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8 ABSTRACT

9 In the present article, the mantle convection is simulated numerically using a
10  temperature dependent non-linear viscoelastic model for the first time. The numerical
11 domain of problem is considered as a 4000km*2000km rectangular box and the CFD
12 simulation is performed using finite volume method. Unlike the previous works which
13 had been investigated the mantle convection using the linear viscoelastic models or
14 simple nonlinear inelastic viscous equations (such as power law or cross equations), it is
15  solved via the nonlinear Giesekus constitutive equation. Because of large-scale creeping
16  flow in geometry and time, it is shown that the results of Giesekus equation are more
17  reliable for this problem. The main innovative aspects of current study is investigation
18  of temperature dependency of rheological properties of mantle including viscosity,
19  normal stress differences and relaxation time using appropriate equations of state. The
20 variation of gravitational acceleration with depth of Earth and the effect of the work of
21 stress field (viscous dissipation) on mantle convection are also simulated for the first
22 time.

23 Keywords: Mantle convection; Giesekus model; Numerical simulation; Temperature

24 dependence rheological properties.
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Parameter Symbol Units
Brinkman number Br

Heat Capacity C, Jkg*K?!
Elastic number En

Gravity acceleration g ms?
Depth of mantle H km
Thermal conductivity k wm'k?
Nusselt number Nu

Pressure p pa
Prantdl number Pr

Rayleigh number Ra

Reynolds number Re

Time t Gyr
Temperature T K
Velocity vector U mm yr*
Reference velocity W, mm yr
Weissenberg number We

Greek Symbols

Mobility factor ¢

Compressibility factor Be Mpa™
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25
26

27
28
29

30

Viscosity ratio B
Thermal expansivity B K*!
Stress field work (0]
Shear rate y st
Exponential rate r K*!
Dynamic viscosity n kgm's?t
Thermal diffusivity K
Relaxation time A S
Kinetic viscosity v m?s™
Density p kg m?
Stress tensor T pa
Subscripts

0
Property at upper plate
Newtonian n
Viscoelastic v

1. INTRODUCTION

Mantle convection is a creeping flow in the mantle of the Earth that causes some
convective currents in it and transfers heat between core and Earth’s surface. In fluid
mechanics, the free convection is a classic topic driven by the effect of temperature

gradient on density. This solid-state convection in mantle is an abstruse phenomenon
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31 that carries out various tectonic activities and continental drift (Bénard (1900),
32  Batchelor (1954), Elder (1968)). This motion occurs on a large scale of space and time.
33 From fluid mechanics point of view, mantle convection is approximately a known
34  phenomenon; the only force which causes convective flow is buoyancy force while this
35 phenomenon is affected by the nature of non-Newtonian rheology (Christensen (1985))
36 and depth-and temperature-dependent viscosity. Gurnis and Davies (1986) just used a
37  depth dependent viscosity and assumed that the Rayleigh number is constant. They
38  deduced this phenomenon depend on Rayleigh number, as when Ra is increased, the
39  thermal boundary layer will be thinned and the center of circulation shifts more to the
40  narrow descending limb. Hansen et al. (1993) examined the influences of both depth-
41  dependent viscosity and depth-dependent thermal expansivity on the structure of mantle
42 convection using two-dimensional finite-element simulations. They concluded depth-
43 dependent properties encourage the formation of a stronger mean flow in the upper
44 mantle, which may be important for promoting long-term polar motions. The rheology
45  of mantle strongly depends on the temperature and hydrostatic pressure (Ranalli (1995),
46 Karato (1997)). Also, because of huge geometry of Earth’s mantle (2000km), the

47  gravity cannot be considered as a constant, and it is a function of depth.

48 Kellogg and King (1997) developed a finite element model of convection in a
49  spherical geometry with a temperature-dependent viscosity. They have focused on three
50 different viscosity laws: (1) constant viscosity, (2) weakly temperature-dependent
51  viscosity and (3) strongly temperature-dependent viscosity. Moresi and Solomatov

52 (1995) have simulated it as two-dimensional square cell with free-slip boundaries. They
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53  reached an asymptotic regime in the limit of large viscosity contrasts and obtained
54  scaling relations that found to be agreement with theoretical predictions. Ghias and
55  Jarvis (2008) investigated the effects of temperature- and depth-dependent thermal
56  expansivity in two-dimensional mantle convection models. They found the depth and
57  temperature dependence of thermal expansivity each have a significant, but opposite,
58 effect on the mean surface heat flux and the mean surface velocity of the convective
59  system. The effect of temperature-dependent viscosity was studied in literature in two-
60  dimensional rectangular domains (Severin and Herwig (1999), Pla et al. (2009),
61 Hirayama and Takaki (1993), Frohlich et al. (1992)). Tomohiko et al. (2004) simulated
62  a two-dimensional rectangular domain with assuming the mantle as an incompressible
63  fluid with a power-law viscosity model. They employed a simplified two-layer
64  conductivity model and studied the effects of depth-dependent thermal conductivity on
65 convection using two-dimensional Boussinesq convection model with an infinite
66  Prandtl number. Their results implied that the particular values of thermal conductivity
67 in horizontal boundaries could exert more significant influence on convection than the
68 thermal conductivity in the mantle interior. Stein et al. (2004) explored the effect of
69 different aspect ratios and a stress- and pressure-dependent viscosity on mantle
70  convection using three-dimensional numerical simulation. Ozbench et al. (2008)
71 presented a model of large-scale mantle-lithosphere dynamics with a temperature-
72 dependent viscosity. Ichikawa et al. (2013) simulated a time-dependent convection of
73 fluid under the extended Boussinesq approximation in a model of two-dimensional
74  rectangular box with a temperature- and pressure-dependent viscosity and a viscoplastic

75  property. Stien and Hansen (2008) employed a three-dimensional mantle convection
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76  model with a strong temperature, pressure and stress dependence of viscosity and they
77  used a viscoplastic rheology. Kameyama and Ogawa (2000) solved thermal convection
78 of a Newtonian fluid with temperature-dependent viscosity in a two-dimensional
79  rectangular box. Kameyama et al. (2008) considered a thermal convection of a high
80 viscous and incompressible fluid with a variable Newtonian viscosity in a three-
81  dimensional spherical geometry. Gerya and Yuen (2007) simulated a two-dimensional

82  geometry and non-Newtonian rheology using power-law model.

83 In the present paper, the mantle convection is simulated numerically using a
84  temperature dependent non-linear viscoelastic model for the first time. The geometry of
85  problem is shown in Fig. 1. Here, the calculation domain is considered as a
86  4000kmx2000km rectangular box. Two hot and cold plates are considered at the bottom
87  and top of box, respectively. The isolator thermal condition is considered at the left and
88  right hand sides of domain. The problem is solved via a second order finite volume
89  method. The effect of temperature on rheological properties consist of the viscosity,
90 normal stress differences and relaxation time of mantle are modeled using appropriate
91  equations of state which are the main innovative aspects of current study. The variation
92  of gravitational acceleration with depth of Earth and the effect of the work of stress field
93  (viscous dissipation) on mantle convection are simulated for the first time. According to
94  the literature, the previous studies are restricted to the linear and quasi-linear
95  viscoelastic constitutive equations and the nonlinearity nature of mantle convection was
96 modeled as simple nonlinear constitutive equations just for apparent viscosity such as

97  the power-law and cross models. Here, the Giesekus nonlinear viscoelastic model is
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used as the constitutive equation. This high order nonlinear model is used because of
large-scale creeping viscoelastic flow of mantle convection in domain and time. Using
Giesekus constitutive equation, we can calculate a more accurate solution for this

problem because:

1. In addition to the viscosity, the shear dependencies of other viscometric
functions (consist of the first and second normal stress differences) are also
modeled. It is important to remember that the linear and quasi-linear viscoelastic
constitutive equations that used in previous studies could not able to model the
completed set of shear dependent nonlinear viscometric functions which resulted
from anisotropic behavior of flow field.

2. The effect of the third invariant of shear rate tensor on stress field (especially for
normal stress components) is also modeled for the first time. The simple non-
linear viscous models such as power-law and cross equations that used in
previous studies depend only on generalized shear rate which is defined based
on the second invariant of the shear rate.

3. The nonlinear effect of material elasticity on large deformation of mantle is
modeled simultaneity with the effects of viscometric functions and elongational
rheological properties.

4. 1t is important to remember that the non-linear constitutive equations like as the
Giesekus equation could able to model the material elasticity and relaxation

spectra much better than linear models for large deformations of flow field.
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120 2. GOVERNING EQUATIONS

121 The governing equations of an incompressible viscoelastic fluid flow consist of the

122 continuity, momentum and energy equations:

VU :0 (1a)
a0 o I
paf +pU.V(U)=—Vp+V.T+pg (1b)
e ai+0.vf =V.(kVT)+%:VU+0"
of (1c)

123 where U is the velocity vector, p is density, ¢ is heat capacity, p is static pressure, T
124  is temperature, k is thermal conductivity, f is time, 0" is power of heat source and 7 is

125  the total stress tensor. The stress tensor is consisted as the summation of Newtonian 7,

126  and viscoelastic contributions 7, as follows:

t

127 In Newtonian law (7, :ﬁnﬁ), 7, and ;7 which respectively are the constant solvent

128  viscosity and the shear rate tensor, gives the solvent part 7, . The viscoelastic stress will

129  be obtained from a constitutive equation. The usefulness of a constitutive equation for
130  describing processing flows of viscoelastic solutions and melts rest on its ability to
131  accurately predict rheological data, as well as on its numerical tractability in several

132 flow geometries. Such equation should successfully account for shear dependent
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viscosity, normal stress effects in steady shear flows, elastic effects in shear-free flows

and non-viscometric flow phenomena. The parameter g, represents the relation of

viscoelastic behavior (as the additives) with pure Newtonian behavior (as the solvent):

_n
=5 ih, 3)

Since the present study examines mantle convection, this parameter must be near unity.

In other words, the viscoelastic portion dominates to pure Newtonian portion in

behavior of fluid flow. Therefore, the main portion of viscosity of mantle could be

attributed to the 77, .

The Giesekus model is a popular choice, because of its relative success in several
flows, and its reduction to several well-known simpler models, which make it useful in
a variety of flow situations. The key characteristic of this model is that it includes non-
linear term in stress. Here, the Giesekus model is used as the non-linear constitutive

equation:

(4)

where 7, is the viscosity contribution of viscoelastic material at zero shear rate and 7,

is the upper convected derivative of viscoelastic stress tensor defined by:

Dt~ v bty v (5)
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D()

147 in which is material derivative operator given by

20 =@+U.V(). The
Dt of

148  Giesekus constitutive equation is derived by Kkinetic theory, arising naturally for

149  polymer solutions. This model contains four parameters: a relaxation time 4 ; the solvent
150 and polymeric contributions at the zero-shear rate viscosity, 77, and 7,; and the

151  dimensionless “mobility factor” « (Bird et al. (1987)). The origin of the term involving
152 «a can be associated with anisotropic Brownian motion and/or anisotropic

153 hydrodynamic drag on the constitutive of heavy particles.

154 In this paper, the viscosity is assumed to be depended on depth and temperature as

155  follow:
71 =17, exp| 1535y |- (T =T, | ©)

156  where 7, is the total viscosity at reference temperature (T,), y is the depth (per

157  1000Km), and I'" is the exponential rate. The relaxation time (1) is also assumed to be

158  an exponential function of temperature:
A=Ay Xp [—F(f —fO)J @

159  Because of large scale of geometry and the nature of mantle convection, the dependency

160  of density on temperature and pressure are considered as follows:

p=po[ 1= (T =T,) |1+ e (P~ Bs)] ®)

10
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where T, =300K and P,=0.1MPa are reference temperature and pressure,
respectively, p, is density at reference temperature and pressure, x is thermal

expansivity and f. is compressibility coefficient.

3. NON-DIMENSIONALIZATION

According to Fig. 1, the Cartesian coordinate system is used in this study. The

dimensionless parameters of flow field are as follows:

wo X y:l u=0/W,
H H
7H pH 7
T=- p=- n=—
oW, oWo o ©)
Re = ANH we = Wo En= Ve
7o 2H Re

where X and § are indicating the coordinate directions; H is the depth of geometry, Wy
is the reference velocity, 77, is the dynamic viscosity at zero shear rate (7, =7, +7,). 77
is the fluid viscosity, p is density and Re, We and En are the Reynolds, Weissenberg

and Elastic numbers, respectively. The ~ notation signifies that parameter has

dimension. The governing dimensionless parameters of heat transfer are as follows:

For 2
T= T_T-nlj:in Br = ~770W0~ pr="o

fmax - k (Tmax _Tmin) PK (10)

11

Solid Earth

Discussions
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ik hH
Ra= GBATH' o nu="H
14

173 In the above relations, T is the dimensionless temperature; T and T_ are the
174  minimum and maximum temperature of fluid, respectively; k is the conduction
175  coefficient, « is thermal diffusivity, h is the convection heat transfer coefficient and
176  Br, Pr, Ra and Nu are the Brinkman, Prandtl, Rayleigh and Nusselt numbers,

177  respectively. Thus, the dimensionless form of continuity and momentum equations are

178  as follows:

VU =0 (11a)
CgBATH. 1,
Uvu = W T+Revu (11b)

0

1
uvT =@{V.(VT)+ Bro} (110)

179  where g is the thermal expansion coefficient. In order to get closer to reality, in the
180  energy equation, we assume a viscosity dissipation term (z:VxU). This term is the
181  effect of stress field work on fluid flow and for Newtonian fluids; it has always a
182  positive sign according to the second law of thermodynamic. Actually, this positive
183  term refer to the irreversibility of flow field work and thus in Newtonian fluid it is
184  known as viscosity dissipation. The interesting point of this term for viscoelastic fluids
185 is the local possibility of being negative. In effect, having locally negative value of this

186  term indicates that part of energy is saved in elastic constituent of fluid (Bird et al.

12
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187  (2002)). In Eg. (11c), @ is the dimensionless form of work of stress field and obtain

188  from following equation:

<D=rxxaaxul+rxy[

ou, ou, ou,
—+ +7

oy x ) Yoy (12)
189  This variation in viscosity introduces a relativity factor in the problem. Here, the non-
190  dimensionalization is performed regarding to the value of the viscosity in the upper

191  plate. Therefore, a new Rayleigh number should be defined, due to the variation of

192 viscosity: Ra,, =Raexp(-I'(T-T,)).

193 In our numerical calculations, the values of the parameters are related to the values in
194 the mantle (Pla et al., 2010), Table 1 shows the values of parameters used in
195  calculations. Due to the nature of mantle convection the Pr number and viscosity are
196  assumed to be in order of 10%° and 10%, respectively. Also, a Rayleigh number equal to

197 227 is used for this simulation.

198 Remember that the gravitational acceleration of the Earth is decreased by increasing
199 the depth. Because of the large scale of geometry, the variation of gravitational
200 acceleration with depth is considered in present study. For this purpose, we used the
201  data of Bullen (1939) and fitted the following six order interpolation on them with 95%

202  confidence:

g(y)=-0.118y° +0.602y° ~1.006y" +0.6884y" ~0.3708y" +0.167y ~9.846 ;)

13
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203 where y (1000Km) is the depth from bottom plate. We used the above equation in CFD

204  simulation of mantle convection which is the other innovative aspect of present study.
205
206 3. NUMERICAL METHOD, BOUNDARY AND INITIAL CONDITIONS

207 There are totally eight solution variable parameters in the discretized domains,
208 comprising two velocities and three stress components, pressure, pressure correction
209 and temperature. All of flow parameters are discretized using central differences, except
210 for the convective terms which are approximated by the linear—upwind differencing
211 scheme (LUDS) (Patankar and Spalding (1972)). This is the generalization of the well-
212 known up-wind differencing scheme (UDS), where the value of a convected variable at
213 acell face location is given by its value at the first upstream cell center. In the linear-
214 upwind differencing scheme, the value of that convected variable at the same cell face is
215  given by a linear extrapolation based on the values of the variable at the two upstream
216  cells. It is, in general, the second-order accurate, as compared with first-order accuracy
217 of UDS, and thus, its use reduces the problem of numerical diffusion (Oliveira et al.
218  (1998)). The Cartesian reference coordinate system is located in the bottom boundary
219  and at left corner. Boundary conditions consist of two adiabatic walls in west and east
220 and two isothermal walls at north and south. For all boundaries, a no-slip condition is
221 imposed for the fluid velocity. The rest situation is used as the initial condition. The
222 used geometry and boundary conditions in this study are shown in Fig. 1. The geometry
223  has a rectangular shape with an aspect ratio of 2. Boundary conditions consist of two

224  isolated walls with zero gradient stress tensor components. The boundary conditions for

14
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225  bottom and top plates are assumed a constant temperature so that the bottom plate has a
226 higher temperature. These boundaries have a zero gradient velocity and tensor

227  components, too.

228

229 4. RESULTS AND DISCUSSION
230 4.1. Grid Study and Validation

231 We perform some CFD simulations with different number of grids to study the
232 dependency of solution to mesh size. The meshes included quadratic elements. Table 2
233 lists the mean errors between average Nusselt number on horizontal lines on different
234 meshes and the 200x100 reference mesh. These errors are calculated for a viscoelastic
235  fluid with Giesekus model at Ra =227. The numerical error decreases with increasing
236 the number of meshes as the mean error beings less than 0.08% for mesh size greater
237 than140x70. This finding indicates that a grid-independent solution is obtained when
238 using a mesh sizes larger than 140x70. To ensure that the obtained solution is grid-

239  independent, a mesh size of 150x 75 was used for the CFD simulations.

240 As a benchmark comparison, simulations for free convection of Newtonian fluid
241 flow between two parallel plate have been carried out at Ra=10%, 10°, Pr=100. This

242 problem was studied previously by Khezar et al. (2012) and Turan et al. (2011) for
243 power-law fluid. The diagrams of average Nusselt number obtained from the present
244  study and work of Khezar et al. (2012) at n=1 are shown in Fig. 2a. As an additional

245  benchmark comparison, the distribution of dimensionless vertical velocity reported by

15
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246 Turan et al. (2011) and the results obtained from the present study are illustrated in Fig.

247 2bat Ra=10"-10°, Pr=100 and n=1. It is understood that in both cases, the results
248  of present CFD simulation have a suitable agreement with results of Khezar et al.

249  (2012) and Turan et al. (2011) with maximum error less than 3%.
250
251 4.2. CFD Simulation of Mantle Convection Using Giesekus Model

252 In this section, the effects of various parameters on flow regime of mantle convection
253 are studied. As observed in Eq. (4), the variation of parameters « and A could affect

254 the stress tensor field and this change in stresses will affect the velocity field.

255 According to the study of Pla et al. (2010), it could be inferred that with increasing
256  the exponential rate T", the circulations created by natural convection are moved toward
257  the bottom plate. It is resulted from the fact that by increasing I", the viscosity near

258  bottom plate would be decreased and the flow tends to circulate in this place. Also,
259  another parameter that effect on the flow and the circulation intensity is S . The results

260  of variations of these parameters will discuss in next sections. Remember that the
261  dependency of rheological and thermal properties and density on temperature and
262  pressure are considered and the variation of gravitational acceleration with depth of

263  Earth is modeled in following results.

264

16
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265 Fig. 3 demonstrates a comparison between vertical velocity profiles of our
266 nonlinear viscoelastic model, power-law model (reported by Christensen (1983),
267  Cserepes (1982), Sherburn (2011), Van der Berg (1995), Yoshida (2012)) at n=3, and
268 the Newtonian model used by Pla et al. (2010). This Figure is presented in order to
269  compare the results of current CFD simulation (based on the non-linear Giesekus
270  consecutive equation, thermal-pressure dependence properties and depth dependence
271  gravitational acceleration) with previous simpler simulations that used Newtonian and
272 power-law models. As it is obvious, the velocity near upper plate for Giesekus model is
273 less than from the results of Pla et al. (2010) and power-law model. That is due to the
274  elastic force and higher value of viscosity at lower shear rates. Also, the maximum
275  vertical velocity of our simulation is smaller and the location of maximum vertical
276  velocity occurred upper than the location reported by Pla et al. (2010). That is because
277  of the viscoelastic portion of fluid behavior that we will discuss it in next sections. As it
278 is shown in Fig. 3, the depth in which the maximum velocity occurs is approximately
279  similar for power-law model and Giesekus constitutive equation. That is because of the
280  effect of apparent viscosity dependency to velocity gradient. Also noting to the velocity
281  profile, it is seen that all of models have the same results in vicinity of lower plate. But
282  for upper plate, the Figure demonstrates that the slope of vertical velocity for the
283  Giesekus model is smaller than the others. According to the Figure, there is a resistance
284  against the upward flow for Giesekus profile that two other models cannot predict it.
285  Actually, that is due to the consideration of elastic portion of fluid flow in our numerical
286  simulation. This finding indicated that the velocity and stress field have an obvious

287  deviation from Newtonian and generalized Newtonian behaviors by considering a non-

17
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288 linear constitutive equation for mantle convection. In next sections, the effects of
289  material and thermal modules on mantle convection are studied based on the CFD

290  simulations that obtained using Giesekus non-linear model.

291
292  4.2.1. Investigation of the Effect of Exponential Rate of Viscosity (I')

293 We studied firstly the effect of increasing I' from zero to 10 on mantle convection.

294  This parameter represents the dependency of viscosity on temperature variation. Fig. 4

295 shows the streamlines for different values of I' at f; =098, «=02 and

296 En=6.04x10%. It is evident from Fig.4 that the circulations in the mantle physically
297 depend on T'. As the exponential rate (I') is increased, the maximum velocity in
298  geometry is enhanced and the circulations moved downward. According to Eq. (6), the
299  dependency of viscosity of mantle on temperature is more increased by enhancing the
300 exponential rate (I'). In other words, by increasing the exponential rate (I"), the
301  viscosity is more decreased near to the lower plate (high temperature region) and the
302 fluency of mantle is intensified. Therefore, it is expected that the velocity of mantle
303 convection is enhanced by increasing the exponential rate. The results show that an
304 increment of 1.6% in vertical velocities by increasing the exponential rate from zero to
305 107°, 17.1% growth by increasing I' to 10™ and with enhancing the T from zero to
306 107 it growths up to 4.32 times. The CFD simulations indicated that the effect of
307 exponential rate on maximum value of velocity is nonlinear. The contours of axial

308 normal stress and shear stress are shown in Fig. 5. As it is obvious, the exponential rate

18
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309 has a significant influence on magnitude of stress fields that is increased by enhancing
310  the exponential rate. As an example, for I'=10", the value of dimensionless stress

311 component 7,, becomes 1.1 times greater than the one with exponential rate of zero.

312 Also, with increasing the value of T' by 107, it growths up to 2.56 times. Actually, with
313  increasing the exponential rate, the dependency of viscosity on temperature is
314 intensified and then the right hand side of Eq. (4) increases so this change leads to
315 enhancement of stress field. Fig. 6 displays the location of maximum vertical velocity at
316 Y/H =0.5 versus the exponential rate. The dimensionless depth of points Y, where the

317 maximum of velocity is occurred, is Y =05 for '=0 and by increasing the
318 exponential rate to 10™°, this depth will be decreased to 2.4%. The amount of this

319 reduction for T=10" and I'=10" is 10% and 24%, respectively. We obtained the

320 following relation for location of maximum vertical velocity with 95% confidence:

2
Y =-10.581"% +0.4933
321  The above correlation is used in plotting the Fig. 6. The downward movement of
322  location of maximum vertical velocity with increasing exponential rate could be

323  attributed to shifting the center of vortices which is shown previously in Fig. 5.

324 In Fig. 7, the temperature distribution in mantle is shown. According to this Figure,
325 heat transfer regime is almost conduction. Nevertheless, closer looking to the
326  temperature distribution, some convection behavior could be observed. The temperature
327  profile on a horizontal line is shown in Fig. 8. As it is expected, the temperature profile

328 shown in Fig. 8 has a minimum value at mid of horizontal line and the maximum values

19
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329 are located at left and right hand sides of numerical domain. Fig. 9 shows the stress

330  magnitude on upper plate for different value of I’ at ¢ =02 and 1=1.5x10"s. As
331 expected from Eq. (6), the viscosity will be more depended on temperature by
332 increasing the value of I'. Thus, the viscosity will be decreased with increasing I' and
333 in the other hand; the velocity field will be intensified that the participation of these

334  factors determines stresses in vicinity of upper plate. According to Fig. 9, in the case of
335  I'=10"°, with increasing g, from 0.5 to 0.8, the maximum stress magnitude is
336 increased by 32.2% and by enhancing g, to 0.9 and 0.98, the growing percentages are

337  32.2% and 101%, respectively. As mentioned before, there are several factors that affect

338 the flow pattern such as I and g,. The result of this participation clearly is seen here,
339  when the viscosity ratio vary from 0.9 to 0.98, it seems that in this interval, the effect of

340  these two parameters (I' and $,) is neutralized each other and lead to having the same

341  stress magnitude at these points.

342
343 4.2.2. Investigation of the Effect of Viscosity Ratio (f; )

344  The parameter g, is a criterion portion for demonstration of domination of viscoelastic

345  towards pure Newtonian portions of fluid behavior. In fact, when this parameter is much

346 closer to unity, the viscoelastic behavior is dominated and when g, is close to zero, the

347  pure Newtonian behavior of fluid is dominated. As it is shown in Fig. 10, by increasing

348 B, from 0.8 to 0.98, the stress magnitude on upper plate has been increased, but the
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349  vertical velocity near to the both lower and upper plates is decreased. This effect is
350 related to the higher value of viscosity of viscoelastic potion in comparison of pure
351 Newtonian behavior that causes increasing the total viscosity and decreasing the fluidity
352 of model (refer to Eq. 3). This finding is approved by the data of maximum magnitude

353  of shear stress near to the upper plate which is reported in Table 3. According to the
354  Table, 7, Iis increased by enhancing the viscosity ratio which is caused from

355 increasing the fluid viscosity.

356 Fig. 11 shows variation of normalized vertical velocity on a vertical line for

357  different values of exponential rates (I') and viscosity ratios (5,). As it is understood

358 from Fig. 11, in constant viscosity ratio, when T' is increased, the velocities are
359 increasing very strongly, but as viscosity ratio changes, a contrast occurred between
360 these two factors (as it is shown in Fig. 11c, the velocities are increased and in Fig. 11b,

361 the vertical velocities are decreased). In other word, at 3, =0.9, the effect of exponential
362 rate is prevailed but with increasing the viscosity ratio to 4 =098, the effect of

363  viscosity ratio is dominated.
364
365 4.2.3. Investigation of the Effect of Elasticity

366  The elastic number is generally used to study the elastic effect on the flow of
367  viscoelastic fluids. According to the Eq. 9, the elastic number is defined as the ratio of
368  Weissenberg to Reynolds numbers. This dimensionless group is independent from

369  kinematic of flow field and it is only depended on material modules for a given
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370  geometry. Here, the elastic number is proportional with relaxation time of model and it
371 s increased by enhancing the material elasticity. Figs. 12 and 13 display velocity and
372 stress magnitude for different values of elastic number. Table 4 presents the value of
373  maximum normalized vertical velocity for different elastic numbers and various
374  viscosity ratios. According to the Fig. 12, the velocity of mantle convection is decreased
375 by increasing the elastic number from 6.04x10% to 6.04x10% and it is increased by
376  increasing the elastic number to 6.04x10%. The first decreasing in the normalized
377  velocity could be attributed to increasing the normal stresses resulted from fluid
378 elasticity. In the other word, some main portion of energy of convection is stored as the
379  elastic normal stresses. In larger elastic numbers, the effective viscosity of flow is
380 decreased which is related to the nature of nonlinear dependency of viscometric
381  function of Giesekus constitutive equation on relaxation time at large enough elastic

382  numbers (Bird et al. (1987)).
383
384  4.2.4. Investigation of Mobility Factor Effect

385  Fig. 14 shows the effects of mobility factor on the vertical velocity for different values
386  of viscosity ratio. Due to the non-linear nature of our viscoelastic model and the high
387 elastic number, anticipation of effects of all factors is not easy and it is strongly affected
388 by the variation of other factors. Regarding to high viscosity of mantle, the effect of
389  mobility factor must be minimal, as it is shown in Fig. 14. The effects of mobility factor
390 are only important near both upper and lower plate. In the other word, the main

391 variation of velocity distributions with changing the mobility factor occurs in the upper
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392 and lower plate. For «=0.05, the magnitudes of normalized velocities in vicinity of

393  upper plate are increasing by enhancing g, from 0.5 to 0.9 between 20% to 50% and

394  with increasing the viscosity ratio to 0.98, the velocities are decreasing about 70%. In
395 contrast, for the lower plate, this variation is reversing, i.e., the velocities with

396 increasing g, to 0.9 are decreasing. The same effect is available for & =0.2. Also, the

397  variation of velocity near upper plate for « =0.1 and 0.3 are similar. In these cases, with

398 increasing B, from 0.5 to 0.9, the velocities in this place are decreasing and with

399 increasing the viscosity ratio to 0.98, the magnitudes of velocities are ascending. Table
400 5 presents the maximum normalized vertical velocity for various values of elastic

401  numbers and different viscosity ratios.
402
403  4.2.5. Investigation of the Effect of Rayleigh Number

404  If we want to study natural convection and investigate the strength of convection, the
405  Rayleigh number is a suitable criterion for this aim. Since mantle convection has a low
406  Rayleigh number, thus the temperature field should have a conductive form (see Fig 7).
407  According to Eq. (10), the Rayleigh number is a function of temperature, so it is varying
408  all over the geometry because the viscosity is temperature dependent and is varying.
409  Fig.15 presents the streamlines for different Rayleigh numbers. According to Fig. 15, by
410 increasing the Rayleigh number, the velocity in geometry is increased and the
411  circulations move downward and get more intense. By increasing Ra from 22.7 to 227,

412 the velocity magnitude will vary with order of 10%. If we rise the Rayleigh number to
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413 1135, this growth in velocities is in order of 10° and when we set the Ra as 2270, the
414  velocity magnitude will be in order of 10°. It is important to remember that the
415  temperature difference between the hot and cold plates is the potential of mantle
416  convection so the velocity is increased by increasing the Rayleigh number. Fig. 16
417  shows the stress contours for various Rayleigh number. The Figure shows that with
418 increasing the Rayleigh number, the maximum stress in geometry has enhanced
419  significantly. This effect is related to increasing the shear rate of flow field which is
420 intensifying the stress field. According to the Figure, the Giesekus model predicts a
421  large shear stress in comparison of normal stress components which is related to the
422 shear flow behavior of mantle convection which has a suitable agreement with previous
423  reports that used other constitutive equations (Ghias and Jarvis (2008), Severin and
424 Herwig (1999), Pla et al. (2009), Hirayama and Takaki (1993), Frohlich et al. (1992),

425  Tomohiko et al. (2004)).

426
427 5. CONCLUSIONS

428 Current study deals with a numerical simulation of mantle convection using a
429  temperature dependent nonlinear viscoelastic constitutive equation. The effect of
430 temperature on rheological properties consisting of the viscosity, normal stress
431  differences and relaxation time of mantle are modeled using appropriate equations of
432  state which were the main innovative aspects of current study. The variation of

433 gravitational acceleration with depth of Earth and the effect of the work of stress field
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434  (viscous dissipation) on mantle convection were simulated for the first time. According
435  to the literature, the previous studies were restricted to the linear and quasi-linear
436  viscoelastic constitutive equations and the nonlinearity nature of mantle convection was
437  modeled using simple nonlinear constitutive equations just for apparent viscosity such
438  as the power-law and cross models. The Giesekus nonlinear viscoelastic model was
439  used as the constitutive equation in present study. This high order nonlinear model was
440  used because of large-scale creeping viscoelastic flow of mantle convection in space
441  and time. Using Giesekus constitutive equation, we present a more accurate solution for
442  this problem because of taking into account of shear-dependent nonlinear viscometric
443  functions, the effects of third invariant of shear rate tensor on stress field, and effects of

444  material elasticity for large deformations of mantle.

445 It is important to remember that the non-linear constitutive equations such as the
446  Giesekus equation could able to model the material elasticity and relaxation spectra
447  much better than linear models for large deformations of flow field. We also showed
448  that the result of this model has an obvious deviation from pure Newtonian and power-

449  law solutions that reported in literatures.

450 The effect of temperature on viscosity of the mantle is studied, firstly. The results
451  show that increasing of exponential viscosity rate led to the enhancing the maximum
452 velocity and making the circulation moving downward so that with increasing I" from
453 zero to 10, an increase of 4.32 times in vertical velocity and an increase of 2.56 times

454 in z,, were obtained. A formula have presented for the position of maximum vertical

XX

455  velocity as a function of I'. The effect of viscosity ratio is also investigated on the
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456  mantle convection. These results not only show how stress magnitude on upper plate
457  increases by enhancing the viscosity ratio from 0.8 to 0.98, but also prove decreasing of
458  the vertical velocity near to the both lower and upper plates. These effects are related to
459  the higher value of viscosity of viscoelastic Gesikus model relative to the pure viscous
460  portion (Newtonian behavior) which causes decreasing of fluidity of mantle convection.

461  In constant viscosity ratio, when g, increases, the velocities are rising very strongly,

462  but as viscosity ratio changes, a competition occurred between these two factors. In

463  other word, at g, =0.9, the effect of exponential rate is prevailed but with increasing
464  the viscosity ratio up to 4, =0.98 the effect of viscosity ratio is dominated and the

465  velocities are descended. The variation of Elastic number shows the nature of nonlinear
466  dependency of viscometric function of Giesekus constitutive equations on relaxation
467  time at large enough elastic numbers. Present study indicates decreasing of effective
468  viscosity flow for larger elastic numbers. The obtained results show how main
469  variations of velocity distributions with changing of mobility factor occur in the upper
470 and lower plates. Here, the effect of Rayleigh number on mantle convection is also
471 investigated and characterized that with increasing the Rayleigh number, the maximum
472 stress in geometry has enhanced significantly. This effect is related to increasing the

473 shear rate of flow field which is intensifying the stress field.

474 Future works could be focused on the effect of mantle convection on plate motions,
475  effect of chemical reactions occurring in the mantle, and plumes growing by

476  considering a non-linear viscoelastic consecutive equation.

477
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Discussions

573
574
575 Table 1. Parameters related to mantle convection (Pla et al. (2010)).
Parameter Value
H[m] 2.9x10°
x[m’s™] 7x107
B [K™ 10°
v[m?s™] 3.22x10%
Pr 10%
Ra 3.48AT
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Table 2. Percentage of mean absolute errors between average velocity obtained from

different meshes and the 200x100 reference mesh.

Ra N, xN

X y

100x50 12060 14070

227 0.1858 0.1283 0.0812
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597

598

Table 3. Maximum magnitude of stress on top plate for different values of S, and T’

(2 =0.2 and En =6.04x10%).

max

Bs
r=0 r=10"° r=10" r=1073

0.98 36.8 37 40.5 133.75
0.9 30.6 33.75 32.6 112.5
0.8 295 29.8 32.6 1125
0.5 18.25 18.4 20.1 73
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607
608
Table 4. Maximum magnitude of vertical velocity on a vertical line at x=1 for different
values of f; and En (a=0.2 and T=107).
Vmax
B En=6.04 En=6.04 En=6.04 En=6.04 En=6.04 En=6.04
x10%° x10% x10% x10% 10* x10%
0.50 0.0400 0.0410 0.0390 0.0392 0.0396 0.0395
0.80 0.0387 0.0400 0.0395 0.0439 0.0361 0.0400
0.90 0.0427 0.0380 0.0390 0.0385 0.0380 0.0410
0.98 0.0359 0.0423 0.0420 0.0341 0.0410 0.0373
609
610
611
612
613
614
615

33



Solid Earth Discuss., doi:10.5194/se-2016-12, 2016
Manuscript under review for journal Solid Earth

Published: 15 February 2016

(© Author(s) 2016. CC-BY 3.0 License.

616

617

618

619

620

621

Solid Earth

Discussions

Table 5. Maximum magnitude of vertical velocity on a vertical line at x=1 for different

values of f; and o (En=6.04x10% and I'=107°)

Vmax
Bs
a=0.05 a=0.10 a=0.20 a=0.30 a=0.40 a =0.50
0.50 0.0395 0.0397 0.0397 0.0398 0.0397 0.0395
0.80 0.0398 0.0356 0.0439 0.0407 0.0407 0.0385
0.90 0.0376 0.0390 0.0385 0.0380 0.0417 0.0424
0.98 0.0385 0.0383 0.0341 0.0385 0.0415 0.0373
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