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Abstract 12 

Explosive volcanic eruptions are commonly characterized based on a thorough analysis of the generated 13 

deposits. Amongst other characteristics in physical volcanology, density and porosity of juvenile clasts are 14 

some of the most frequently used characteristics to constrain eruptive dynamics. In this study, we evaluate the 15 

sensitivity of density and porosity data to statistical methods and introduce a weighting parameter to correct 16 

issues raised by the use of frequency analysis. Results of textural investigation can be biased by clast 17 

selection. Using statistical tools as presented here, the meaningfulness of a conclusion can be checked for any 18 

dataset easily. This is necessary to define whether or not a sample has met the requirements for statistical 19 

relevance, i.e. whether a dataset is large enough to allow for reproducible results. Graphical statistics are used 20 

to describe density and porosity distributions, similar to those used for grain-size analysis. This approach 21 

helps with the interpretation of volcanic deposits. To illustrate this methodology we chose two large datasets: 22 

1) directed blast deposits of the 3640-3510 BC eruption of Chachimbiro volcano (Ecuador) and 2) block-and-23 

ash-flow deposits of the 1990-1995 eruption of Unzen volcano (Japan). We propose add the use of this 24 

analysis for the incorporation of this analysis into future investigations to check the objectivity of results 25 

achieved by different working groups and guarantee the meaningfulness of the interpretation. 26 

Keywords: explosive eruptions, pyroclast textures, porosity, density, statistical analysis 27 

1. Introduction  28 

Pyroclast density and porosity are commonly used to reconstruct eruptive dynamics and feed numerical 29 

models. The pyroclast density ρp is defined as: 30 



ρ=
m

V
.  (1) 31 

The mass of a pyroclast mp is easily measured using a precision balance. The measurement of its volume Vp is 32 

a much greater task as pyroclasts have irregular shapes. According to the Archimedes’ principle, Vp can be 33 

calculated using the volume of water displaced by the pyroclast Vw that can be directly measured or calculated 34 

using thethe following equation: 35 

V=V w=
m
w

ρ
w ,  (2)  36 

 37 

Wwhere the water density ρw depends on the ambient temperature and mw corresponds to the mass of water 38 

volume weight displaced by the pyroclast.  39 

If the density DRE (Dense Rock Equivalent (DRE, ρdrDRE) is known, either assumed using the rock 40 

composition or measured in laboratory (i.e. rock powder density using water or helium pycnometry), it can be 41 

used along with the pyroclast density to calculate the pyroclast porosity (φp): 42 

φ=1 −
ρ

ρ
DRE .  (3) 43 

It is important to note that measuring the density and the porosity of irregularly shaped pyroclasts is not a 44 

straightforward analysis. In particular, the parameter mw is harddifficult to constrain preciselyaccurately as it 45 

has to be achieved before or better without a significant portion of the pore space having been filled with 46 

water due to water infiltration in the pyroclast. The impact on the measurement increases for samples with 47 

high porosity and permeability.. In any case, the properties of the pore network, such as the permeability or 48 

the pore tortuosity, have to be taken into account because they affect the mw. Over the last decades several 49 

methods have been developed to minimize the effect of intruding water (Houghton and Wilson, 1989; 50 

Schiffman and Mayfield, 1998; Polacci et al., 2003; Kueppers et al., 2005). It is worth indicating that there are 51 

many different techniques to obtain density and porosity other methods such as water saturation, pycnometry 52 

(water or helium), photogrammetry, calipercalliper techniques, and X-ray tomography are also used to 53 

calculate density and porosity  (Hanes, 1962; Manger, 1966; Giachetti et al., 2011). The increasing use of 54 

regularly shaped core samples (cores) with regular shape in the laboratory solves the problem of imbibition 55 

allows for an easy way to derive average density but provides partial information on the bulk density and 56 

porosity of the starting pyroclastss due to 3D effects such as heterogeneous vesicle size and density 57 

distribution. The purpose of this paper is not to compare the different methods used to obtain the 58 

density/porosity data but to discuss how they should be treated statistically. 59 

Another important aspect of density/porosity analysis is that pyroclastic deposits commonly present a large 60 



range of density values, so sample sets must comprise a significantlarge number of clasts. Additionally, the 61 

results must be checked for a low amount of bias during sample selectiondue to preferential sampling during 62 

field workfieldwork. Then the density and porosity results are generally treated statistically using frequency 63 

analysis including average and distribution histograms. These analyses are often used to interpreted as 64 

indicators of  volcanic structures or explosivity (Kueppers et al., 2005; Belousov et al., 2007; Kueppers et al., 65 

2009; Shea et al., 2010; Mueller et al., 2011). The main issue in this approach is that density and porosity are 66 

considered thermodynamically as intensive properties andthat  are not additive unlike extensive properties 67 

such as mass or volume (White, 2012). In consequence, if it cannot be added, it should not be possible to 68 

average (sum divided by number of measurement) intensive properties. For homogeneous material such as 69 

native elements (diamond, gold) it is not a problem because thePyroclast d density is will be the same 70 

independently of the scalesize dependent even for samples with a homogeneous bubble distribution (increase 71 

in density for particles smaller than the average bubble size, e.g., Eychenne et aland Le Pennec., 20132). This 72 

effect can be even stronger . Ffor heterogeneous matter such as pyroclastic material that commonly shows 73 

bubble gradients. TTherefore, anthe average density ρa can be estimated as the total mass of the pyroclasts mt 74 

divided by their total volume Vt: 75 

ρa=
mt

V t
≈

 ∑
i=1

n

m
i

 ∑
i=1

n

V
i

. (4) 76 

The non-additive property of density and porosity also forbidlimits the use of frequency histograms. For 77 

statistical analysis on the density/porosity distribution, the measurements must be weighted cannot be 78 

summed or averaged. In fact intensive properties must be weighted in order to be treated 79 

statistically.adequately to be physically meaningful. 80 

The purpose of this paper is to present a simple method to obtain weighted averages and histogramsstatistics 81 

in order to analyszeanalyse density and porosity data. We also propose an ipso facto a stability analysis that 82 

allows quantifying the quality of the sampling and the relevance of the results. Then we introduce graphical 83 

statistical parameters similar to those used for the analysis of grain-size distribution (Inman, 1952; Folk and 84 

Ward, 1957) that can help the interpretation of density and porosity datasets.In order to standardize the 85 

description of grain-size distribution of sediments, Inman (1952) proposed a  set of graphical parameters 86 

based on statistical analysis. The new parameters such as graphical standard deviation and graphical skewness 87 

allowed to putputting numbers on descriptive terms. Few years later Folk and Ward (1957) proposed revised 88 

parameters that better describe natural material in particular polymodal distributions. They also introduced the 89 

kurtosis that allows to describedescribing the shape of the mode. These parameters have been used ever since 90 

to characterize and distinguish volcanic deposits (Walker, 1971). We propose to adapt those equations to 91 

describe density and porosity distribution. This methodology is incorporated in an open source R script 92 

(http://www.r-project.org/). R is a high-functioning freeware with excellent statistical capacities that provide 93 



an optimal platform for such analysis. In order to promote this analysis we also provide Those three steps are 94 

incorporated in an open source R script (http://www.r-project.org/) for easy usea similar MatLab numeric 95 

code. An Excel spreadsheetspread sheet is also jointed but only with basic formulae as most of the 96 

formulaeprotocol cannot be translate to a spreadsheetspread sheet format.  Finally we illustrate and discuss 97 

this method using two large datasets from different pyroclastic deposits. 98 

2. Methodology 99 

2.1. Density and porosity datasets 100 

We chose two large datasets from different pyroclastic deposits in order to assess the validity of our approach. 101 

The Chachimbiro dataset (Bernard et al., 2014) is made of 32 sample sets from different outcrops of the 3640-102 

3510 BC directed blast from Chachimbiro volcano, Ecuador (Appendix 1). Each sample set contains between 103 

15 and 103 clasts of the 16-32 mm fraction measured using the methodology of Houghton and Wilson (1989). 104 

The Unzen dataset (Kueppers et al., 2005) is made of 31 sample sets from block-and-ash-flow deposits from 105 

the 1990-1995 eruption of Unzen volcano, Japan (Appendix 2). Each sample set contains 24-33 large 106 

pyroclasts (100-5000 g>64 mm) measured according to the methodology presented in Kueppers et al. (2005). 107 

2.2. Weighting measurements 108 

In order to perform a thorough statistical analysis of density and porosity data, each clast measurement in a 109 

sample set with a number of “n” measurements n must be weighted. Based on the Eq. (1) the density/porosity 110 

data can be weighted either by the volume or by the mass of the pyroclast as soon as the weighting parameter, 111 

here called the representativeness R, is defined as follows: 112 

ρa= ∑
i=1

n

(R i×ρi)
.  (5) 113 

Here we chose to present the weighting by volume but the same resolution can be used to weight by mass. 114 

The Eq. (1) can be reformulate as follows: 115 

m
i
=ρ

i
×V

i .  (6) 116 

Then the Eq. (6) can be inserted in the Eq. (4): 117 

ρa=
mt

V t
 ≈
 ∑
i=1

n

m
i

V t
=
 ∑
i=1

n

(V i×ρi)

V t
= ∑
i=1

n

(V i×ρiV t )
.  (7) 118 

Using the Eq. (5) and (7): 119 

 ∑
i=1

n

(V i×ρiV t )= ∑
i=1

n

(R i×ρi)
,  (8) 120 



 121 

On the basis of Eq. (1), it appears that the measurement must be weighted by the volume of the pyroclast . 122 

Therefore the reprthe representativeness by volume  of theany pyroclast Rp, which  is the part of the 123 

measurement in the whole sample setdefined as the volumetric portion of the pyroclast, is calculated as 124 

follows in the whole sample:  125 

t

i
i V

V
=R .  (9) 126 

 127 

Therefore if n = 1, R =1.4   (4) 128 

 4  dotRhoVp) and porosity (dotPhiVp) as follows: 129 

4    (5) 130 

4    (6) 131 

In order to check if the weighting equation is correct, it is possible to solve the Eq. (5) using Eq. (1) and 132 

(4): 133 

5   (7) 134 

Therefore the weighted values do have a physical meaning whereas the frequency values don’t.  135 

2.3. Abundance histograms and cumulative plots 136 

Abundance histograms and cumulative plots are typical graphical representations of density and porosity data 137 

(Fig. 1). The representativeness can be used to create weighted graphs. For the abundance histogram, in each 138 

interval we sum the Rprepresentativeness of the measurements instead of counting the number of 139 

measurements and dividing it by n. It is important to note that density and porosity histograms can have 140 

different shapes due to the selected bin size[1] (Fig. 1A and C). Several studies have used mixed histograms, 141 

with the main axis for density and a secondary axis for porosity (Houghton and Wilson, 1989; Formenti and 142 

Druitt, 2003; Belousov et al., 2007; Shea et al., 2010; Komorowski et al., 2013). There is no consensus for the 143 

histogram representation; nonetheless most studies used bin sizes between 50 to 100 kg m-3 for the density 144 

(Cashman and McConnell, 2005; Kueppers et al., 2005; Bernard et al., 2014). In practicetheory, the bin size 145 

should be selected depending on the number of measurements and the density or porosity range, nevertheless 146 

for comparison purpose we chose a constant bin size (100 kg m-3 and 5% porosity) that can be changed in the 147 

numeric code. Cumulative plots (Fig. 1B and D) are easier to produce and have a unique representation as the 148 

data are used directly to produce the plot. The data are sorted by increasing density or porosity and these 149 

values are then plotted against the cumulative abundance that is the sum of Rpthe representativeness. The 150 

R
i
=
V i

V



density and porosity cumulative plots should have the same shape but rotated 180°[2]. 151 

2.4. Stability analysis 152 

One of the main questions when performing a density and porosity analysis on pyroclastic deposits is: how 153 

many measurements are required to have a statistically representative sample set? The sample set size, here 154 

expressed as the number of measurements n, is primarily dependant on the dispersion of the data. Deposits 155 

with a large density range and a large standard deviation require a larger number of measurements. In order to 156 

assess the quality of the sampling we propose a stability analysis based on the comparison between the final 157 

density average (including all the measurements) and intermediate density averages (including part of the 158 

measurements). To avoid analytical skew, due to intentional or unintentional ordering of the samples during 159 

the measurements, the data must be ordered randomly several times. Then tThe densityintermediate average 160 

ρaint is calculated after each measurement and compared with the final average. theAn absolute error (AE) is 161 

calculated using as follows: 162 

�� = �������	
����
� .  (10) 163 

 164 
 with the final density average is determined. Each run with random ordering leads to a different AE after a 165 

certain number of measurements. We chose to represent Tthe 95th quantile (2 sigma) of the absolute errorAE 166 

is then plotted against the number of measurements (Fig. 2). We found that about 1,000 repetitive runs on one 167 

sample set are required to achieve identical results. Finally, the slope of the curve is calculated below a 5% 168 

threshold of the absolute error to avoid the large error associated to a very small number of measurements. 169 

This slope is a direct indicator of the quality of the sampling with low slopes associated to high quality 170 

sampling. The slope of the curve is also calculated below 1% of AE as an additional quality indicator but it 171 

seemsappears not asless useful in practice.  172 

2.5. Graphical statistics 173 

As the frequency analysis is not suitable for density and porosity data, some interesting statistical parameters, 174 

such as the standard deviation, are difficult to obtain. Based on the work achieved to characterize better 175 

studies of grain- size distribution (Inman, 1952; Folk and Ward, 1957), we propose for the first time a similar 176 

approach to calculate the graphical statistics of density and porosity using the cumulative plots (Fig. 1CB and 177 

D). The main difference between graphical statistics for grain-size distribution or for density data is not the 178 

equations but the data itself. Grain-size data obtained through sieving are partial data as the grain-size 179 

distribution inside each size class (1 phi, ½ phi or ¼ phi) we cannot is unknown the grain-size distribution. 180 

The density data, on the other hand, are continuous through the whole sample set. An other difference is that 181 

grain-size data are weighted by mass whereas density data are weighted by volume. For informational 182 

purposeHere we present the equations for the density, which are identical to the equations for the porosity. 183 

2.5.1. Inman graphical statistics 184 



Inman (1952) defined three parameters: 185 

• The the Graphical Median Md is a proxy of the average: 186 

•  EMBED Microsoft Equation 3.08 

Md
ρ
=ρ

50
   (8) 187 

ρ
Md
=ρ

50 ,.  (10) 188 

Wwhere ρ50 corresponds to the value of ρ at 50% of cumulative abundance. Same notation is used for the 189 

following equations;. 190 

• The the Graphical Standard Deviation σ describe the dispersion of the dataset: 191 

•  EMBED Microsoft Equation 3.08    (9) 192 

ρ
σ
=
ρ
84
 − ρ

16

2 ;.  (11) 193 

• The the Graphical Skewness SkG characterize the asymmetry of the data distribution: 194 

•  EMBED Microsoft Equation 3.08  (10) 195 

ρ
Sk
=
ρ
84
+ρ

16
 − 2 ρ

50

2( ρ84 − ρ16 ) .  (12) 196 

2.5.2. Folk and Ward graphical statistics 197 

Folk and Ward (1957) proposed different parameters that are considered by some authors (Folk, 198 

1966)supposed to be more representative of natural distributions, in particular for bimodal or polymodal 199 

distributions. The main difference with Inman parameters is the inclusion of a 1-sigma parameter for the mean 200 

and a 2-sigma parameter for standard deviation and skewness. In addition Folk and Ward (1957) included the 201 

Kurtosis, a statistical parameter that allows to characterizecharacterizing the shape of the distribution peak: 202 

• The the Graphical Mean Mz: 203 

•  EMBED Microsoft Equation 3.09     (11) 204 

ρ
Mz
=
ρ
16
+ρ

50
+ρ

84

3 ;.  (13) 205 

σ
ρ
=
ρ
84
 − ρ

16

2

SkG
ρ
=
ρ
84
+ρ

16
− 2 ρ

50

2 (ρ84− ρ16 )

Mz
ρ
=
ρ
16
+ρ

50
+ρ

84

3



• The the Inclusive Standard Deviation σI: 206 

•  EMBED Microsoft Equation 3.09    (12) 207 

ρ
σI
=
ρ
84
 − ρ

16

4
+
ρ
95
 − ρ

5

6. 6 ;.  (14) 208 

• The the Inclusive Skewness SkI: 209 

•  EMBED Microsoft Equation 3.09  (13) 210 

ρ
SkI
=
ρ
84
+ρ

16
 − 2 ρ

50

2(ρ84 − ρ16 )
+
ρ
95
+ρ

5
 − 2 ρ

50

2( ρ95 − ρ5) ;.  (15) 211 

• The the Graphical Kurtosis KG: 212 

•  EMBED Microsoft Equation 3.08    (14) 213 

ρ
K
=

ρ
95
 − ρ

5

2. 44 ( ρ75 − ρ25) ..  (16) 214 

It is important to note that the values of Graphical Median and Mean should be relatively close to the 215 

weighted average. Nevertheless, as the weighted average is physically the most accurate value, we propose to 216 

use it for graphical representation. Standard deviation, skewness and kurtosis are important parameters that 217 

have never been used yet to characterize density and porosity distributions but they are useful. 218 

2.6. R code 219 

An open access R code has been created to simplifyautomate the calculations presented above. Additionally it 220 

facilitates the automatic creation of abundance histograms, cumulative plots, and stability curves. The input 221 

file must be in the format csv (field separated by comma) and structured as follows:  222 

1) first column: pyroclast mass (in kg or g); 223 

2) second column: pyroclast volume (in m3 or cm3); 224 

3) third column: pyroclast density (in kg m-3 or g cm-3); 225 

4) fourth column: pyroclast porosity (in decimal from 0 to 1). 226 

The columns should have a header. All the values must have the decimal point separator for the R code to run 227 

σI
ρ
=
ρ
84
 − ρ

16

4
+
ρ
95
 − ρ

5

6 . 6

SkI
ρ
=
ρ
84
+ρ

16
− 2 ρ

50

2(ρ84− ρ16 )
+
ρ
95
+ρ

5
− 2 ρ

50

2 (ρ95− ρ5)

KG
ρ
=

ρ
95
− ρ

5

2.44 (ρ75− ρ25)



properly. The name of the file should correspond to the name of the sample set to avoid confusion when 228 

compiling large datasets. The R code is provided in the supplementary material (Appendix 3) and to run the 229 

code only twothree commands are required in R:  230 

1) set the Working Directory where the R code and the input file are located: setwd(“~/”); 231 

 232 

12) load the code: source(“stats.R”); 233 

 234 

23) run the code: results<-stats(“Input file name.csv”). 235 

For large datasets it is possible to create a list of csv files and treat them with a loop: 236 

 237 

34) create the list: l<-list.files(path=".",pattern="csv"); 238 

 239 

45) run the code for the list: for (i in 1:length(l)){a<-stats(l[i],plot=FALSE)}). 240 

The R code generates a text file with the statistical results and the figures in pdf format. Compiling the 241 

Chachimbiro (33 sample sets, 1492 clasts) and Unzen (32 sample sets, 922 clasts) datasets with the R code 242 

with 1000 runs for the stability analysis of each sample set take respectively 36 and 22 seconds on a 4 Gb ram 243 

computer (~42 clasts/s in both cases). A translation of the R code in MatLab format is also provided in the 244 

Appendix 3 as well as a basic spreadsheet including the formulae required to obtain weighted average.  245 

3. Contribution of the renewed methodology 246 

3.1. Frequency versus weighted analysis 247 

The absolute difference between frequency and weighted density/porosity averages for Chachimbiro and 248 

Unzen datasets is up to 4% and 2% respectively (Fig. 3A, Appendix 4) that is close to the analytical error 249 

(<5%) (Fig. 3A, Appendix 4). This difference is not as important as the relative difference between individual 250 

sample sets per volcano. To highlight this we chose two sample sets from the Chachimbiro, 021-B and 089-A. 251 

These samples have almost the exact same frequency density average (1961 and 1960 kg m-3) but a distinct 252 

weighted density averages (2039 and 1892 kg m-3). In contrast, two other sample sets from Chachimbiro 253 

(018-C and 095-A) show similar weighted density averages (2246 and 2242 kg m-3) but distinct frequency 254 

density averages (2284 and 2154 kg m-3). Abundance histograms can also be biased by the use of frequency 255 

analysis. We observed significant modification of the histogram shape such as fluctuation of the 256 

density/porosity modes (Fig. 3B), variation of the mode fraction, or change of the general density/porosity 257 

distribution (unimodal or plurimodal). For both of our study cases, the number of measurements and the 258 

number of samples per deposit is large enough for the effect of one method compared to the other to be 259 



minimum (few percent of deviation). Even though, laboratory experiments have shown that porosity is one of 260 

the main parameters that controls fragmentation during decompressionexplosive eruptions under the presence 261 

of bubbles with gas overpressure (Alidibirov and Dingwell, 1996; Spieler et al., 2004). tTherefore a change of 262 

only few percent of porosity might induce a large error on the calculation of pre-eruptive conditions such as 263 

overpressure and fragmentation depth.Therefore, the use of frequency analysis alone can lead to 264 

misinterpretations. It is difficult to assess the effect of the statistical method based on literature as most of the 265 

publications only provide the final density and porosity datasets and not the raw data (mass and volume). 266 

3.2. Sample size 267 

The stability analysis (c.f. 2.3) can be used to assess the quality of the sampling and also to estimate the 268 

minimum number of measurements required to obtain meaningful results. When comparing the slope of the 269 

stability curve below the 5% threshold and the number of measurements from the Chachimbiro dataset, it 270 

appears that sample sets with more than 40 clasts have a high stability (Fig. 4, Appendix 4). Below 40 271 

measurements there is scattering in the results (from high to low stability) probably associated to the 272 

differences of in the standard deviation. The Unzen dataset exhibits a much smaller spread with a high 273 

stability for most of the sample sets. This difference indicates that natural heterogeneity of pyroclasts and 274 

eruption, transport and deposition dynamics require a deposit-adapted sampling strategy. Houghton and 275 

Wilson (1989) propose a minimum of 30 clasts per sample set. Our analysis shows that the minimum number 276 

of measured clasts per sample set must be established according to the characteristics of the deposit itself and 277 

therefore based on an ipso facto approach. When more raw data are available on different deposits, 278 

thestability analysis results from this approach could also be useused to suggest a minimum number of 279 

measurements for future investigations. Moreover, the stability analysis might be used to select only high 280 

stability, ergo more representative, samples for further analyseis such as laboratory experimentation or 281 

permeability measurements (Fig. 5). 282 

3.3. Distinguishing deposits 283 

Graphical statistics for grain-size analysis have been commonly used to identify the nature of volcanic 284 

deposits (Walker, 1971). The same might be applied for density analysis. Figure 5 highlights the differences 285 

between the Chachimbiro and Unzen datasets. For values of similar density/porosity averages the 286 

Chachimbiro dataset shows almost systematically a higher standard deviation than the Unzen dataset 287 

(Appendix 4). The two datasets also display a small degree of overlap when looking at skewness and kurtosis 288 

parameters. The Unzen deposits have principally a symmetric porosity distribution (SkG and SkI around 0) 289 

while the Chachimbiro deposits have a clear asymmetric distribution (SkG and SkI mostly positive and up to 290 

0.4). The porosity distribution for Unzen deposits is typically mesokurtic (KG ~ 1) while it is generally highly 291 

leptokurtic (KG > 1) for Chachimbiro deposits, mostly associated towith a larger tail of data and wider 292 

porosity modes. This might be interpreted as an expression of the outgassing processes in both contexts. The 293 

dome collapses, associated to Unzen deposits, probably affected the outerupper part of the lava dome that has 294 

been homogeneouslyfairly outgassed while the directed blast, associated to Chachimbiro deposit, removed 295 



most of the dome in one event, including the highly outgassed carapacebut also magma from the plumbing 296 

system  and the internal magma with still a higher volatile content. There is no major difference between the 297 

Inman (1952) and It appears that the Folk and Ward (1957) parameters for the Unzen dataset while the 298 

Chachimbiro dataset behave differently. In particular the Inclusive Skewness (Fig. 5D) allows for a better 299 

distinction than the Inman parametersbetween the Unzen and Chachimbiro datasets. As indicated by Folk 300 

(1966), the Folk and Ward parameters generally represent polymodal distribution better than do the Inman 301 

parameters. Consequently, the bimodal distribution of most samples from the Chachimbiro deposit explains 302 

why they are better described by the formerthe former better describes them than the latter.This is probably 303 

due to the bimodal distribution of most sample sets from the Chachimbiro dataset and agree with Folk (1966) 304 

conclusions made for grain-size analysis. It is possible that the distinction made thanks to the graphical 305 

parameters is related to the origin of the deposits (directed blast vs block-and-ash-flow) but more data from 306 

different deposits are required to support this hypothesis. 307 

4. Conclusion 308 

This study presents a new methodology to treat density and porosity measurements from pyroclastic deposits. 309 

It presents weighting equations that allow a more robust proper statistical analysis. The evaluation of 310 

Chachimbiro and Unzen density/porosity datasets indicate that frequency analysis alone can lead to 311 

misinterpretations and that weighted analysis should be used to avoid analytical bias. The stability analysis 312 

provides a tool to assess the quality of the sampling while the graphical parameters allow for a better 313 

characterization of the deposits than the classical approach using only averages and histograms. The results 314 

obtained show that for small numbers of measurements the Chachimbiro dataset sample sets is are less stable 315 

than the Unzen ones. This can be interpreted as being due to either the sampling method or due to the deposit 316 

density/porosity distribution. Finally we propose tothe use of graphical statistics to rerepresent the 317 

density/porosity data. The differences observed between the two datasets indicate that such representations 318 

can be useful to distinguish pyroclastic deposits. 319 
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Figure captions 

Figure 1. Abundance histograms (A and C) and cumulative plots (B and D) for pyroclast density and porosity 335 

data. Sample CHA-201-A (n = 103) from Chachimbiro directed blast deposit. 336 

Figure 2. Stability curves obtained after 1,000 runs for two samples from Chachimbiro and Unzen datasets. 337 

Note the constant slope below the 5% threshold.  338 

Figure 3. Comparison between frequency and weighted analyses. A: weighted vs frequency density average 339 

for Chachimbiro and Unzen datasets, note the large relative differences highlighted by the redblackred arrows 340 

(see paragraph 3.1 for explanation); B: Porosity abundance histogram for one sample from the Chachimbiro 341 

dataset, note the large fluctuationdifference (10%) of the main porosity mode between the two statistical 342 

methods represented by the redblackred arrow. 343 

Figure 4. Results of the stability analysies for the Chachimbiro and Unzen datasets. Note that there is a large 344 

scattering for Chachimbiro dataset below 40 measurements while the Unzen dataset has much less dispersed 345 

values. 346 

Figure 5. Graphical parameters for the Chachimbiro and Unzen datasets. Only high stability (slope < 0.5%) 347 

sample sets are used in this figure. Note that the two datasets are better show lower superposition with the 348 

Folk and Ward parameters than with the Inman parameters, in particular when using the Skewness (5D). 349 
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