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ABSTRACT 8 

In the present article, the mantle convection is simulated numerically using a 9 

temperature dependent non-linear viscoelastic model for the first time. The numerical 10 

domain of problem is considered as a 4000km*2000km rectangular box and the CFD 11 

simulation is performed using finite volume method. Unlike the previous works which 12 

had been investigated the mantle convection using the linear viscoelastic models or 13 

simple nonlinear inelastic viscous equations (such as power law or cross equations), it is 14 

solved via the nonlinear Giesekus constitutive equation. Because of large-scale creeping 15 

flow in geometry and time, it is shown that the results of Giesekus equation are more 16 

reliable for this problem. The main innovative aspects of current study is investigation 17 

of temperature dependency of rheological properties of mantle including viscosity, 18 

normal stress differences and relaxation time using appropriate equations of state. The 19 

variation of gravitational acceleration with depth of Earth and the effect of the work of 20 

stress field (viscous dissipation) on mantle convection are also simulated for the first 21 

time.  22 

Keywords: Mantle convection; Giesekus model; Numerical simulation; Temperature 23 

dependence rheological properties. 24 
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Nomenclature 

Parameter Symbol Units 

Brinkman number  Br   

Heat Capacity  pC  J kg
-1

K
-1

 

Elastic number  En   

Gravity acceleration  g  m s
-2

 

Depth of mantle  H  km 

Thermal conductivity  k  Wm
-1

K
-1

 

Nusselt number  Nu   

Pressure  p  pa 

Prantdl number  Pr   

Rayleigh number  Ra   

Reynolds number  Re   

Time  t  Gyr 

Temperature  T  K 

Velocity vector  U  mm yr
-1

 

Reference velocity  0W  mm yr
-1

 

Weissenberg number  We   

Greek Symbols 

Mobility factor 

  

           

 

Compressibility factor  C  Mpa
-1
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Viscosity ratio  G   

Thermal expansivity  T  K
-1

 

Stress field work     

Shear rate    s
-1

 

Exponential rate    K
-1

 

Dynamic viscosity    kg m
-1

 s
-1

 

Thermal diffusivity     

Relaxation time    s 

Kinetic viscosity    m
2
 s

-1
 

Density    kg m
-3

 

Stress tensor    pa 

Subscripts 

Property at upper plate 

  

          0  

 

Newtonian  n   

Viscoelastic  v   

 25 

1. INTRODUCTION 26 

Mantle convection is a creeping flow in the mantle of the Earth that causes some 27 

convective currents in it and transfers heat between core and Earth’s surface. In fluid 28 

mechanics, the free convection is a classic topic driven by the effect of temperature 29 

gradient on density. This solid-state convection in mantle is an abstruse phenomenon 30 
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that carries out various tectonic activities and continental drift (Bénard (1900), 31 

Batchelor (1954), Elder (1968)). This motion occurs on a large scale of space and time. 32 

From fluid mechanics point of view, mantle convection is approximately a known 33 

phenomenon; the only force which causes convective flow is buoyancy force while this 34 

phenomenon is affected by the nature of non-Newtonian rheology (Christensen (1985)) 35 

and depth-and temperature-dependent viscosity. Gurnis and Davies (1986) just used a 36 

depth dependent viscosity and assumed that the Rayleigh number is constant. They 37 

deduced this phenomenon depend on Rayleigh number, as when Ra is increased, the 38 

thermal boundary layer will be thinned and the center of circulation shifts more to the 39 

narrow descending limb. Hansen et al. (1993) examined the influences of both depth-40 

dependent viscosity and depth-dependent thermal expansivity on the structure of mantle 41 

convection using two-dimensional finite-element simulations. They concluded depth-42 

dependent properties encourage the formation of a stronger mean flow in the upper 43 

mantle, which may be important for promoting long-term polar motions. The rheology 44 

of mantle strongly depends on the temperature and hydrostatic pressure (Ranalli (1995), 45 

Karato (1997)). Also, because of huge geometry of Earth’s mantle (2000km), the 46 

gravity cannot be considered as a constant, and it is a function of depth. 47 

Kellogg and King (1997) developed a finite element model of convection in a 48 

spherical geometry with a temperature-dependent viscosity. They have focused on three 49 

different viscosity laws: (1) constant viscosity, (2) weakly temperature-dependent 50 

viscosity and (3) strongly temperature-dependent viscosity. Moresi and Solomatov 51 

(1995) have simulated it as two-dimensional square cell with free-slip boundaries. They 52 
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reached an asymptotic regime in the limit of large viscosity contrasts and obtained 53 

scaling relations that found to be agreement with theoretical predictions. Ghias and 54 

Jarvis (2008) investigated the effects of temperature- and depth-dependent thermal 55 

expansivity in two-dimensional mantle convection models. They found the depth and 56 

temperature dependence of thermal expansivity each have a significant, but opposite, 57 

effect on the mean surface heat flux and the mean surface velocity of the convective 58 

system. The effect of temperature-dependent viscosity was studied in literature in two-59 

dimensional rectangular domains (Severin and Herwig (1999), Pla et al. (2009), 60 

Hirayama and Takaki (1993), Fröhlich et al. (1992)). Tomohiko et al. (2004) simulated 61 

a two-dimensional rectangular domain with assuming the mantle as an incompressible 62 

fluid with a power-law viscosity model. They employed a simplified two-layer 63 

conductivity model and studied the effects of depth-dependent thermal conductivity on 64 

convection using two-dimensional Boussinesq convection model with an infinite 65 

Prandtl number. Their results implied that the particular values of thermal conductivity 66 

in horizontal boundaries could exert more significant influence on convection than the 67 

thermal conductivity in the mantle interior. Stein et al. (2004) explored the effect of 68 

different aspect ratios and a stress- and pressure-dependent viscosity on mantle 69 

convection using three-dimensional numerical simulation. Ozbench et al. (2008) 70 

presented a model of large-scale mantle-lithosphere dynamics with a temperature-71 

dependent viscosity. Ichikawa et al. (2013) simulated a time-dependent convection of 72 

fluid under the extended Boussinesq approximation in a model of two-dimensional 73 

rectangular box with a temperature- and pressure-dependent viscosity and a viscoplastic 74 

property. Stien and Hansen (2008) employed a three-dimensional mantle convection 75 
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model with a strong temperature, pressure and stress dependence of viscosity and they 76 

used a viscoplastic rheology. Kameyama and Ogawa (2000) solved thermal convection 77 

of a Newtonian fluid with temperature-dependent viscosity in a two-dimensional 78 

rectangular box. Kameyama et al. (2008) considered a thermal convection of a high 79 

viscous and incompressible fluid with a variable Newtonian viscosity in a three-80 

dimensional spherical geometry. Gerya and Yuen (2007) simulated a two-dimensional 81 

geometry and non-Newtonian rheology using power-law model. 82 

In the present paper, the mantle convection is simulated numerically using a 83 

temperature dependent non-linear viscoelastic model for the first time. The geometry of 84 

problem is shown in Fig. 1. Here, the calculation domain is considered as a 85 

4000km×2000km rectangular box. Two hot and cold plates are considered at the bottom 86 

and top of box, respectively. The isolator thermal condition is considered at the left and 87 

right hand sides of domain. The problem is solved via a second order finite volume 88 

method. The effect of temperature on rheological properties consist of the viscosity, 89 

normal stress differences and relaxation time of mantle are modeled using appropriate 90 

equations of state which are the main innovative aspects of current study. The variation 91 

of gravitational acceleration with depth of Earth and the effect of the work of stress field 92 

(viscous dissipation) on mantle convection are simulated for the first time. According to 93 

the literature, the previous studies are restricted to the linear and quasi-linear 94 

viscoelastic constitutive equations and the nonlinearity nature of mantle convection was 95 

modeled as simple nonlinear constitutive equations just for apparent viscosity such as 96 

the power-law and cross models. Here, the Giesekus nonlinear viscoelastic model is 97 
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used as the constitutive equation. This high order nonlinear model is used because of 98 

large-scale creeping viscoelastic flow of mantle convection in domain and time. Using 99 

Giesekus constitutive equation, we can calculate a more accurate solution for this 100 

problem because: 101 

1. In addition to the viscosity, the shear dependencies of other viscometric 102 

functions (consist of the first and second normal stress differences) are also 103 

modeled. It is important to remember that the linear and quasi-linear viscoelastic 104 

constitutive equations that used in previous studies could not able to model the 105 

completed set of shear dependent nonlinear viscometric functions which resulted 106 

from anisotropic behavior of flow field. 107 

2. The effect of the third invariant of shear rate tensor on stress field (especially for 108 

normal stress components) is also modeled for the first time. The simple non-109 

linear viscous models such as power-law and cross equations that used in 110 

previous studies depend only on generalized shear rate which is defined based 111 

on the second invariant of the shear rate. 112 

3. The nonlinear effect of material elasticity on large deformation of mantle is 113 

modeled simultaneity with the effects of viscometric functions and elongational 114 

rheological properties. 115 

4. It is important to remember that the non-linear constitutive equations like as the 116 

Giesekus equation could able to model the material elasticity and relaxation 117 

spectra much better than linear models for large deformations of flow field.  118 

 119 
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2. GOVERNING EQUATIONS 120 

The governing equations of an incompressible viscoelastic fluid flow consist of the 121 

continuity, momentum and energy equations: 122 

. 0 U  (1a) 

 . .p
t

  


     


U
U U τ g  (1b) 

 
T

c . T . k T : u
t


 

      
 

U τ U +  
(1c) 

where U  is the velocity vector,   is density, c is heat capacity, p  is static pressure, T  123 

is temperature, k is thermal conductivity, t  is time, u  is power of heat source and τ is 124 

the total stress tensor. The stress tensor is consisted as the summation of Newtonian nτ  125 

and viscoelastic contributions vτ  as follows: 126 

n v τ τ τ  (2) 

In Newtonian law ( n nτ γ ), n and γ  which respectively are the constant solvent 127 

viscosity and the shear rate tensor, gives the solvent part nτ . The viscoelastic stress will 128 

be obtained from a constitutive equation. The usefulness of a constitutive equation for 129 

describing processing flows of viscoelastic solutions and melts rest on its ability to 130 

accurately predict rheological data, as well as on its numerical tractability in several 131 

flow geometries. Such equation should successfully account for shear dependent 132 
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viscosity, normal stress effects in steady shear flows, elastic effects in shear-free flows 133 

and non-viscometric flow phenomena. The parameter 
G  represents the relation of 134 

viscoelastic behavior (as the additives) with pure Newtonian behavior (as the solvent): 135 

v
G

vn




 



 

(3) 

Since the present study examines mantle convection, this parameter must be near unity. 136 

In other words, the viscoelastic portion dominates to pure Newtonian portion in 137 

behavior of fluid flow. Therefore, the main portion of viscosity of mantle could be 138 

attributed to the v .  139 

The Giesekus model is a popular choice, because of its relative success in several 140 

flows, and its reduction to several well-known simpler models, which make it useful in 141 

a variety of flow situations. The key characteristic of this model is that it includes non-142 

linear term in stress. Here, the Giesekus model is used as the non-linear constitutive 143 

equation: 144 

   1
.v v v vv

v


  


  τ τ τ τ γ  

(4) 

where v  is the viscosity contribution of viscoelastic material at zero shear rate and  1v
τ  145 

is the upper convected derivative of viscoelastic stress tensor defined by: 146 

 1
. .T

v v vv

D

Dt
   τ τ U τ τ U  

(5) 
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in which 
( )D

Dt
 is material derivative operator given by 

( ) ( )
. ( )

D

Dt t


  


U . The 147 

Giesekus constitutive equation is derived by kinetic theory, arising naturally for 148 

polymer solutions. This model contains four parameters: a relaxation time ; the solvent 149 

and polymeric contributions at the zero-shear rate viscosity, n  and v ; and the 150 

dimensionless “mobility factor”   (Bird et al. (1987)). The origin of the term involving 151 

  can be associated with anisotropic Brownian motion and/or anisotropic 152 

hydrodynamic drag on the constitutive of heavy particles. 153 

In this paper, the viscosity is assumed to be depended on depth and temperature as 154 

follow: 155 

 0 0exp 1.535 y T T     
 

 
(6) 

where 0  is the total viscosity at reference temperature ( 0T ),  y is the depth (per 156 

1000Km), and   is the exponential rate. The relaxation time ( ) is also assumed to be 157 

an exponential function of temperature: 158 

 0 0exp T T     
 

 
(7) 

Because of large scale of geometry and the nature of mantle convection, the dependency 159 

of density on temperature and pressure are considered as follows: 160 

   0 0 01 1 CT T p p            
 

(8) 
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where 
0 300KT   and 0 0.1 Pp M a  are reference temperature and pressure, 161 

respectively, 0  is density at reference temperature and pressure,   is thermal 162 

expansivity and C  is compressibility coefficient. 163 

 164 

3. NON-DIMENSIONALIZATION 165 

According to Fig. 1, the Cartesian coordinate system is used in this study. The 166 

dimensionless parameters of flow field are as follows: 167 

x
x

H
  

y
y

H
  0/WU U  

(9) 
0 0

H

W


τ
τ  

0 0

pH
p

W
  

0





  

0

0

W H
Re




  

0

2

W
We

H


  

We
En

Re
  

where x  and y  are indicating the coordinate directions; H is the depth of geometry, W0 168 

is the reference velocity, 0  is the dynamic viscosity at zero shear rate ( 0 v n    ),   169 

is the fluid viscosity,   is density and Re, We and En are the Reynolds, Weissenberg 170 

and Elastic numbers, respectively. The ~ notation signifies that parameter has 171 

dimension. The governing dimensionless parameters of heat transfer are as follows: 172 

min

max min

T T
T

T T





 

 

2

0 0

max min

W
Br

k T T





 

0Pr



  (10) 
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3

2

ΔTg TH
Ra Pr




  

hH
Nu

k
  

 

In the above relations, T is the dimensionless temperature; minT  and maxT  are the 173 

minimum and maximum temperature of fluid, respectively; k  is the conduction 174 

coefficient,   is thermal diffusivity, h  is the convection heat transfer coefficient and 175 

Br , Pr , Ra  and Nu  are the Brinkman, Prandtl, Rayleigh and Nusselt numbers, 176 

respectively. Thus, the dimensionless form of continuity and momentum equations are 177 

as follows: 178 

. 0 U  (11a) 

2

2

0

Δ 1
.

g TH
T

W Re


   U U U  (11b) 

  
1

. . ΦT T Br
RePr

    U  
(11c) 

where   is the thermal expansion coefficient. In order to get closer to reality, in the 179 

energy equation, we assume a viscosity dissipation term ( :τ U ). This term is the 180 

effect of stress field work on fluid flow and for Newtonian fluids; it has always a 181 

positive sign according to the second law of thermodynamic. Actually, this positive 182 

term refer to the irreversibility of flow field work and thus in Newtonian fluid it is 183 

known as viscosity dissipation. The interesting point of this term for viscoelastic fluids 184 

is the local possibility of being negative. In effect, having locally negative value of this 185 

term indicates that part of energy is saved in elastic constituent of fluid (Bird et al. 186 
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(2002)). In Eq. (11c), Φ  is the dimensionless form of work of stress field and obtain 187 

from following equation: 188 

1 1 2 2Φ xx xy yy

U U U U

x y x y
  

    
    

    
 

(12) 

This variation in viscosity introduces a relativity factor in the problem. Here, the non-189 

dimensionalization is performed regarding to the value of the viscosity in the upper 190 

plate. Therefore, a new Rayleigh number should be defined, due to the variation of 191 

viscosity:   0expnewRa Ra T T   . 192 

In our numerical calculations, the values of the parameters are related to the values in 193 

the mantle (Pla et al., 2010), Table 1 shows the values of parameters used in 194 

calculations. Due to the nature of mantle convection the Pr number and viscosity are 195 

assumed to be in order of 10
26

 and 
2010 , respectively. Also, a Rayleigh number equal to 196 

227 is used for this simulation.  197 

Remember that the gravitational acceleration of the Earth is decreased by increasing 198 

the depth. Because of the large scale of geometry, the variation of gravitational 199 

acceleration with depth is considered in present study. For this purpose, we used the 200 

data of Bullen (1939) and fitted the following six order interpolation on them with 95% 201 

confidence:   202 

  6 5 4 3 20.118 0.602 1.006 0.6884 0.3708 0.167 9.846    yg y y y y y y  
(13) 
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where (1000 )y Km  is the depth from bottom plate. We used the above equation in CFD 203 

simulation of mantle convection which is the other innovative aspect of present study. 204 

  205 

3. NUMERICAL METHOD, BOUNDARY AND INITIAL CONDITIONS 206 

There are totally eight solution variable parameters in the discretized domains, 207 

comprising two velocities and three stress components, pressure, pressure correction 208 

and temperature. All of flow parameters are discretized using central differences, except 209 

for the convective terms which are approximated by the linear–upwind differencing 210 

scheme (LUDS) (Patankar and Spalding (1972)). This is the generalization of the well-211 

known up-wind differencing scheme (UDS), where the value of a convected variable at 212 

a cell face location is given by its value at the first upstream cell center. In the linear-213 

upwind differencing scheme, the value of that convected variable at the same cell face is 214 

given by a linear extrapolation based on the values of the variable at the two upstream 215 

cells. It is, in general, the second-order accurate, as compared with first-order accuracy 216 

of UDS, and thus, its use reduces the problem of numerical diffusion (Oliveira et al. 217 

(1998)). The Cartesian reference coordinate system is located in the bottom boundary 218 

and at left corner. Boundary conditions consist of two adiabatic walls in west and east 219 

and two isothermal walls at north and south. For all boundaries, a no-slip condition is 220 

imposed for the fluid velocity. The rest situation is used as the initial condition. The 221 

used geometry and boundary conditions in this study are shown in Fig. 1. The geometry 222 

has a rectangular shape with an aspect ratio of 2. Boundary conditions consist of two 223 

isolated walls with zero gradient stress tensor components. The boundary conditions for 224 
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bottom and top plates are assumed a constant temperature so that the bottom plate has a 225 

higher temperature. These boundaries have a zero gradient velocity and tensor 226 

components, too. 227 

 228 

4. RESULTS AND DISCUSSION 229 

4.1. Grid Study and Validation 230 

We perform some CFD simulations with different number of grids to study the 231 

dependency of solution to mesh size. The meshes included quadratic elements. Table 2 232 

lists the mean errors between average Nusselt number on horizontal lines on different 233 

meshes and the 200 100  reference mesh. These errors are calculated for a viscoelastic 234 

fluid with Giesekus model at 227Ra  . The numerical error decreases with increasing 235 

the number of meshes as the mean error beings less than 0.08%  for mesh size greater 236 

than140 70 . This finding indicates that a grid-independent solution is obtained when 237 

using a mesh sizes larger than 140 70 . To ensure that the obtained solution is grid-238 

independent, a mesh size of 150 75  was used for the CFD simulations. 239 

As a benchmark comparison, simulations for free convection of Newtonian fluid 240 

flow between two parallel plate have been carried out at 
4 510 , 1  0 ,   100Ra Pr  . This 241 

problem was studied previously by Khezar et al. (2012) and Turan et al. (2011) for 242 

power-law fluid. The diagrams of average Nusselt number obtained from the present 243 

study and work of Khezar et al. (2012) at n=1 are shown in Fig. 2a. As an additional 244 

benchmark comparison, the distribution of dimensionless vertical velocity reported by 245 
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Turan et al. (2011) and the results obtained from the present study are illustrated in Fig. 246 

2b at 
4 610 10 ,   100Ra Pr    and 1n  . It is understood that in both cases, the results 247 

of present CFD simulation have a suitable agreement with results of Khezar et al. 248 

(2012) and Turan et al. (2011) with maximum error less than 3%. 249 

 250 

4.2. CFD Simulation of Mantle Convection Using Giesekus Model 251 

In this section, the effects of various parameters on flow regime of mantle convection 252 

are studied. As observed in Eq. (4), the variation of parameters   and   could affect 253 

the stress tensor field and this change in stresses will affect the velocity field. 254 

According to the study of Pla et al. (2010), it could be inferred that with increasing 255 

the exponential rate  , the circulations created by natural convection are moved toward 256 

the bottom plate. It is resulted from the fact that by increasing  , the viscosity near 257 

bottom plate would be decreased and the flow tends to circulate in this place. Also, 258 

another parameter that effect on the flow and the circulation intensity is G . The results 259 

of variations of these parameters will discuss in next sections. Remember that the 260 

dependency of rheological and thermal properties and density on temperature and 261 

pressure are considered and the variation of gravitational acceleration with depth of 262 

Earth is modeled in following results.  263 

 264 
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Fig. 3 demonstrates a comparison between vertical velocity profiles of our 265 

nonlinear viscoelastic model, power-law model (reported by Christensen (1983), 266 

Cserepes (1982), Sherburn (2011), Van der Berg (1995), Yoshida (2012)) at n=3, and 267 

the Newtonian model used by Pla et al. (2010). This Figure is presented in order to 268 

compare the results of current CFD simulation (based on the non-linear Giesekus 269 

consecutive equation, thermal-pressure dependence properties and depth dependence 270 

gravitational acceleration) with previous simpler simulations that used Newtonian and 271 

power-law models. As it is obvious, the velocity near upper plate for Giesekus model is 272 

less than from the results of Pla et al. (2010) and power-law model. That is due to the 273 

elastic force and higher value of viscosity at lower shear rates. Also, the maximum 274 

vertical velocity of our simulation is smaller and the location of maximum vertical 275 

velocity occurred upper than the location reported by Pla et al. (2010). That is because 276 

of the viscoelastic portion of fluid behavior that we will discuss it in next sections. As it 277 

is shown in Fig. 3, the depth in which the maximum velocity occurs is approximately 278 

similar for power-law model and Giesekus constitutive equation. That is because of the 279 

effect of apparent viscosity dependency to velocity gradient. Also noting to the velocity 280 

profile, it is seen that all of models have the same results in vicinity of lower plate. But 281 

for upper plate, the Figure demonstrates that the slope of vertical velocity for the 282 

Giesekus model is smaller than the others. According to the Figure, there is a resistance 283 

against the upward flow for Giesekus profile that two other models cannot predict it. 284 

Actually, that is due to the consideration of elastic portion of fluid flow in our numerical 285 

simulation. This finding indicated that the velocity and stress field have an obvious 286 

deviation from Newtonian and generalized Newtonian behaviors by considering a non-287 

Solid Earth Discuss., doi:10.5194/se-2016-12, 2016
Manuscript under review for journal Solid Earth
Published: 15 February 2016
c© Author(s) 2016. CC-BY 3.0 License.



18 
 

linear constitutive equation for mantle convection. In next sections, the effects of 288 

material and thermal modules on mantle convection are studied based on the CFD 289 

simulations that obtained using Giesekus non-linear model.  290 

 291 

4.2.1. Investigation of the Effect of Exponential Rate of Viscosity (Γ ) 292 

We studied firstly the effect of increasing   from zero to 310  on mantle convection. 293 

This parameter represents the dependency of viscosity on temperature variation. Fig. 4 294 

shows the streamlines for different values of Γ  at 0.98G  , 0.2   and 295 

326.04 10En   . It is evident from Fig.4 that the circulations in the mantle physically 296 

depend on  . As the exponential rate (Γ ) is increased, the maximum velocity in 297 

geometry is enhanced and the circulations moved downward. According to Eq. (6), the 298 

dependency of viscosity of mantle on temperature is more increased by enhancing the 299 

exponential rate (Γ ). In other words, by increasing the exponential rate (Γ ), the 300 

viscosity is more decreased near to the lower plate (high temperature region) and the 301 

fluency of mantle is intensified. Therefore, it is expected that the velocity of mantle 302 

convection is enhanced by increasing the exponential rate. The results show that an 303 

increment of 1.6% in vertical velocities by increasing the exponential rate from zero to 304 

510 , 17.1% growth by increasing Γ  to 410  and with enhancing the   from zero to 305 

310  it growths up to 4.32 times. The CFD simulations indicated that the effect of 306 

exponential rate on maximum value of velocity is nonlinear. The contours of axial 307 

normal stress and shear stress are shown in Fig. 5. As it is obvious, the exponential rate 308 
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has a significant influence on magnitude of stress fields that is increased by enhancing 309 

the exponential rate. As an example, for 4Γ 10 , the value of dimensionless stress 310 

component xx  becomes 1.1 times greater than the one with exponential rate of zero. 311 

Also, with increasing the value of Γ  by 310 , it growths up to 2.56 times. Actually, with 312 

increasing the exponential rate, the dependency of viscosity on temperature is 313 

intensified and then the right hand side of Eq. (4) increases so this change leads to 314 

enhancement of stress field. Fig. 6 displays the location of maximum vertical velocity at 315 

Y / 0.5H   versus the exponential rate. The dimensionless depth of points Y, where the 316 

maximum of velocity is occurred, is 0.5Y   for 0   and by increasing the 317 

exponential rate to 510 , this depth will be decreased to 2.4%. The amount of this 318 

reduction for 410   and 310   is 10% and 24%, respectively. We obtained the 319 

following relation for location of maximum vertical velocity with 95% confidence: 320 

 

2

310.58Γ 0.4933Y     
 

The above correlation is used in plotting the Fig. 6. The downward movement of 321 

location of maximum vertical velocity with increasing exponential rate could be 322 

attributed to shifting the center of vortices which is shown previously in Fig. 5.  323 

In Fig. 7, the temperature distribution in mantle is shown. According to this Figure, 324 

heat transfer regime is almost conduction. Nevertheless, closer looking to the 325 

temperature distribution, some convection behavior could be observed. The temperature 326 

profile on a horizontal line is shown in Fig. 8. As it is expected, the temperature profile 327 

shown in Fig. 8 has a minimum value at mid of horizontal line and the maximum values 328 
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are located at left and right hand sides of numerical domain. Fig. 9 shows the stress 329 

magnitude on upper plate for different value of Γ  at 0.2   and 131.5 10  s   . As 330 

expected from Eq. (6), the viscosity will be more depended on temperature by 331 

increasing the value of Γ . Thus, the viscosity will be decreased with increasing Γ  and 332 

in the other hand; the velocity field will be intensified that the participation of these 333 

factors determines stresses in vicinity of upper plate. According to Fig. 9, in the case of 334 

5Γ 10 , with increasing 
G  from 0.5 to 0.8, the maximum stress magnitude is 335 

increased by 32.2% and by enhancing 
G  to 0.9 and 0.98, the growing percentages are 336 

32.2% and 101%, respectively. As mentioned before, there are several factors that affect 337 

the flow pattern such as Γ  and 
G . The result of this participation clearly is seen here, 338 

when the viscosity ratio vary from 0.9 to 0.98, it seems that in this interval, the effect of 339 

these two parameters (Γ  and 
G ) is neutralized each other and lead to having the same 340 

stress magnitude at these points.  341 

 342 

4.2.2. Investigation of the Effect of Viscosity Ratio ( Gβ  ) 343 

The parameter 
G  is a criterion portion for demonstration of domination of viscoelastic 344 

towards pure Newtonian portions of fluid behavior. In fact, when this parameter is much 345 

closer to unity, the viscoelastic behavior is dominated and when 
G  is close to zero, the 346 

pure Newtonian behavior of fluid is dominated. As it is shown in Fig. 10, by increasing 347 

G  from 0.8 to 0.98, the stress magnitude on upper plate has been increased, but the 348 
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vertical velocity near to the both lower and upper plates is decreased. This effect is 349 

related to the higher value of viscosity of viscoelastic potion in comparison of pure 350 

Newtonian behavior that causes increasing the total viscosity and decreasing the fluidity 351 

of model (refer to Eq. 3). This finding is approved by the data of maximum magnitude 352 

of shear stress near to the upper plate which is reported in Table 3. According to the 353 

Table, max  is increased by enhancing the viscosity ratio which is caused from 354 

increasing the fluid viscosity.  355 

Fig. 11 shows variation of normalized vertical velocity on a vertical line for 356 

different values of exponential rates (Γ ) and viscosity ratios (
G ). As it is understood 357 

from Fig. 11, in constant viscosity ratio, when Γ  is increased, the velocities are 358 

increasing very strongly, but as viscosity ratio changes, a contrast occurred between 359 

these two factors (as it is shown in Fig. 11c, the velocities are increased and in Fig. 11b, 360 

the vertical velocities are decreased). In other word, at 0.9G  , the effect of exponential 361 

rate is prevailed but with increasing the viscosity ratio to 0.98G  , the effect of 362 

viscosity ratio is dominated.  363 

 364 

4.2.3. Investigation of the Effect of Elasticity 365 

The elastic number is generally used to study the elastic effect on the flow of 366 

viscoelastic fluids. According to the Eq. 9, the elastic number is defined as the ratio of 367 

Weissenberg to Reynolds numbers. This dimensionless group is independent from 368 

kinematic of flow field and it is only depended on material modules for a given 369 
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geometry. Here, the elastic number is proportional with relaxation time of model and it 370 

is increased by enhancing the material elasticity. Figs. 12 and 13 display velocity and 371 

stress magnitude for different values of elastic number. Table 4 presents the value of 372 

maximum normalized vertical velocity for different elastic numbers and various 373 

viscosity ratios. According to the Fig. 12, the velocity of mantle convection is decreased 374 

by increasing the elastic number from 266.04 10  to 326.04 10  and it is increased by 375 

increasing the elastic number to 326.04 10 . The first decreasing in the normalized 376 

velocity could be attributed to increasing the normal stresses resulted from fluid 377 

elasticity. In the other word, some main portion of energy of convection is stored as the 378 

elastic normal stresses. In larger elastic numbers, the effective viscosity of flow is 379 

decreased which is related to the nature of nonlinear dependency of viscometric 380 

function of Giesekus constitutive equation on relaxation time at large enough elastic 381 

numbers (Bird et al. (1987)). 382 

 383 

4.2.4. Investigation of Mobility Factor Effect 384 

Fig. 14 shows the effects of mobility factor on the vertical velocity for different values 385 

of viscosity ratio.  Due to the non-linear nature of our viscoelastic model and the high 386 

elastic number, anticipation of effects of all factors is not easy and it is strongly affected 387 

by the variation of other factors. Regarding to high viscosity of mantle, the effect of 388 

mobility factor must be minimal, as it is shown in Fig. 14. The effects of mobility factor 389 

are only important near both upper and lower plate. In the other word, the main 390 

variation of velocity distributions with changing the mobility factor occurs in the upper 391 
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and lower plate. For 0.05  , the magnitudes of normalized velocities in vicinity of 392 

upper plate are increasing by enhancing 
G  from 0.5 to 0.9 between 20% to 50% and 393 

with increasing the viscosity ratio to 0.98, the velocities are decreasing about 70%. In 394 

contrast, for the lower plate, this variation is reversing, i.e., the velocities with 395 

increasing 
G  to 0.9 are decreasing. The same effect is available for 0.2  . Also, the 396 

variation of velocity near upper plate for 0.1   and 0.3 are similar. In these cases, with 397 

increasing 
G  from 0.5 to 0.9, the velocities in this place are decreasing and with 398 

increasing the viscosity ratio to 0.98, the magnitudes of velocities are ascending. Table 399 

5 presents the maximum normalized vertical velocity for various values of elastic 400 

numbers and different viscosity ratios.  401 

 402 

4.2.5. Investigation of the Effect of Rayleigh Number  403 

If we want to study natural convection and investigate the strength of convection, the 404 

Rayleigh number is a suitable criterion for this aim. Since mantle convection has a low 405 

Rayleigh number, thus the temperature field should have a conductive form (see Fig 7). 406 

According to Eq. (10), the Rayleigh number is a function of temperature, so it is varying 407 

all over the geometry because the viscosity is temperature dependent and is varying. 408 

Fig.15 presents the streamlines for different Rayleigh numbers. According to Fig. 15, by 409 

increasing the Rayleigh number, the velocity in geometry is increased and the 410 

circulations move downward and get more intense. By increasing Ra from 22.7 to 227, 411 

the velocity magnitude will vary with order of 10
1
. If we rise the Rayleigh number to 412 
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1135, this growth in velocities is in order of 10
2
 and when we set the Ra as 2270, the 413 

velocity magnitude will be in order of 310 . It is important to remember that the 414 

temperature difference between the hot and cold plates is the potential of mantle 415 

convection so the velocity is increased by increasing the Rayleigh number. Fig. 16 416 

shows the stress contours for various Rayleigh number. The Figure shows that with 417 

increasing the Rayleigh number, the maximum stress in geometry has enhanced 418 

significantly. This effect is related to increasing the shear rate of flow field which is 419 

intensifying the stress field. According to the Figure, the Giesekus model predicts a 420 

large shear stress in comparison of normal stress components which is related to the 421 

shear flow behavior of mantle convection which has a suitable agreement with previous 422 

reports that used other constitutive equations (Ghias and Jarvis (2008), Severin and 423 

Herwig (1999), Pla et al. (2009), Hirayama and Takaki (1993), Fröhlich et al. (1992), 424 

Tomohiko et al. (2004)).  425 

 426 

5. CONCLUSIONS 427 

Current study deals with a numerical simulation of mantle convection using a 428 

temperature dependent nonlinear viscoelastic constitutive equation. The effect of 429 

temperature on rheological properties consisting of the viscosity, normal stress 430 

differences and relaxation time of mantle are modeled using appropriate equations of 431 

state which were the main innovative aspects of current study. The variation of 432 

gravitational acceleration with depth of Earth and the effect of the work of stress field 433 
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(viscous dissipation) on mantle convection were simulated for the first time. According 434 

to the literature, the previous studies were restricted to the linear and quasi-linear 435 

viscoelastic constitutive equations and the nonlinearity nature of mantle convection was 436 

modeled using simple nonlinear constitutive equations just for apparent viscosity such 437 

as the power-law and cross models. The Giesekus nonlinear viscoelastic model was 438 

used as the constitutive equation in present study. This high order nonlinear model was 439 

used because of large-scale creeping viscoelastic flow of mantle convection in space 440 

and time. Using Giesekus constitutive equation, we present a more accurate solution for 441 

this problem because of taking into account of shear-dependent nonlinear viscometric 442 

functions, the effects of third invariant of shear rate tensor on stress field, and effects of 443 

material elasticity for large deformations of mantle. 444 

It is important to remember that the non-linear constitutive equations such as the 445 

Giesekus equation could able to model the material elasticity and relaxation spectra 446 

much better than linear models for large deformations of flow field. We also showed 447 

that the result of this model has an obvious deviation from pure Newtonian and power-448 

law solutions that reported in literatures.  449 

The effect of temperature on viscosity of the mantle is studied, firstly. The results 450 

show that increasing of exponential viscosity rate led to the enhancing the maximum 451 

velocity and making the circulation moving downward so that with increasing  from 452 

zero to 10
-3

, an increase of 4.32 times in vertical velocity and an increase of 2.56 times 453 

in xx  were obtained. A formula have presented for the position of maximum vertical 454 

velocity as a function of  . The effect of viscosity ratio is also investigated on the 455 
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mantle convection. These results not only show how stress magnitude on upper plate 456 

increases by enhancing the viscosity ratio from 0.8 to 0.98, but also prove decreasing of 457 

the vertical velocity near to the both lower and upper plates. These effects are related to 458 

the higher value of viscosity of viscoelastic Gesikus model relative to the pure viscous 459 

portion (Newtonian behavior) which causes decreasing of fluidity of mantle convection. 460 

In constant viscosity ratio, when 
G  increases, the velocities are rising very strongly, 461 

but as viscosity ratio changes, a competition occurred between these two factors. In 462 

other word, at 0.9G  , the effect of exponential rate is prevailed but with increasing 463 

the viscosity ratio up to 0.98G   the effect of viscosity ratio is dominated and the 464 

velocities are descended. The variation of Elastic number shows the nature of nonlinear 465 

dependency of viscometric function of Giesekus constitutive equations on relaxation 466 

time at large enough elastic numbers. Present study indicates decreasing of effective 467 

viscosity flow for larger elastic numbers. The obtained results show how main 468 

variations of velocity distributions with changing of mobility factor occur in the upper 469 

and lower plates. Here, the effect of Rayleigh number on mantle convection is also 470 

investigated and characterized that with increasing the Rayleigh number, the maximum 471 

stress in geometry has enhanced significantly. This effect is related to increasing the 472 

shear rate of flow field which is intensifying the stress field. 473 

Future works could be focused on the effect of mantle convection on plate motions, 474 

effect of chemical reactions occurring in the mantle, and plumes growing by 475 

considering a non-linear viscoelastic consecutive equation.  476 

 477 
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 573 

 574 

Table 1. Parameters related to mantle convection (Pla et al. (2010)). 575 

Parameter Value 

[ ]H m  62.9 10  

2 1[ ]m s 
 77 10  

1[ ]T K   510  

2 1[ ]m s 
 203.22 10  

Pr  2610  

Ra  
3.48 T  

 576 

 577 

 578 

 579 

 580 

 581 

 582 
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 584 

 585 

Table 2. Percentage of mean absolute errors between average velocity obtained from 

different meshes and the 200 100  reference mesh. 

Ra  x yN N  

 100 50   120 60   140 70   150 75   170 85  

227 0.1858 0.1283 0.0812 0.0602 0.0314 

 586 

 587 

 588 

 589 

 590 

 591 

 592 

 593 

 594 

 595 
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 597 

 598 

Table 3. Maximum magnitude of stress on top plate for different values of G  and Γ  

 ( 0.2   and 326.04 10En   ). 

 G  
max  

 Γ 0   5Γ 10   4Γ 10   3Γ 10  

0.98 36.8 37 40.5 133.75 

0.9 30.6 33.75 32.6 112.5 

0.8 29.5 29.8 32.6 112.5 

0.5 18.25 18.4 20.1 73 

 599 

 600 

 601 

 602 

 603 

 604 

 605 

 606 
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 607 

 608 

Table 4. Maximum magnitude of vertical velocity on a vertical line at x=1 for different 

values of G  and En  ( 0.2   and 5Γ 10 ). 

 

G  

maxV  

 
26

6.04

10

En 


  

28

6.04

10

En 


  

30

6.04

10

En 


  

32

6.04

10

En 


  

34

6.04

10

En 
  

36

6.04

10

En 


 

0.50 0.0400 0.0410 0.0390 0.0392 0.0396 0.0395 

0.80 0.0387 0.0400 0.0395 0.0439 0.0361 0.0400 

0.90 0.0427 0.0380 0.0390 0.0385 0.0380 0.0410 

0.98 0.0359 0.0423 0.0420 0.0341 0.0410 0.0373 

 609 

 610 

 611 

 612 

 613 

 614 

 615 
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 616 

 617 

Table 5. Maximum magnitude of vertical velocity on a vertical line at x=1 for different 

values of G  and   ( 326.04 10En    and 5Γ 10 ) 

 G  

 maxV  

 0.05    0.10    0.20    0.30    0.40    0.50   

0.50 0.0395 0.0397 0.0397 0.0398 0.0397 0.0395 

0.80 0.0398 0.0356 0.0439 0.0407 0.0407 0.0385 

0.90 0.0376 0.0390 0.0385 0.0380 0.0417 0.0424 

0.98 0.0385 0.0383 0.0341 0.0385 0.0415 0.0373 

 618 

 619 

 620 

 621 

Solid Earth Discuss., doi:10.5194/se-2016-12, 2016
Manuscript under review for journal Solid Earth
Published: 15 February 2016
c© Author(s) 2016. CC-BY 3.0 License.


