unito)
836	120, 100, 70 and 40 years, respectively.		Eliminato: field
837			Eliminato: since
838	Picture, 4. Contribution (%) of worm activity (black columns) and DOC (grey columns) in C ₃ -C		Eliminato: since
820	nortion at different soil denth. For each portion different letters indicate differences for $P \le 0.05$	\square	Eliminato: Figure
039	portion at different son deput. For each portion different letters indicate differences for $r \le 0.05$.		Eliminato: Figure
840			Formattato: Inglese (Regno Unito)
841	Picture, 5. C content in each core (L45, L70, L100 and L120) originated from C4-SOC (grey		Eliminato: Figure
842	columns). C ₃ -SOC from worm activity (vellow columns). C ₃ -SOC from DOC leaching (orange	e	Eliminato: Figure
			Formattato: Inglese (Regno Unito)
843	columns) and C litter (green columns).		
844			
845	•		Formattato: Allineato a sinistra,

Formattato: Allineato a sinistra, Interlinea singola, Regola lo spazio tra testo asiatico e in alfabeto latino, Regola lo spazio tra caratteri asiatici e numeri

12°0'0"E

---interruzione pagina--

....

15 cm

30 cm

¶ Figure 2¶ 14°0'0"E