
To the Reviewer #1 

Many thanks for the referee’s valuable comments and his/her time spent in reviewing our 

paper (SE-2016-12). I would like to mention that in the revised paper, all the points have 

been taken into consideration. Following, I refer the comments made by the referee with their 

corresponding answers as italic font. The changes are highlighted in the revised paper (in 

yellow color). 

 

Comment#1: Does the Giesekus constitutive relationship that they use actually apply to 

rocks? This relationship was derived specifically for polymers. Rocks are not polymers – they 

are crystalline. Are there any laboratory experiments showing that rock minerals, or indeed 

any type of crystalline material, has nonlinear viscoelasticity that matches the Giesekus 

constitute relationship? Or any field observations? Unless the authors can cite some evidence 

that this is actually relevant, then this manuscipt has no place in an Earth science journal. 

Response: It is pleasure for me that it is prepared an opportunity for us to clarify some 

uncertainties. The main comment of respectable reviewer is: Just linear viscoelastic models 

(such as Maxwell model) are suitable for modeling the mantle convection and Giesekus 

constitutive equation is not a good choice due to difference of the class of materials. I should 

present some clarifications that should be useful for readers. Since 1950, a movement in 

rheology is begun to present constitutive equations for viscoelastic materials especially the 

polymeric materials. Not only the Giesekus constitutive equation but also all of famous linear 

and nonlinear constitutive equations (such as Maxwell model, power-law equation, cross 

equation and …) have been presented for polymers. These models have been used in other 

branches of science for solving the flow and deformation of viscoelastic materials such as 

geology, biotechnology, soil engineering, chemical engineering, food engineering and so on. 

For example, the power-law model is a simple nonlinear constitutive equation that can be 

model the nonlinear shear dependent viscosity using the second invariant of shear rate tensor 

to define the generalized shear rate. This model is widely used for solving the flow of non-

Newtonian liquids due to its simplicity. The power-law model was also used for modeling 

the mantle convection. A summary for the type of models that used in previous studies is 

presented in following Tables (tables located after the response to this comment). In these 

Tables, 6 works are listed that used the power-law model as the constitutive equations.  



The respectable reviewer should notice to this problem: why did the previous 

researchers use the power-law equation for modeling the mantle convection (as a too simple 

nonlinear model which is basically presented for polymeric liquids)? The answer is: Not only 

the class of material but also the type of deformation is important in selecting a constitutive 

equation for any rheological problems. The previous researchers used the power-law model 

to solve the mantle convection due to large scale deformation (The flow is a large scale 

deformation). A same approach has been performed to solve the mantle convection problem 

using the linear viscoelastic model to study the effect of material elasticity on the problem but 

the result of these models are not proper for large scale deformation. The main motivation of 

present study is answering to this question: “is it possible to study the both effect of material 

elasticity and nonlinear viscosity on mantle convection?” The answer is using the nonlinear 

viscoelastic constitutive equations such as Giesekus model. The model can present 

simultaneously a fractional nonlinear viscosity (similar to power-law model) and elasticity 

(similar to linear differential viscoelastic models). Because of using the convective 

coordinate system in its definition (using complicated upper convected derivations instead of 

simple time derivations), it is so suitable for modeling the large scale deformations that is the 

main advantage of this model on linear models. In other word, the model is able to keep the 

memory of deformation like as linear integral viscoelastic models. It is important to mention 

that the Giesekus model can be simplified to linear Jeffries model for small deformations. 

Therefore, the authors believe that this complicated nonlinear constitutive equation can 

better model the mantle convection (as a nonlinear-viscoelastic-large scale flow) by selecting 

the suitable constants of this model (viscosity, relaxation time and mobility factor). This 

finding was also mentioned by Prof. Harder (1991) in conclusion of his study about the 

modeling of mantle convection as a suggestion for future studies:  

“This study has demonstrated the major differences between convection with 

Maxwellian versus Newtonian rheology and shown that thermal convection is a 

very suitable test case for numerical methods simulating viscoelastic flow. It has 

been possible to extend the simulation up to Deborah numbers De = 1.0, which is 

sufficient to induce significant changes in the flow fields. A main new feature at 

high De is the presence of a normal stress singularity along the boundary, which 

is absent in Newtonian or in low-De flow. Since this singularity is starting from 

the stagnation points at the cell corners, this behaviour is presumably related to 

the well known singularity of the upper convected Maxwell model in a pure shear 



flow [4,5]. It is common experience [4,7,13] that rheological models with more 

realistic response are numerically easier to handle. Examples are the Jeffreys 

model and its non-linear generalisations, i.e. the Giesekus and Leonov models 

(Harder (1991))”. 

The work of Harder (1991) is reported in the revised manuscript and some explanations 

about selecting the nonlinear Giesekus model is inserted to the revised paper (refer to pages 

4, 5 and 7). 
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Comment#2: Secondly, in a journal like SE one expects a strong link between the presented 

results and the actual Earth, but instead the authors present a nondimensional parameter study 

with no attempt to make quantitative inferences or predictions regarding the actual Earth. 

This is in contrast to earlier studies on mantle convection with viscoelasticity, which the 

authors don’t seem to know about since they don’t cite them (Beuchert and Podladchikov, 

2010; Harder, 1991; Moresi et al., 2003; Moresi et al., 2002) (also there are many papers on 

lithosphere & crust deformation that include viscoelasticity). The usual view is that in the 

mantle elasticity is unimportant at geological time scales because the viscoelastic relaxation 

time is short compared to the deformation time scale (viscosity/shear modulus ∼1e21/1e11 ∼ 

300 years), while in the lithosphere, viscosity can be orders of magnitude higher so elasticity 

can be important. It is not clear that the authors reach this regime. As it is, this paper belongs 

more in a journal like Journal of Non-Newtonian Fluid Mechanics. 

Response: Using the dimensionless group (analogy) is useful for studying any fluid flow 

because the scale of different types of forces (by defining the Reynolds, Weissenberg and 

Rayleigh numbers) can be specified using this type of report and the results can be simply 

changed to the scale with real dimensions using the reference parameters. It is also so useful 

for experimental studies based on the analogy and making too smaller models (setups).  

 

Comment#3: Thirdly, the investigative method. If the authors want to demonstrate that 

nonlinear viscoelasticity is important then they need to show corresponding solutions for (i) 

nonlinear viscoelasticity (ii) linear viscoelasticity and (iii) viscous flow, and identify how and 

where they are different. 

 Response: The mobility factor ( ) of Giesekus model helps us to adjust the nonlinearity 

degree of the model and it is discussed in the paper (refer to section 4.2.4 of revised paper). 

The model is linear for 0   and the shear dependency is increased by increasing the 

mobility factor up to 0.5.    

 

Comment#4: Fourthly, they claim that they include viscous dissipation “for the first time” 

but in fact there are several 10s of papers on mantle convection that include this term – 

basically anything study that uses a compressible approximation. Here are just a few 

examples to get them started: (Balachandar et al., 1993; Glatzmaier, 1988; Jarvis and 

McKenzie, 1980; Leng and Zhong, 2008; Tackley, 1996). 



Response: Thank you for your comment. Your indication is correct. Actually, author’s 

purpose is: the conjugated effect of nonlinear viscoelasticity and viscous dissipation is 

considered in the present study for the first time. This is corrected in the revised paper (refer 

to page 1 of revised paper). 

 

Comment#5: they claim that including variation of “g” through the mantle is an important 

new aspect of their study: actually the variation with depth is very small – only a few C2 SED 

Interactive comment Printer-friendly version Discussion paper % - as you can see in the 

widely-used PREM (Preliminary Reference Earth Model) (e.g. 

http://geophysics.ou.edu/solid_earth/prem.html). This is why it is almost always ignored. 

Response: In order to present a better simulation, we considered the variation of “g” in our 

CFD simulation. Actually, this effect is not considered in previous studies and it changes 

around 1.07% the maximum of velocity of vortices. This finding may be useful for future 

modeling to ignore or consider the changing in the gravitational acceleration with depth.  

 

Best, 

M. Norouzi 

 

 

 

 

 

 

 


