

1 Numerical simulation of mantle convection using a
2 temperature dependent nonlinear viscoelastic model

3

4 By ***M. Norouzi***^{*¹}, ***M. Sheibi***² and ***M. Mahmoudi***³

5 ^{1,3} Mechanical Engineering Department, Shahrood University of Technology, Shahrood, Iran

6 ² Earth Science Faculty, Shahrood University of Technology, Shahrood, Iran

7

8 **ABSTRACT**

9 In the present article, the mantle convection is simulated numerically using a
10 temperature dependent non-linear viscoelastic model for the first time. The numerical
11 domain of problem is considered as a 4000km*2000km rectangular box and the CFD
12 simulation is performed using finite volume method. Unlike the previous works which
13 had been investigated the mantle convection using the linear viscoelastic models or
14 simple nonlinear inelastic viscous equations (such as power law or cross equations), it is
15 solved via the nonlinear Giesekus constitutive equation. Because of large-scale creeping
16 flow in geometry and time, it is shown that the results of Giesekus equation are more
17 reliable for this problem. The main innovative aspects of current study is investigation
18 of temperature dependency of rheological properties of mantle including viscosity,
19 normal stress differences and relaxation time using appropriate equations of state. The
20 variation of gravitational acceleration with depth of Earth and the effect of the work of
21 stress field (viscous dissipation) on mantle convection are also simulated for the first
22 time.

23 **Keywords:** Mantle convection; Giesekus model; Numerical simulation; Temperature
24 dependence rheological properties.

Nomenclature

Parameter	<i>Symbol</i>	Units
Brinkman number	<i>Br</i>	
Heat Capacity	<i>C_p</i>	J kg ⁻¹ K ⁻¹
Elastic number	<i>En</i>	
Gravity acceleration	<i>g</i>	m s ⁻²
Depth of mantle	<i>H</i>	km
Thermal conductivity	<i>k</i>	Wm ⁻¹ K ⁻¹
Nusselt number	<i>Nu</i>	
Pressure	<i>p</i>	pa
Prandtl number	<i>Pr</i>	
Rayleigh number	<i>Ra</i>	
Reynolds number	<i>Re</i>	
Time	<i>t</i>	Gyr
Temperature	<i>T</i>	K
Velocity vector	<i>U</i>	mm yr ⁻¹
Reference velocity	<i>W₀</i>	mm yr ⁻¹
Weissenberg number	<i>We</i>	

Greek Symbols

Mobility factor	α
Compressibility factor	β_c

Viscosity ratio	β_G	
Thermal expansivity	β_T	K^{-1}
Stress field work	Φ	
Shear rate	$\dot{\gamma}$	s^{-1}
Exponential rate	Γ	K^{-1}
Dynamic viscosity	η	$kg\ m^{-1}\ s^{-1}$
Thermal diffusivity	κ	
Relaxation time	λ	s
Kinetic viscosity	ν	$m^2\ s^{-1}$
Density	ρ	$kg\ m^{-3}$
Stress tensor	τ	pa

Subscripts

Property at upper plate	0
Newtonian	n
Viscoelastic	v

25

26 **1. INTRODUCTION**

27 Mantle convection is a creeping flow in the mantle of the Earth that causes some
 28 convective currents in it and transfers heat between core and Earth's surface. In fluid
 29 mechanics, the free convection is a classic topic driven by the effect of temperature
 30 gradient on density. This solid-state convection in mantle is an abstruse phenomenon

31 that carries out various tectonic activities and continental drift (Bénard (1900),
32 Batchelor (1954), Elder (1968)). This motion occurs on a large scale of space and time.
33 From fluid mechanics point of view, mantle convection is approximately a known
34 phenomenon; the only force which causes convective flow is buoyancy force while this
35 phenomenon is affected by the nature of non-Newtonian rheology (Christensen (1985))
36 and depth-and temperature-dependent viscosity. Gurnis and Davies (1986) just used a
37 depth dependent viscosity and assumed that the Rayleigh number is constant. They
38 deduced this phenomenon depend on Rayleigh number, as when Ra is increased, the
39 thermal boundary layer will be thinned and the center of circulation shifts more to the
40 narrow descending limb. Hansen *et al.* (1993) examined the influences of both depth-
41 dependent viscosity and depth-dependent thermal expansivity on the structure of mantle
42 convection using two-dimensional finite-element simulations. They concluded depth-
43 dependent properties encourage the formation of a stronger mean flow in the upper
44 mantle, which may be important for promoting long-term polar motions. The rheology
45 of mantle strongly depends on the temperature and hydrostatic pressure (Ranalli (1995),
46 Karato (1997)). Also, because of huge geometry of Earth's mantle (2000km), the
47 gravity cannot be considered as a constant, and it is a function of depth.

48 Kellogg and King (1997) developed a finite element model of convection in a
49 spherical geometry with a temperature-dependent viscosity. They have focused on three
50 different viscosity laws: (1) constant viscosity, (2) weakly temperature-dependent
51 viscosity and (3) strongly temperature-dependent viscosity. Moresi and Solomatov
52 (1995) have simulated it as two-dimensional square cell with free-slip boundaries. They

53 reached an asymptotic regime in the limit of large viscosity contrasts and obtained
54 scaling relations that found to be agreement with theoretical predictions. Ghias and
55 Jarvis (2008) investigated the effects of temperature- and depth-dependent thermal
56 expansivity in two-dimensional mantle convection models. They found the depth and
57 temperature dependence of thermal expansivity each have a significant, but opposite,
58 effect on the mean surface heat flux and the mean surface velocity of the convective
59 system. The effect of temperature-dependent viscosity was studied in literature in two-
60 dimensional rectangular domains (Severin and Herwig (1999), Pla *et al.* (2009),
61 Hirayama and Takaki (1993), Fröhlich *et al.* (1992)). Tomohiko *et al.* (2004) simulated
62 a two-dimensional rectangular domain with assuming the mantle as an incompressible
63 fluid with a power-law viscosity model. They employed a simplified two-layer
64 conductivity model and studied the effects of depth-dependent thermal conductivity on
65 convection using two-dimensional Boussinesq convection model with an infinite
66 Prandtl number. Their results implied that the particular values of thermal conductivity
67 in horizontal boundaries could exert more significant influence on convection than the
68 thermal conductivity in the mantle interior. Stein *et al.* (2004) explored the effect of
69 different aspect ratios and a stress- and pressure-dependent viscosity on mantle
70 convection using three-dimensional numerical simulation. Ozbench *et al.* (2008)
71 presented a model of large-scale mantle-lithosphere dynamics with a temperature-
72 dependent viscosity. Ichikawa *et al.* (2013) simulated a time-dependent convection of
73 fluid under the extended Boussinesq approximation in a model of two-dimensional
74 rectangular box with a temperature- and pressure-dependent viscosity and a viscoplastic
75 property. Stien and Hansen (2008) employed a three-dimensional mantle convection

76 model with a strong temperature, pressure and stress dependence of viscosity and they
77 used a viscoplastic rheology. Kameyama and Ogawa (2000) solved thermal convection
78 of a Newtonian fluid with temperature-dependent viscosity in a two-dimensional
79 rectangular box. Kameyama *et al.* (2008) considered a thermal convection of a high
80 viscous and incompressible fluid with a variable Newtonian viscosity in a three-
81 dimensional spherical geometry. Gerya and Yuen (2007) simulated a two-dimensional
82 geometry and non-Newtonian rheology using power-law model.

83 In the present paper, the mantle convection is simulated numerically using a
84 temperature dependent non-linear viscoelastic model for the first time. The geometry of
85 problem is shown in Fig. 1. Here, the calculation domain is considered as a
86 4000km×2000km rectangular box. Two hot and cold plates are considered at the bottom
87 and top of box, respectively. The isolator thermal condition is considered at the left and
88 right hand sides of domain. The problem is solved via a second order finite volume
89 method. The effect of temperature on rheological properties consist of the viscosity,
90 normal stress differences and relaxation time of mantle are modeled using appropriate
91 equations of state which are the main innovative aspects of current study. The variation
92 of gravitational acceleration with depth of Earth and the effect of the work of stress field
93 (viscous dissipation) on mantle convection are simulated for the first time. According to
94 the literature, the previous studies are restricted to the linear and quasi-linear
95 viscoelastic constitutive equations and the nonlinearity nature of mantle convection was
96 modeled as simple nonlinear constitutive equations just for apparent viscosity such as
97 the power-law and cross models. Here, the Giesekus nonlinear viscoelastic model is

98 used as the constitutive equation. This high order nonlinear model is used because of
99 large-scale creeping viscoelastic flow of mantle convection in domain and time. Using
100 Giesekus constitutive equation, we can calculate a more accurate solution for this
101 problem because:

- 102 1. In addition to the viscosity, the shear dependencies of other viscometric
103 functions (consist of the first and second normal stress differences) are also
104 modeled. It is important to remember that the linear and quasi-linear viscoelastic
105 constitutive equations that used in previous studies could not able to model the
106 completed set of shear dependent nonlinear viscometric functions which resulted
107 from anisotropic behavior of flow field.
- 108 2. The effect of the third invariant of shear rate tensor on stress field (especially for
109 normal stress components) is also modeled for the first time. The simple non-
110 linear viscous models such as power-law and cross equations that used in
111 previous studies depend only on generalized shear rate which is defined based
112 on the second invariant of the shear rate.
- 113 3. The nonlinear effect of material elasticity on large deformation of mantle is
114 modeled simultaneity with the effects of viscometric functions and elongational
115 rheological properties.
- 116 4. It is important to remember that the non-linear constitutive equations like as the
117 Giesekus equation could able to model the material elasticity and relaxation
118 spectra much better than linear models for large deformations of flow field.

119

120 **2. GOVERNING EQUATIONS**

121 The governing equations of an incompressible viscoelastic fluid flow consist of the
122 continuity, momentum and energy equations:

$$\nabla \cdot \tilde{\mathbf{U}} = 0 \quad (1a)$$

$$\rho \frac{\partial \tilde{\mathbf{U}}}{\partial \tilde{t}} + \rho \tilde{\mathbf{U}} \cdot \nabla (\tilde{\mathbf{U}}) = -\nabla \tilde{p} + \nabla \cdot \tilde{\boldsymbol{\tau}} + \rho \mathbf{g} \quad (1b)$$

$$\rho c \left(\frac{\partial \tilde{T}}{\partial \tilde{t}} + \tilde{\mathbf{U}} \cdot \nabla \tilde{T} \right) = \nabla \cdot (k \nabla \tilde{T}) + \tilde{\boldsymbol{\tau}} : \nabla \tilde{\mathbf{U}} + \tilde{u}'' \quad (1c)$$

123 where $\tilde{\mathbf{U}}$ is the velocity vector, ρ is density, c is heat capacity, \tilde{p} is static pressure, \tilde{T}
124 is temperature, k is thermal conductivity, \tilde{t} is time, \tilde{u}'' is power of heat source and $\tilde{\boldsymbol{\tau}}$ is
125 the total stress tensor. The stress tensor is consisted as the summation of Newtonian $\tilde{\boldsymbol{\tau}}_n$
126 and viscoelastic contributions $\tilde{\boldsymbol{\tau}}_v$ as follows:

$$\tilde{\boldsymbol{\tau}} = \tilde{\boldsymbol{\tau}}_n + \tilde{\boldsymbol{\tau}}_v \quad (2)$$

127 In Newtonian law ($\tilde{\boldsymbol{\tau}}_n = \tilde{\eta}_n \tilde{\boldsymbol{\gamma}}$), $\tilde{\eta}_n$ and $\tilde{\boldsymbol{\gamma}}$ which respectively are the constant solvent
128 viscosity and the shear rate tensor, gives the solvent part $\tilde{\boldsymbol{\tau}}_n$. The viscoelastic stress will
129 be obtained from a constitutive equation. The usefulness of a constitutive equation for
130 describing processing flows of viscoelastic solutions and melts rest on its ability to
131 accurately predict rheological data, as well as on its numerical tractability in several
132 flow geometries. Such equation should successfully account for shear dependent

133 viscosity, normal stress effects in steady shear flows, elastic effects in shear-free flows
134 and non-viscometric flow phenomena. The parameter β_G represents the relation of
135 viscoelastic behavior (as the additives) with pure Newtonian behavior (as the solvent):

$$\beta_G = \frac{\tilde{\eta}_v}{\tilde{\eta}_n + \tilde{\eta}_v} \quad (3)$$

136 Since the present study examines mantle convection, this parameter must be near unity.
137 In other words, the viscoelastic portion dominates to pure Newtonian portion in
138 behavior of fluid flow. Therefore, the main portion of viscosity of mantle could be
139 attributed to the $\tilde{\eta}_v$.

140 The Giesekus model is a popular choice, because of its relative success in several
141 flows, and its reduction to several well-known simpler models, which make it useful in
142 a variety of flow situations. The key characteristic of this model is that it includes non-
143 linear term in stress. Here, the Giesekus model is used as the non-linear constitutive
144 equation:

$$\tilde{\tau}_v + \lambda \tilde{\tau}_{v(1)} + \alpha \frac{\lambda}{\tilde{\eta}_v} (\tilde{\tau}_v \cdot \tilde{\tau}_v) = \tilde{\eta}_v \tilde{\dot{\gamma}} \quad (4)$$

145 where $\tilde{\eta}_v$ is the viscosity contribution of viscoelastic material at zero shear rate and $\tilde{\tau}_{v(1)}$
146 is the upper convected derivative of viscoelastic stress tensor defined by:

$$\tilde{\tau}_{v(1)} = \frac{D}{D\tilde{t}} \tilde{\tau}_v - \nabla \tilde{\mathbf{U}}^T \cdot \tilde{\tau}_v - \tilde{\tau}_v \cdot \nabla \tilde{\mathbf{U}} \quad (5)$$

147 in which $\frac{D(\cdot)}{D\tilde{t}}$ is material derivative operator given by $\frac{D(\cdot)}{D\tilde{t}} = \frac{\partial(\cdot)}{\partial\tilde{t}} + \tilde{\mathbf{U}} \cdot \nabla(\cdot)$. The
148 Giesekus constitutive equation is derived by kinetic theory, arising naturally for
149 polymer solutions. This model contains four parameters: a relaxation time λ ; the solvent
150 and polymeric contributions at the zero-shear rate viscosity, $\tilde{\eta}_n$ and $\tilde{\eta}_v$; and the
151 dimensionless “mobility factor” α (Bird *et al.* (1987)). The origin of the term involving
152 α can be associated with anisotropic Brownian motion and/or anisotropic
153 hydrodynamic drag on the constitutive of heavy particles.

154 In this paper, the viscosity is assumed to be depended on depth and temperature as
155 follow:

$$\tilde{\eta} = \tilde{\eta}_0 \exp[1.535|y| - \Gamma(\tilde{T} - \tilde{T}_0)] \quad (6)$$

156 where $\tilde{\eta}_0$ is the total viscosity at reference temperature (T_0), y is the depth (per
157 1000Km), and Γ is the exponential rate. The relaxation time (λ) is also assumed to be
158 an exponential function of temperature:

$$\lambda = \lambda_0 \exp[-\Gamma(\tilde{T} - \tilde{T}_0)] \quad (7)$$

159 Because of large scale of geometry and the nature of mantle convection, the dependency
160 of density on temperature and pressure are considered as follows:

$$\rho = \rho_0 [1 - \kappa(\tilde{T} - \tilde{T}_0)] [1 + \beta_c(\tilde{p} - \tilde{p}_0)] \quad (8)$$

161 where $\tilde{T}_0 = 300K$ and $\tilde{p}_0 = 0.1MPa$ are reference temperature and pressure,
 162 respectively, ρ_0 is density at reference temperature and pressure, κ is thermal
 163 expansivity and β_C is compressibility coefficient.

164

165 **3. NON-DIMENSIONALIZATION**

166 According to Fig. 1, the Cartesian coordinate system is used in this study. The
 167 dimensionless parameters of flow field are as follows:

$$\begin{aligned}
 x &= \frac{\tilde{x}}{H} & y &= \frac{\tilde{y}}{H} & \mathbf{U} &= \tilde{\mathbf{U}} / W_0 \\
 \tau &= \frac{\tilde{\tau}H}{\tilde{\eta}_0 W_0} & p &= \frac{\tilde{p}H}{\tilde{\eta}_0 W_0} & \eta &= \frac{\tilde{\eta}}{\tilde{\eta}_0} \\
 Re &= \frac{\rho W_0 H}{\tilde{\eta}_0} & We &= \frac{\lambda W_0}{2H} & En &= \frac{We}{Re}
 \end{aligned} \tag{9}$$

168 where \tilde{x} and \tilde{y} are indicating the coordinate directions; H is the depth of geometry, W_0
 169 is the reference velocity, $\tilde{\eta}_0$ is the dynamic viscosity at zero shear rate ($\tilde{\eta}_0 = \tilde{\eta}_v + \tilde{\eta}_n$), $\tilde{\eta}$
 170 is the fluid viscosity, ρ is density and Re , We and En are the Reynolds, Weissenberg
 171 and Elastic numbers, respectively. The \sim notation signifies that parameter has
 172 dimension. The governing dimensionless parameters of heat transfer are as follows:

$$T = \frac{\tilde{T} - \tilde{T}_{min}}{\tilde{T}_{max} - \tilde{T}_{min}} \quad Br = \frac{\eta_0 W_0^2}{k(\tilde{T}_{max} - \tilde{T}_{min})} \quad Pr = \frac{\eta_0}{\rho \kappa} \tag{10}$$

$$Ra = \frac{g \beta_T \Delta \tilde{T} H^3}{\nu^2} Pr \quad Nu = \frac{hH}{k}$$

173 In the above relations, T is the dimensionless temperature; \tilde{T}_{min} and \tilde{T}_{max} are the
 174 minimum and maximum temperature of fluid, respectively; k is the conduction
 175 coefficient, κ is thermal diffusivity, h is the convection heat transfer coefficient and
 176 Br , Pr , Ra and Nu are the Brinkman, Prandtl, Rayleigh and Nusselt numbers,
 177 respectively. Thus, the dimensionless form of continuity and momentum equations are
 178 as follows:

$$\nabla \cdot \mathbf{U} = 0 \quad (11a)$$

$$\mathbf{U} \cdot \nabla \mathbf{U} = \frac{g \beta \Delta \tilde{T} H}{W_0^2} T + \frac{1}{Re} \nabla^2 \mathbf{U} \quad (11b)$$

$$\mathbf{U} \cdot \nabla T = \frac{1}{Re Pr} \{ \nabla \cdot (\nabla T) + Br \Phi \} \quad (11c)$$

179 where β is the thermal expansion coefficient. In order to get closer to reality, in the
 180 energy equation, we assume a viscosity dissipation term ($\boldsymbol{\tau} : \nabla \times \mathbf{U}$). This term is the
 181 effect of stress field work on fluid flow and for Newtonian fluids; it has always a
 182 positive sign according to the second law of thermodynamic. Actually, this positive
 183 term refer to the irreversibility of flow field work and thus in Newtonian fluid it is
 184 known as viscosity dissipation. The interesting point of this term for viscoelastic fluids
 185 is the local possibility of being negative. In effect, having locally negative value of this
 186 term indicates that part of energy is saved in elastic constituent of fluid (Bird *et al.*

187 (2002)). In Eq. (11c), Φ is the dimensionless form of work of stress field and obtain
188 from following equation:

$$\Phi = \tau_{xx} \frac{\partial U_1}{\partial x} + \tau_{xy} \left(\frac{\partial U_1}{\partial y} + \frac{\partial U_2}{\partial x} \right) + \tau_{yy} \frac{\partial U_2}{\partial y} \quad (12)$$

189 This variation in viscosity introduces a relativity factor in the problem. Here, the non-
190 dimensionalization is performed regarding to the value of the viscosity in the upper
191 plate. Therefore, a new Rayleigh number should be defined, due to the variation of
192 viscosity: $Ra_{new} = Ra \exp(-\Gamma(T - T_0))$.

193 In our numerical calculations, the values of the parameters are related to the values in
194 the mantle (Pla *et al.*, 2010), Table 1 shows the values of parameters used in
195 calculations. Due to the nature of mantle convection the Pr number and viscosity are
196 assumed to be in order of 10^{26} and 10^{20} , respectively. Also, a Rayleigh number equal to
197 227 is used for this simulation.

198 Remember that the gravitational acceleration of the Earth is decreased by increasing
199 the depth. Because of the large scale of geometry, the variation of gravitational
200 acceleration with depth is considered in present study. For this purpose, we used the
201 data of Bullen (1939) and fitted the following six order interpolation on them with 95%
202 confidence:

$$g(y) = -0.118y^6 + 0.602y^5 - 1.006y^4 + 0.6884y^3 - 0.3708y^2 + 0.167y - 9.846 \quad (13)$$

203 where y (1000Km) is the depth from bottom plate. We used the above equation in CFD
204 simulation of mantle convection which is the other innovative aspect of present study.

205

206 **3. NUMERICAL METHOD, BOUNDARY AND INITIAL CONDITIONS**

207 There are totally eight solution variable parameters in the discretized domains,
208 comprising two velocities and three stress components, pressure, pressure correction
209 and temperature. All of flow parameters are discretized using central differences, except
210 for the convective terms which are approximated by the linear-upwind differencing
211 scheme (LUDS) (Patankar and Spalding (1972)). This is the generalization of the well-
212 known up-wind differencing scheme (UDS), where the value of a convected variable at
213 a cell face location is given by its value at the first upstream cell center. In the linear-
214 upwind differencing scheme, the value of that convected variable at the same cell face is
215 given by a linear extrapolation based on the values of the variable at the two upstream
216 cells. It is, in general, the second-order accurate, as compared with first-order accuracy
217 of UDS, and thus, its use reduces the problem of numerical diffusion (Oliveira *et al.*
218 (1998)). The Cartesian reference coordinate system is located in the bottom boundary
219 and at left corner. Boundary conditions consist of two adiabatic walls in west and east
220 and two isothermal walls at north and south. For all boundaries, a no-slip condition is
221 imposed for the fluid velocity. The rest situation is used as the initial condition. The
222 used geometry and boundary conditions in this study are shown in Fig. 1. The geometry
223 has a rectangular shape with an aspect ratio of 2. Boundary conditions consist of two
224 isolated walls with zero gradient stress tensor components. The boundary conditions for

225 bottom and top plates are assumed a constant temperature so that the bottom plate has a
226 higher temperature. These boundaries have a zero gradient velocity and tensor
227 components, too.

228

229 **4. RESULTS AND DISCUSSION**

230 **4.1. Grid Study and Validation**

231 We perform some CFD simulations with different number of grids to study the
232 dependency of solution to mesh size. The meshes included quadratic elements. Table 2
233 lists the mean errors between average Nusselt number on horizontal lines on different
234 meshes and the 200×100 reference mesh. These errors are calculated for a viscoelastic
235 fluid with Giesekus model at $Ra = 227$. The numerical error decreases with increasing
236 the number of meshes as the mean error becomes less than 0.08% for mesh size greater
237 than 140×70 . This finding indicates that a grid-independent solution is obtained when
238 using a mesh sizes larger than 140×70 . To ensure that the obtained solution is grid-
239 independent, a mesh size of 150×75 was used for the CFD simulations.

240 As a benchmark comparison, simulations for free convection of Newtonian fluid
241 flow between two parallel plate have been carried out at $Ra = 10^4, 10^5, Pr = 100$. This
242 problem was studied previously by Khezar *et al.* (2012) and Turan *et al.* (2011) for
243 power-law fluid. The diagrams of average Nusselt number obtained from the present
244 study and work of Khezar *et al.* (2012) at $n=1$ are shown in Fig. 2a. As an additional
245 benchmark comparison, the distribution of dimensionless vertical velocity reported by

246 Turan *et al.* (2011) and the results obtained from the present study are illustrated in Fig.

247 2b at $Ra = 10^4 - 10^6$, $Pr = 100$ and $n = 1$. It is understood that in both cases, the results
248 of present CFD simulation have a suitable agreement with results of Khezar *et al.*
249 (2012) and Turan *et al.* (2011) with maximum error less than 3%.

250

251 **4.2. CFD Simulation of Mantle Convection Using Giesekus Model**

252 In this section, the effects of various parameters on flow regime of mantle convection
253 are studied. As observed in Eq. (4), the variation of parameters α and λ could affect
254 the stress tensor field and this change in stresses will affect the velocity field.

255 According to the study of Pla *et al.* (2010), it could be inferred that with increasing
256 the exponential rate Γ , the circulations created by natural convection are moved toward
257 the bottom plate. It is resulted from the fact that by increasing Γ , the viscosity near
258 bottom plate would be decreased and the flow tends to circulate in this place. Also,
259 another parameter that effect on the flow and the circulation intensity is β_G . The results
260 of variations of these parameters will discuss in next sections. Remember that the
261 dependency of rheological and thermal properties and density on temperature and
262 pressure are considered and the variation of gravitational acceleration with depth of
263 Earth is modeled in following results.

264

265 Fig. 3 demonstrates a comparison between vertical velocity profiles of our
266 nonlinear viscoelastic model, power-law model (reported by Christensen (1983),
267 Cserepes (1982), Sherburn (2011), Van der Berg (1995), Yoshida (2012)) at $n=3$, and
268 the Newtonian model used by Pla *et al.* (2010). This Figure is presented in order to
269 compare the results of current CFD simulation (based on the non-linear Giesekus
270 consecutive equation, thermal-pressure dependence properties and depth dependence
271 gravitational acceleration) with previous simpler simulations that used Newtonian and
272 power-law models. As it is obvious, the velocity near upper plate for Giesekus model is
273 less than from the results of Pla *et al.* (2010) and power-law model. That is due to the
274 elastic force and higher value of viscosity at lower shear rates. Also, the maximum
275 vertical velocity of our simulation is smaller and the location of maximum vertical
276 velocity occurred upper than the location reported by Pla *et al.* (2010). That is because
277 of the viscoelastic portion of fluid behavior that we will discuss it in next sections. As it
278 is shown in Fig. 3, the depth in which the maximum velocity occurs is approximately
279 similar for power-law model and Giesekus constitutive equation. That is because of the
280 effect of apparent viscosity dependency to velocity gradient. Also noting to the velocity
281 profile, it is seen that all of models have the same results in vicinity of lower plate. But
282 for upper plate, the Figure demonstrates that the slope of vertical velocity for the
283 Giesekus model is smaller than the others. According to the Figure, there is a resistance
284 against the upward flow for Giesekus profile that two other models cannot predict it.
285 Actually, that is due to the consideration of elastic portion of fluid flow in our numerical
286 simulation. This finding indicated that the velocity and stress field have an obvious
287 deviation from Newtonian and generalized Newtonian behaviors by considering a non-

288 linear constitutive equation for mantle convection. In next sections, the effects of
289 material and thermal modules on mantle convection are studied based on the CFD
290 simulations that obtained using Giesekus non-linear model.

291

292 **4.2.1. Investigation of the Effect of Exponential Rate of Viscosity (Γ)**

293 We studied firstly the effect of increasing Γ from zero to 10^{-3} on mantle convection.
294 This parameter represents the dependency of viscosity on temperature variation. Fig. 4
295 shows the streamlines for different values of Γ at $\beta_G = 0.98$, $\alpha = 0.2$ and
296 $En = 6.04 \times 10^{32}$. It is evident from Fig.4 that the circulations in the mantle physically
297 depend on Γ . As the exponential rate (Γ) is increased, the maximum velocity in
298 geometry is enhanced and the circulations moved downward. According to Eq. (6), the
299 dependency of viscosity of mantle on temperature is more increased by enhancing the
300 exponential rate (Γ). In other words, by increasing the exponential rate (Γ), the
301 viscosity is more decreased near to the lower plate (high temperature region) and the
302 fluency of mantle is intensified. Therefore, it is expected that the velocity of mantle
303 convection is enhanced by increasing the exponential rate. The results show that an
304 increment of 1.6% in vertical velocities by increasing the exponential rate from zero to
305 10^{-5} , 17.1% growth by increasing Γ to 10^{-4} and with enhancing the Γ from zero to
306 10^{-3} it growths up to 4.32 times. The CFD simulations indicated that the effect of
307 exponential rate on maximum value of velocity is nonlinear. The contours of axial
308 normal stress and shear stress are shown in Fig. 5. As it is obvious, the exponential rate

309 has a significant influence on magnitude of stress fields that is increased by enhancing
310 the exponential rate. As an example, for $\Gamma=10^{-4}$, the value of dimensionless stress
311 component τ_{xx} becomes 1.1 times greater than the one with exponential rate of zero.
312 Also, with increasing the value of Γ by 10^{-3} , it growths up to 2.56 times. Actually, with
313 increasing the exponential rate, the dependency of viscosity on temperature is
314 intensified and then the right hand side of Eq. (4) increases so this change leads to
315 enhancement of stress field. Fig. 6 displays the location of maximum vertical velocity at
316 $Y/H = 0.5$ versus the exponential rate. The dimensionless depth of points Y , where the
317 maximum of velocity is occurred, is $Y = 0.5$ for $\Gamma = 0$ and by increasing the
318 exponential rate to 10^{-5} , this depth will be decreased to 2.4%. The amount of this
319 reduction for $\Gamma = 10^{-4}$ and $\Gamma = 10^{-3}$ is 10% and 24%, respectively. We obtained the
320 following relation for location of maximum vertical velocity with 95% confidence:

$$Y = -10.58\Gamma^{\frac{2}{3}} + 0.4933$$

321 The above correlation is used in plotting the Fig. 6. The downward movement of
322 location of maximum vertical velocity with increasing exponential rate could be
323 attributed to shifting the center of vortices which is shown previously in Fig. 5.

324 In Fig. 7, the temperature distribution in mantle is shown. According to this Figure,
325 heat transfer regime is almost conduction. Nevertheless, closer looking to the
326 temperature distribution, some convection behavior could be observed. The temperature
327 profile on a horizontal line is shown in Fig. 8. As it is expected, the temperature profile
328 shown in Fig. 8 has a minimum value at mid of horizontal line and the maximum values

329 are located at left and right hand sides of numerical domain. Fig. 9 shows the stress
330 magnitude on upper plate for different value of Γ at $\alpha=0.2$ and $\lambda=1.5\times10^{13} s$. As
331 expected from Eq. (6), the viscosity will be more depended on temperature by
332 increasing the value of Γ . Thus, the viscosity will be decreased with increasing Γ and
333 in the other hand; the velocity field will be intensified that the participation of these
334 factors determines stresses in vicinity of upper plate. According to Fig. 9, in the case of
335 $\Gamma=10^{-5}$, with increasing β_g from 0.5 to 0.8, the maximum stress magnitude is
336 increased by 32.2% and by enhancing β_g to 0.9 and 0.98, the growing percentages are
337 32.2% and 101%, respectively. As mentioned before, there are several factors that affect
338 the flow pattern such as Γ and β_g . The result of this participation clearly is seen here,
339 when the viscosity ratio vary from 0.9 to 0.98, it seems that in this interval, the effect of
340 these two parameters (Γ and β_g) is neutralized each other and lead to having the same
341 stress magnitude at these points.

342

343 4.2.2. Investigation of the Effect of Viscosity Ratio (β_g)

344 The parameter β_g is a criterion portion for demonstration of domination of viscoelastic
345 towards pure Newtonian portions of fluid behavior. In fact, when this parameter is much
346 closer to unity, the viscoelastic behavior is dominated and when β_g is close to zero, the
347 pure Newtonian behavior of fluid is dominated. As it is shown in Fig. 10, by increasing
348 β_g from 0.8 to 0.98, the stress magnitude on upper plate has been increased, but the

349 vertical velocity near to the both lower and upper plates is decreased. This effect is
350 related to the higher value of viscosity of viscoelastic potion in comparison of pure
351 Newtonian behavior that causes increasing the total viscosity and decreasing the fluidity
352 of model (refer to Eq. 3). This finding is approved by the data of maximum magnitude
353 of shear stress near to the upper plate which is reported in Table 3. According to the
354 Table, τ_{max} is increased by enhancing the viscosity ratio which is caused from
355 increasing the fluid viscosity.

356 Fig. 11 shows variation of normalized vertical velocity on a vertical line for
357 different values of exponential rates (Γ) and viscosity ratios (β_G). As it is understood
358 from Fig. 11, in constant viscosity ratio, when Γ is increased, the velocities are
359 increasing very strongly, but as viscosity ratio changes, a contrast occurred between
360 these two factors (as it is shown in Fig. 11c, the velocities are increased and in Fig. 11b,
361 the vertical velocities are decreased). In other word, at $\beta_G = 0.9$, the effect of exponential
362 rate is prevailed but with increasing the viscosity ratio to $\beta_G = 0.98$, the effect of
363 viscosity ratio is dominated.

364

365 **4.2.3. Investigation of the Effect of Elasticity**

366 The elastic number is generally used to study the elastic effect on the flow of
367 viscoelastic fluids. According to the Eq. 9, the elastic number is defined as the ratio of
368 Weissenberg to Reynolds numbers. This dimensionless group is independent from
369 kinematic of flow field and it is only depended on material modules for a given

370 geometry. Here, the elastic number is proportional with relaxation time of model and it
371 is increased by enhancing the material elasticity. Figs. 12 and 13 display velocity and
372 stress magnitude for different values of elastic number. Table 4 presents the value of
373 maximum normalized vertical velocity for different elastic numbers and various
374 viscosity ratios. According to the Fig. 12, the velocity of mantle convection is decreased
375 by increasing the elastic number from 6.04×10^{26} to 6.04×10^{32} and it is increased by
376 increasing the elastic number to 6.04×10^{32} . The first decreasing in the normalized
377 velocity could be attributed to increasing the normal stresses resulted from fluid
378 elasticity. In the other word, some main portion of energy of convection is stored as the
379 elastic normal stresses. In larger elastic numbers, the effective viscosity of flow is
380 decreased which is related to the nature of nonlinear dependency of viscometric
381 function of Giesekus constitutive equation on relaxation time at large enough elastic
382 numbers (Bird *et al.* (1987)).

383

384 **4.2.4. Investigation of Mobility Factor Effect**

385 Fig. 14 shows the effects of mobility factor on the vertical velocity for different values
386 of viscosity ratio. Due to the non-linear nature of our viscoelastic model and the high
387 elastic number, anticipation of effects of all factors is not easy and it is strongly affected
388 by the variation of other factors. Regarding to high viscosity of mantle, the effect of
389 mobility factor must be minimal, as it is shown in Fig. 14. The effects of mobility factor
390 are only important near both upper and lower plate. In the other word, the main
391 variation of velocity distributions with changing the mobility factor occurs in the upper

392 and lower plate. For $\alpha = 0.05$, the magnitudes of normalized velocities in vicinity of
393 upper plate are increasing by enhancing β_g from 0.5 to 0.9 between 20% to 50% and
394 with increasing the viscosity ratio to 0.98, the velocities are decreasing about 70%. In
395 contrast, for the lower plate, this variation is reversing, *i.e.*, the velocities with
396 increasing β_g to 0.9 are decreasing. The same effect is available for $\alpha = 0.2$. Also, the
397 variation of velocity near upper plate for $\alpha = 0.1$ and 0.3 are similar. In these cases, with
398 increasing β_g from 0.5 to 0.9, the velocities in this place are decreasing and with
399 increasing the viscosity ratio to 0.98, the magnitudes of velocities are ascending. Table
400 5 presents the maximum normalized vertical velocity for various values of elastic
401 numbers and different viscosity ratios.

402

403 4.2.5. Investigation of the Effect of Rayleigh Number

404 If we want to study natural convection and investigate the strength of convection, the
405 Rayleigh number is a suitable criterion for this aim. Since mantle convection has a low
406 Rayleigh number, thus the temperature field should have a conductive form (see Fig 7).
407 According to Eq. (10), the Rayleigh number is a function of temperature, so it is varying
408 all over the geometry because the viscosity is temperature dependent and is varying.
409 Fig.15 presents the streamlines for different Rayleigh numbers. According to Fig. 15, by
410 increasing the Rayleigh number, the velocity in geometry is increased and the
411 circulations move downward and get more intense. By increasing Ra from 22.7 to 227,
412 the velocity magnitude will vary with order of 10^1 . If we rise the Rayleigh number to

413 1135, this growth in velocities is in order of 10^2 and when we set the Ra as 2270, the
414 velocity magnitude will be in order of 10^3 . It is important to remember that the
415 temperature difference between the hot and cold plates is the potential of mantle
416 convection so the velocity is increased by increasing the Rayleigh number. Fig. 16
417 shows the stress contours for various Rayleigh number. The Figure shows that with
418 increasing the Rayleigh number, the maximum stress in geometry has enhanced
419 significantly. This effect is related to increasing the shear rate of flow field which is
420 intensifying the stress field. According to the Figure, the Giesekus model predicts a
421 large shear stress in comparison of normal stress components which is related to the
422 shear flow behavior of mantle convection which has a suitable agreement with previous
423 reports that used other constitutive equations (Ghias and Jarvis (2008), Severin and
424 Herwig (1999), Pla *et al.* (2009), Hirayama and Takaki (1993), Fröhlich *et al.* (1992),
425 Tomohiko *et al.* (2004)).

426

427 5. CONCLUSIONS

428 Current study deals with a numerical simulation of mantle convection using a
429 temperature dependent nonlinear viscoelastic constitutive equation. The effect of
430 temperature on rheological properties consisting of the viscosity, normal stress
431 differences and relaxation time of mantle are modeled using appropriate equations of
432 state which were the main innovative aspects of current study. The variation of
433 gravitational acceleration with depth of Earth and the effect of the work of stress field

434 (viscous dissipation) on mantle convection were simulated for the first time. According
435 to the literature, the previous studies were restricted to the linear and quasi-linear
436 viscoelastic constitutive equations and the nonlinearity nature of mantle convection was
437 modeled using simple nonlinear constitutive equations just for apparent viscosity such
438 as the power-law and cross models. The Giesekus nonlinear viscoelastic model was
439 used as the constitutive equation in present study. This high order nonlinear model was
440 used because of large-scale creeping viscoelastic flow of mantle convection in space
441 and time. Using Giesekus constitutive equation, we present a more accurate solution for
442 this problem because of taking into account of shear-dependent nonlinear viscometric
443 functions, the effects of third invariant of shear rate tensor on stress field, and effects of
444 material elasticity for large deformations of mantle.

445 It is important to remember that the non-linear constitutive equations such as the
446 Giesekus equation could able to model the material elasticity and relaxation spectra
447 much better than linear models for large deformations of flow field. We also showed
448 that the result of this model has an obvious deviation from pure Newtonian and power-
449 law solutions that reported in literatures.

450 The effect of temperature on viscosity of the mantle is studied, firstly. The results
451 show that increasing of exponential viscosity rate led to the enhancing the maximum
452 velocity and making the circulation moving downward so that with increasing Γ from
453 zero to 10^3 , an increase of 4.32 times in vertical velocity and an increase of 2.56 times
454 in τ_{xx} were obtained. A formula have presented for the position of maximum vertical
455 velocity as a function of Γ . The effect of viscosity ratio is also investigated on the

456 mantle convection. These results not only show how stress magnitude on upper plate
457 increases by enhancing the viscosity ratio from 0.8 to 0.98, but also prove decreasing of
458 the vertical velocity near to the both lower and upper plates. These effects are related to
459 the higher value of viscosity of viscoelastic Giesekus model relative to the pure viscous
460 portion (Newtonian behavior) which causes decreasing of fluidity of mantle convection.
461 In constant viscosity ratio, when β_G increases, the velocities are rising very strongly,
462 but as viscosity ratio changes, a competition occurred between these two factors. In
463 other word, at $\beta_G = 0.9$, the effect of exponential rate is prevailed but with increasing
464 the viscosity ratio up to $\beta_G = 0.98$ the effect of viscosity ratio is dominated and the
465 velocities are descended. The variation of Elastic number shows the nature of nonlinear
466 dependency of viscometric function of Giesekus constitutive equations on relaxation
467 time at large enough elastic numbers. Present study indicates decreasing of effective
468 viscosity flow for larger elastic numbers. The obtained results show how main
469 variations of velocity distributions with changing of mobility factor occur in the upper
470 and lower plates. Here, the effect of Rayleigh number on mantle convection is also
471 investigated and characterized that with increasing the Rayleigh number, the maximum
472 stress in geometry has enhanced significantly. This effect is related to increasing the
473 shear rate of flow field which is intensifying the stress field.
474 Future works could be focused on the effect of mantle convection on plate motions,
475 effect of chemical reactions occurring in the mantle, and plumes growing by
476 considering a non-linear viscoelastic consecutive equation.

477

478 **REFERENCES**

479 Batchelor, G.K. (1954), Heat convection and buoyancy effects in fluids, *Q. J. R.*
480 *Meteorol. Soc.*, 80, 339–358.

481 Bénard, H. (1900), Les tourbillons cellulaires dans une nappe liquide, *Rev. Gen. Sci.*
482 *Pures Appl. Bull. Assoc.*, 11, 1261–1271.

483 Bird, R.B., Stewort, W.E., and Lightfoot, E.N., *Transport phenomena*. 2nd Ed. (John
484 Wiley & Sons, Inc 2002).

485 Bird, R.B., Armstrong, R.C., and Hassager, O., *Dynamics of polymeric liquids*. Vol. 1
486 (John Wiley & Sons, Inc. 1987).

487 Bullen, K.E. (1939), The variation of gravity within the earth, *Auckland University*
488 *College*, 188–190.

489 Christensen, U. (1983), Convection in a variable-viscosity fluid: Newtonian versus
490 power-law rheology, *Earth and Planetary Science Letters*, 64, 153–162.

491 Christensen, U.R. (1985), Thermal evolution models for the Earth, *J. Geophys. Res.*, 90,
492 2995–3007.

493 Cserepes, L. (1982), Numerical studies of non-Newtonian mantle convection, *Physics of*
494 *the Earth and Planetary Interiors*, 30, 49–61.

495 Elder, J.W. (1968), Convection key to dynamical geology, *Sci. Prog.*, 56, 1–33.

496 Fröhlich, J., Laure, P., and Peyret, R. (1992), Large departures from Boussinesq
497 approximation in the Rayleigh Bénard problem, *Phys. Fluids A* 4, 1355–1372.

498 Gerya, T.V., and Yuen, D.A. (2007), Robust characteristics method for modelling
499 multiphase visco-elasto-plastic thermo-mechanical problems, *Phys. Earth Planet.*
500 *Int.*, 163, 83–105.

501 Ghias, S.R., and Jarvis, G.T. (2008), Mantle convection models with temperature- and
502 depth-dependent thermal expansivity, *J. Geophys. Res. Solid Earth*, 113, DOI:
503 10.1029/2007JB005355.

504 Gurnis, M., and Davies, G.F. (1986), Numerical study of high Rayleigh number
505 convection in a medium with depth-dependent viscosity, *Geophys. J. R. Astron.*
506 *Soc.*, 85, 523–541.

507 Hansen, U., Yuen, D.A., Kroenig, S.E., and Larsen, T.B. (1993), Dynamical
508 consequences of depth-dependent thermal expansivity and viscosity on mantle
509 circulations and thermal structure, *Phys. Earth Planet. Int.*, 77, 205–223.

510 Hirayama, O., and Takaki, R. (1993), Thermal convection of a fluid with temperature-
511 dependent viscosity, *Fluid Dynam. Res.*, 12, 35–47.

512 Ichikawa, H., Kameyama, and M. Kawai, K. (2013), Mantle convection with
513 continental drift and heat source around the mantle transition zone, *Gondwana*
514 *Research*, DOI: 10.1016/J.GR.2013.02.001.

515 Kameyama, M., and Ogawa, M. (2000), Transitions in thermal convection with strongly
516 temperature-dependent viscosity in a wide box, *Earth Planet. Sci. Lett.*, 180, 355–
517 367.

518 Karato, S., Phase transformation and rheological properties of mantle minerals (ed.
519 Crossley, D., Soward, A.M.) (*Earth's Deep Interior*. Gordon and Breach, New York
520 1997) pp. 223–272.

521 Kellogg, L.H., and King, S.D. (1997), The effect of temperature dependent viscosity on
522 the structure of new plumes in the mantle: results of a finite element model in a
523 spherical, axymmetric shell, *Earth Planet. Sci. Lett.*, 148, 13–26.

524 Khezzar, L., Signer, D., and Vinogradov, I. (2012), Natural convection of power law
525 fluids in inclined cavities, *Int. J. Thermal Sci.*, 53, 8–17.

526 Kameyama, M., Kageyama, A., and Sato, T. (2008), Muligrid-based simulation code for
527 mantle convection in spherical shell using Yin-Yang grid, *Phys. Earth Planet. Int.*,
528 171, 19–32.

529 Moresi, L.N., and Solomatov, V.S. (1995), Numerical investigation of 2D convection
530 with extremely large viscosity variations, *Phys. Fluids*, 7, 2154–2162.

531 Oliveira, P.J., Pinho, F.T., and Pinto, G.A. (1998), Numerical simulation of non-linear
532 elastic flows with a general collocated finite-volume method, *J. Non-Newton. Fluid*
533 *Mech.*, 79, 1–43.

534 OzBench, M., Regenauer-lieb, K., Stegman, D.R., Morra, G., Farrington, R., Hale, A.,
535 May, D.A., Freeman, J., Bourgouin, L., Muhlhaus, H., and Moresi, L. (2008), A
536 model comparison study of large-scale mantle-lithosphere dynamics driven by
537 subduction, *Phys. Earth Planet. Int.*, 171, 224–234.

538 Pla, F., Herrero, H., and Lafitte, O. (2010), Theoretical and numerical study of a thermal
539 convection problem with temperature-dependent viscosity in an infinite layer,
540 *Physica D*, 239, 1108–1119.

541 Pla, F., Mancho, A.M., and Herrero, H. (2009), Bifurcation phenomena in a convection
542 problem with temperature dependent viscosity at low aspect ratio, *Physica D*, 238,
543 572–580.

544 Patankar, S.V., and Spalding, D.B. (1972), A calculation procedure for heat, mass and
545 momentum transfer in three-dimensional Parabolic flows, *Int. Heat Mass Transfer*,
546 115, 1787–1803.

547 Severin, J., and Herwig, H. (1999), Onset of convection in the Rayleigh-Bénard flow
548 with temperature dependent viscosity, *Math. Phys.*, 50, 375–386.

549 Sherburn, J.A., Horstemeyer, M.F., Bammann, D.J., and Baumgardner, J.R. (2011),
550 Two-dimensional mantle convection simulations using an internal state variable
551 model: the role of a history dependent rheology on mantle convection, *Geophys. J.*
552 *Int.*, 186, 945–962.

553 Stein, C., Schmalzl, J., and Hansen, U. (2004), The effect of rheological parameters on
554 plate behaviour in a self-consistent model of mantle convection, *Phys. Earth Planet.
555 Int.*, 142, 225–255.

556 Stien, C., and Hansen, U. (2008), Plate motions and viscosity structure of the mantle-
557 insights from numerical modeling, *Earth Planet. Sci. Lett.*, 272, 29–40.

558 Van den Berg, Arie P., Yuen, D.A., and Van Keken P.E. (1995), Rheological transition
559 in mantle convection with a composite temperature-dependent, non-Newtonian and
560 Newtonian rheology, *Earth and Planetary Science Letters*, 129, 249–260.

561 Yanagawa, T.K.B., Nakada, M., and Yuen, D.A. (2004), A simplified mantle
562 convection model for thermal conductivity stratification, *Phys. Earth Planet. Int.*,
563 146, 163–177.

564 Yoshida, M. (2012), Plume's buoyancy and heat fluxes from the deep mantle estimated
565 by an instantaneous mantle flow simulation based on the S40RTS global seismic
566 tomography model, *Physics of the Earth and Planetary Interiors*, 210–211, 63–74.

567 Turan, O., Sachdeva, A., Chakraborty, N., and Poole, R.J. (2011), Laminar natural
568 convection of power-law fluids in a square enclosure with differentially heated side
569 walls subjected to constant temperatures, *J. Non-Newton. Fluid Mech.*, 166, 1049–
570 1063.

571

572

573

574

575

Table 1. Parameters related to mantle convection (Pla *et al.* (2010)).

Parameter	Value
$H[m]$	2.9×10^6
$\kappa[m^2 s^{-1}]$	7×10^{-7}
$\beta_T[K^{-1}]$	10^{-5}
$\nu[m^2 s^{-1}]$	3.22×10^{20}
Pr	10^{26}
Ra	$3.48 \Delta T$

576

577

578

579

580

581

582

583

584

585

Table 2. Percentage of mean absolute errors between average velocity obtained from different meshes and the 200×100 reference mesh.

Ra	$N_x \times N_y$				
	100×50	120×60	140×70	150×75	170×85
227	0.1858	0.1283	0.0812	0.0602	0.0314

586

587

588

589

590

591

592

593

594

595

596

597

598

Table 3. Maximum magnitude of stress on top plate for different values of β_G and Γ

($\alpha = 0.2$ and $En = 6.04 \times 10^{32}$).

β_G	τ_{max}			
	$\Gamma = 0$	$\Gamma = 10^{-5}$	$\Gamma = 10^{-4}$	$\Gamma = 10^{-3}$
0.98	36.8	37	40.5	133.75
0.9	30.6	33.75	32.6	112.5
0.8	29.5	29.8	32.6	112.5
0.5	18.25	18.4	20.1	73

599

600

601

602

603

604

605

606

607

608

Table 4. Maximum magnitude of vertical velocity on a vertical line at $x=1$ for different values of β_G and En ($\alpha = 0.2$ and $\Gamma = 10^{-5}$).

β_G	V_{max}					
	$En = 6.04$	$En = 6.04$	$En = 6.04$	$En = 6.04$	$En = 6.04$	$En = 6.04$
	$\times 10^{26}$	$\times 10^{28}$	$\times 10^{30}$	$\times 10^{32}$	10^{34}	$\times 10^{36}$
0.50	0.0400	0.0410	0.0390	0.0392	0.0396	0.0395
0.80	0.0387	0.0400	0.0395	0.0439	0.0361	0.0400
0.90	0.0427	0.0380	0.0390	0.0385	0.0380	0.0410
0.98	0.0359	0.0423	0.0420	0.0341	0.0410	0.0373

609

610

611

612

613

614

615

616

617

Table 5. Maximum magnitude of vertical velocity on a vertical line at $x=1$ for different values of β_G and α ($En = 6.04 \times 10^{32}$ and $\Gamma = 10^{-5}$)

β_G	V_{max}					
	$\alpha = 0.05$	$\alpha = 0.10$	$\alpha = 0.20$	$\alpha = 0.30$	$\alpha = 0.40$	$\alpha = 0.50$
0.50	0.0395	0.0397	0.0397	0.0398	0.0397	0.0395
0.80	0.0398	0.0356	0.0439	0.0407	0.0407	0.0385
0.90	0.0376	0.0390	0.0385	0.0380	0.0417	0.0424
0.98	0.0385	0.0383	0.0341	0.0385	0.0415	0.0373

618

619

620

621