

Reviewer#3

Reviewer#3 is thanked for his/her constructive comments. Please find below our responses, along with our suggested amendments to the manuscript. We hope these revisions will address all of Reviewer#3's concerns.

RC3.1. I consider the title of the paper adequate except the use of agroforests. I suggest the word "ecosystems" instead.

The title was revised to: "Development of a composite soil degradation assessment index for cocoa agro-ecosystems in southwest Nigeria" to accommodate this insightful suggestion.

RC3.2 The abstract is well written. The introduction of the paper is comprehensive highlighting the major aspects of soil degradation such as processes, factors and consequences. Furthermore, it shows the familiarity of the authors to the issues of soil degradation under tree crops in the tropical areas with up-to-date literature.

RC3.3 The study area is clearly indicated

RC3.4 Methodology, in terms of sampling, data collection, data analytical procedures and statistical analyses, is quite adequate. Data collection, analytical procedures and statistical analyses, is quite adequate

RC3.5 The presentation of results and discussion is academic and of value and relevance to future management of cocoa ecosystems and similar plant systems especially in the tropical areas

RC3.6 General Line 67: *Theobroma cacao* should be in italics.

Agreed. *Theobroma cacao* was changed to *Theobroma cacao* throughout.

RC3.7 Line 143: *Phytophthora* Sp. should be in italics.

Agreed. We apologize for this oversight. *Phytophthora* Sp. was changed to *Phytophthora* Sp. throughout.

RC3.8 Line 150: YCP, MCP and SCP to be defined.

YCP, MCP and SCP were defined earlier in lines 102 and 103.

RC3.10 9 Lines 159, 160 and 161: The word quadrant should be quadrat.

Thank you for this correction. The word quadrant has been changed to quadrat.

RC3.11 Line 180: fig.2 should be Fig.2

Corrected.

RC3.12 Line 369: Result...indicate to be Result...indicates
Corrected.

Additional references

- (a) Fisher, K.A., Yarwood, S.A. & James, B.R. (2017). Soil urease activity and bacterial ureC gene copy numbers: Effect of pH. *Geoderma*. 285:1-8.
- (b) Isaac, M. E. Timmer, V. R. and Quashie-Sam, S. J. Shade tree effects in an 8-year-old cocoa agroforestry system: Biomass and nutrient diagnosis of *Theobroma cacao* by vector analysis; *Nutrient Cycling in Agroecosystems*, 78, 155-165, 2007
- (c) Ogeh, J S and Ipinmoroti, R R,: Micronutrient assessment of cocoa , kola , cashew and coffee plantations for sustainable production at Uhonmora , Edo State , Nigeria, *Journal of Tropical Soils*, 18, 2; 1-5, 2013.
- (d) Parras-Alcántara I., and Lozano-García, B.: Conventional tillage versus organic farming in relation to soil organic carbon stock in olive groves in Mediterranean rangelands (southern Spain), *Solid Earth*, 5, 299–311, 2014
- (e) Rousseau, G.X., Deheuvels O., Rodriguez Arias I., and Somarriba E.: Indicating soil quality in cacao-based agroforestry systems and old-growth forests: The potential of soil macrofaunal assemblage, *Ecological Indicators* 23, 535-543, 2012
- (f) Snoeck, D Afrifa, A AK, Ofori-Frimpong, Boateng, E, Abekoe, M K,: Mapping Fertilizer Recommendations for Cocoa Production in Ghana Using Soil Diagnostic and GIS Tools *West African Journal of Applied Ecology*, 17, 97-107, 2010
- (g) Vanlauwe, B., Descheemaeker, K., Giller K. E., Huisng, J., Merckx, R., Nziguheba1, G., Wendt, J., and Zingore, S.: Integrated soil fertility management in sub-Saharan Africa: unravelling local adaptation *SOIL*, 1, 491–508, 2015
- (h) Van Vliet, J. A., and Giller, K. E.: Mineral nutrition of cocoa: A review, *Advances in Agronomy*, 141, 185-270, 2017

Development of a composite soil degradation assessment index for cocoa agro-ecosystemsforestsundertropical conditionsofin southwest Nigeria

Sunday Adenrele Adeniyi ^{1,2}, Willem Petrus de Clercq³, and Adriaan van Niekerk^{1,4}

1. Department of Geography and Environmental Studies, Stellenbosch University, South Africa
2. Department of Geography, Osun State University, Nigeria
3. Department of Soil Science, Stellenbosch University, South Africa
4. School of Plant Biology, University of Western Australia, Australia

Correspondence to: Sunday Adenrele Adeniyi (releadegeography@yahoo.com)

Abstract. Cocoa agro-ecosystems forestry is a major land-use type in the tropical rainforest belt of West Africa, reportedly associated with several ecological changes, including soil degradation. This study aims to develop a composite soil degradation assessment index (CSDI) for determining the degradation level of cocoa soils under smallholder agro-ecosystems forests of southwest Nigeria. Plots where natural forests have been converted to cocoa agro-ecosystems plantations of ages 1-10 years, 11-40 years and 41-80 years, respectively representing young cocoa plantations (YCP), mature cocoa plantations (MCP) and senescent cocoa plantations (SCP) were identified to represent the biological cycle of the cocoa tree. Soil samples were collected at a depth of 0 to -20cm in each plot and analysed in terms of their physical, chemical and biological properties. Factor analysis of soil data revealed four major interacting soil degradation processes, decline in soil nutrient, loss of soil organic matter, increase in soil acidity and the breakdown of soil textural characteristics over time. These processes were represented by eight soil properties (extractable zinc, silt, soil organic matter (SOM), cation exchange capacity (CEC), available phosphorus, total porosity, pH, and clay). These soil properties were subjected to forward stepwise discriminant analysis (STEPDA), and the result showed that four soil properties (extractable zinc; cation exchange capacity; SOM soil organic matter and clay) have the highest power to separate the studied soils into YCP, MCP and SCP. In this way, we hope to have controlled sufficiently for sufficiently eliminated-redundancy in the final selection of soil degradation indicators. Based on these four soil parameters, CSDI was developed and used to classify selected cocoa soils into three (3) different classes of degradation. The results revealed that 65% of the selected cocoa farms are moderately degraded, while 18% have a high degradation status. Finally, The numerical value of the CSDI as an objective index of soil degradation under cocoa agro-ecosystemsforests was statistically validated. The results of this study reveal that soil management should promote activities that help to increase organic matter and reduce Zn deficiency over the cocoa growth cycle. Finally, the newly developed CSDI can provide an early warning of soil degradation processes and help farmers and extension officers to implement rehabilitation practices on degraded cocoa soils.

Keywords: Smallholder cocoa agro-ecosystems, forests, age-sequenced plantations, minimum data set, degradation indicators, composite soil degradation assessment index, tropical conditions, southwest Nigeria.

38 **Introduction**

39 Healthy soil is vital to successful agriculture and global food security (Virto et al., 2014; Lal, 2015). Soil performs
40 several ecosystem functions such as carbon sequestration and regulation (Novara et al., 2011; Brevik et al., 2015);
41 buffering and filtering of pollutants (Keesstra et al., 2012); climate control through the regulation of C and N
42 fluxes (Brevik et al., 2015); and home for biodiversity (Schultecoo et al., 2015). Nonetheless, misuse of soils,
43 arising from intensive agricultural production and unsustainable land use practices have resulted in soil
44 degradation, particularly in developing countries with poor infrastructure and financial capacity to manage natural
45 resources (Tesfahunegn, 2016). [Studies have reported](#) [Statistics show](#) that 500 million hectare (Mha) of land in
46 the tropics (Lal, 2015), and more than 3500 million hectare (Mha) of global land area (Karlen and Rice, 2015)
47 are currently affected by soil degradation, with serious implications for food security and the likelihood of
48 malnutrition, ethnic conflict, and civil unrest (Lal, 2009). In response to these problems, an increasing interest in
49 soil degradation has been observed among researchers and policy makers (Scherr, 1999; Adesodun et al., 2008;
50 Baumhardt et al., 2015; Hueso-González et al., 2014; Lal, 2015; Tesfahunegn, 2016) [Krasilnikov et al., 2016](#).

51 Soil degradation is a measurable loss or reduction of the current or potential capability of soils to produce
52 plant materials of desired quantity and quality (Chen et al., 2002). Many scientists viewed soil degradation as a
53 decline in soil quality (Lal, 2001; Adesodun et al., 2008; Beniston et al., 2015), and soil quality (SQ) as the
54 capacity of a soil to function within ecosystem and land-use boundaries (Doran and Zeiss, 2000; Karlen et al.,
55 2001; Doran, 2002; Yemefack, 2005). Unfortunately, when soil degradation reaches an advance stage, soil quality
56 restoration is practically difficult (Lal and Cummings, 1979). Therefore, good knowledge of SQ is important for
57 developing appropriate anti-degradation measures (Tesfahunegn et al., 2011). Since, soil degradation and soil
58 quality are interlinked through many processes (Lal, 2015), scholars have suggested that soil degradation can be
59 assessed using soil quality assessment strategies (Tesfahunegn, 2014; Pulido et al., 2017). But, an essential step
60 when assessing soil degradation based on soil quality assessment strategies is the need for careful selection of
61 appropriate indicators relevant to degradation processes under investigation.

62 Degradation of soils is complex, often the consequence of many interacting processes (Prager et al.,
63 2011). However, major processes include accelerated erosion (Cerda et al., 2009; Bravo-Espinosa et al., 2014;
64 [Rodrigo Comino et al., 2016 a&b; Xu et al., 2016](#)); deforestation (De la paix et al., 2013); poor pasture
65 management (De Souza Braz et al., 2013); decline in soil structure (Cerda 2000); salinization associated with
66 inadequate irrigation management (Prager et al., 2011; Ganjegunte et al., 2014); alkalization and sodification
67 (Condom et al., 1999); depletion of soil organic matter (SOM) ([Jordan et al., 2010](#); Novara et al., 2011); reduction
68 in the activity of soil microorganisms (Lal, 2009); ~~and~~ soil compaction (~~Pulido et al., 2017~~) [; and unsustainable](#)
69 [agricultural practices \(Krasilnikov et al., 2016\)](#). For sustainable soil management in agricultural regions, it is
70 essential for farmers and scientists to identify major dominant degradation processes and their indicators.

71 Cocoa (*Theobroma cacao* L.) [agroecosystem](#) is a major agricultural landuse type in the tropical
72 rainforest belt of West Africa (Tondoh et al., 2015), covering an estimated total area of about 6 million-ha in Côte
73 d'Ivoire, Ghana, Nigeria and Cameroon (Sonwa et al., 2004). Unfortunately, cocoa landscapes are often
74 associated with a range of ecological changes including deforestation, biodiversity loss, destruction of soil flora
75 and fauna from pesticide usage, and accelerated soil degradation (Critchley and Bruijnzeel, 1996; Salami, 1998;[;](#)

76 Salami, 2001; Rice and Greenberg, 2000; Asare, 2005; Ntiamoah and Afrane, 2008; Mbile et al., 2009; Adeoye
77 and Ayeni, 2011; Jagoret et al., 2012; Akinyemi, 2013; Schoneveld, 2014; Sonwa et al., 2014; Tondoh et al.,
78 2015). Till date, soil degradation assessments at plot scale in regions undergoing farmland conversion to cocoa
79 agro-ecosystemsforests are limited.

80 Worldwide, agricultural practices have been regarded as one of the major causes of soil degradation
81 (Kessler and Stroosnijder 2006, Rahmaniour et al., 2014, Karlen and Rice, 2015; Zornoza et al., 2008) It is
82 widely acknowledged that agricultural practices or land use changes in agricultural regions alter key soil
83 properties such as soil organic matter (SOM), total nitrogen (TN), CEC eation exchange capacity (CEC),
84 exchangeable cations, water-holding capacity (WHC), bulk density (BD), and total porosity (TP) (Lemenih et
85 al., 2005; Awiti et al., 2008; Trabaquini 2015; Dawoe et al., 2010, 2014; Ameyan and Ogidiolu, 1989; Hadgu et
86 al., 2009; Thomaz and Luiz, 2012; Zhao et al., 2014; Tesfahunegn, 2014). Although, many of these soil properties
87 are regularly used as indicators of soil degradation (Trabaquini, 2015), the use of individual soil characteristics
88 often provides an incomplete representation of soil degradation (De la Rosa, 2005; Puglisi et al., 2005, 2006;
89 María José Sione et al., 2017). To overcome this shortcoming, an integration of soil properties into numeric
90 indices has been proposed (Doran and Parkin, 1994; Leirós et al., 1999; Bastida et al., 2006, Gómez et al., 2009;
91 Puglisi et al., 2005, 2006; Sharma et al., 2008; Xu et al. 2016; Pulido et al., 2017).

92 Multivariate statistical techniques such as- principal component analysis (PCA), canonical discriminant
93 analysis (CDA), cluster analysis (CA), partial least squares (PLS), principal component regression (PCR),
94 ordinary least squares regression (OLS) and multiple linear regression analysis (MLRA) have been applied to
95 assess soil quality (Parras-Alcántara and Lozano-García, 2014; Xu et al., 2016; María José Sione et al., 2017;
96 Biswas et al., 2017; Renzi et al., 2017; Khaledian et al., 2017). These statistical techniques can assist researchers
97 to select important soil quality indicators that are useful to develop an overall soil quality or degradation index
98 for effective land resource management and planning (Khaledian et al., 2017). Regardless of the techniques used,
99 the selection of a minimum data set (MDS) of soil quality and degradation parameters has been widely supported
100 in the literature (Biswas et al., 2017). For instance, María José Sione et al. (2017) used a soil quality index to
101 evaluate the impact of rice production systems that use irrigation with groundwater on soil degradation at the field
102 scale in Argentina. They selected six soil quality indicators including aggregate stability, water percolation, SOM,
103 exchangeable sodium content (ESC), pH, and electrical conductivity in saturated paste extract. Their results
104 showed that the use of soil quality indicators can provide an early assessment of soil degradation processes and
105 help land managers to implement soil conservation practices (María José Sione et al., 2017). In South Asia,
106 Biswas et al., (2017) combined PCA and multiple regression analysis to create MDS of physical, chemical and
107 biological indicators which were integrated to develop a unified soil quality index (SQI) for rice-rice cropping
108 systems. Thus, Sánchez-Navarro et al., (2015) developed an overall SQI soil quality index suitable for monitoring
109 soil degradation in semi-arid Mediterranean ecosystems.(Pulido et al., (2017) developed a soil degradation index
110 for rangelands of Extremadura SW Southwest Spain based on six indicators, namely CEC eation exchange
111 capacity (CEC), available potassium, SOM soil organic matter (SOM), water content at field capacity, soil depth
112 and the thickness of the Ah-horizon. Another example is Gomez et al., (2009) who developed three soil
113 degradation indexes (obtained through a PCA principal component analysis (PCA)) of the soils under organic

114 olive farms in southern Spain. One of the indices used only three soil properties, namely organic C, water stable
115 macroaggregates, and extractable P. According to these authors, this index has had the highest potential to be
116 used as a relatively easy and inexpensive screening test of soil degradation in organic olive farms in southern
117 Spain. Very little till date, less attention has been given to the development of numeric indices for monitoring
118 soil degradation under crop-specific landuse management systems in tropical countries. Whereas, such indices
119 can serve as the basis for integrating and interpreting several soil measurements, thereby indicating whether a
120 particular landuse management system (e.g agro-ecosystems) is sustainable or not.

121 Therefore, the aim of the present study is to develop a CSDI composite soil degradation assessment
122 index (CSDI) for shaded cocoa agroforests agro-ecosystems under tropical conditions in southwest Nigeria. This
123 area is currently suffering from soil degradation arising from low input cocoa agro-ecosystems, cocoa-based
124 agroforests under a "slash and burn" farming system. Soil conditions under age-sequenced peasant cocoa
125 agroforests agro-ecosystems are investigated. The cocoa agro-ecosystem agroforest ages of 1-10 years, 11-40
126 years and 41-80 years – hereafter referred to as young cocoa plantation (YCP), mature cocoa plantation (MCP)
127 and senescent cocoa plantation (SCP) respectively – were targeted as this is in line with the biological cycle of
128 the cocoa tree (Isaac et al., 2005; Jagoret et al., 2011, 2012; Saj et al., 2013). The goals specific objectives are to:
129 (i) to identify the most important soil degradation processes associated with shaded cocoa agroforestry in the
130 study area; (ii) to select a MDS minimum data set (MDS) of soil degradation indicators using multivariate
131 statistical techniques; (iii) to integrate the MDS into a CSDI; and (iv) to statistically validate CSDI and evaluate
132 to what extent the CSDI can be used as a tool by researchers, farmers, agricultural extension officers and
133 government agencies involved in rehabilitating degraded cocoa soils in southwest Nigeria (and similar
134 environments).

150 2.0 Materials and Methods

151 2.1 Study area

152 This study was carried out in the Ife region, southwest Nigeria between 6°50' 27''N – 7° 38'33''N and 4° 21'33''E –
153 4° 45'55''E (Figure 1), where most of the soils have been under cocoa plantations for more than eighty years
154 (Abiodun, 1971; Berry, 1974). The climate is humid tropical with a mean daily minimum temperature of 25°C
155 and a mean maximum temperature of 33°C. The mean annual rainfall ranges between 1400 mm and 1600 mm,
156 with a long- wet season lasting from April to October, and a relatively short dry season that lasts from November
157 to March. The natural vegetation is dominated by humid tropical rainforests of the moist evergreen type,
158 characterized by multiple canopies and lianas. The area is underlain by rocks from the Basement complex of Pre-
159 Cambrian Age, which are exposed as outcrops in several areas. The soils are mainly Alfisols, classified as
160 Kanhaplic Rhodustalf in the USDA Soil Taxonomy (Soil Survey Staff, 2006 2014), or Luvisols (WRBSR, 2014)
161 (World Soil Reference, 2006) and locally known as Egbeda Association (Smyth and & Montgomery, 1962). The
162 area of study lies within the Egbeda soil series, characterized by sandy loam soils, with increasing clay content
163 in the lower horizons. The soils are slightly acidic to neutral in reaction (pH 6.5). With the exception of the areas
164 set aside as forest reserves, the natural vegetation has been replaced with perennial and annual crops. Cocoa

165 farmers agroforests in the region were traditionally established using “slash and burn” approach (Tondoh et al.
166 2015; Ngorbogba et al. 2015); their cocoa farms by planting cocoa trees where primary or secondary forests are
167 selectively cleared. Cocoa trees are then burned and cocoa is planted along with understory food crops and a range
168 of forest or fruit tree species (Isaac et al., 2005; Jagoret et al., 2017). Although some farmers have recently
169 shifted towards full-sun cocoa plantations agroforestry, particularly in areas where natural forest is scarce (Oke
170 and Chokor, 2009), ecological changes associated with such land use transitions are yet to attract research
171 attention. Cocoa trees in agro-ecosystems are regularly sprayed with chemicals to combat black pod disease
172 (*Phytophthora* sp.), but farmers depend entirely on the natural fertility of the soil without application of inorganic
173 fertilizers or organic manure.

174 2.2 Site selection

175 A reconnaissance survey of The study area was visited in March and April 2013 to identify suitable cocoa agro-
176 ecosystems and locate candidate sample sites. The region was carried out between March and April 2013.
177 Considering soil variability and heterogeneity, five settlements of cocoa farmers -(Mefoworade, Omifunfun, Aye
178 Coker, Aba Oyinbo and Kajola-Onikanga) in the southern Ife area were randomly selected as study sites. In each
179 site, a total of eight (8) cocoa agro-ecosystems stands of different ages (since site clearance) were randomly
180 selected and assigned to three cocoa plantation age categories: YCP (10 plots), MCP (15 plots) and SCP (15
181 plots). For the purpose of this study, cocoa agroecosystems are conceived as areas where cocoa trees co-exist with
182 other tree species on the same plot of land. Some tree species identified within selected cocoa agro-ecosystems
183 include kola (*Cola acuminata* and *Cola nitida*) and oil palm (*Elaeis guineensis*). These trees are of economic
184 importance to the farmers. They also provide shade to the cocoa trees. The selected cocoa agro-ecosystems are
185 between 2 and 3 ha in size, with a tree spacing of 3 x 3 meters as recommended by the good agricultural practices
186 (GAP) for sustainable cocoa production in West Africa sub-region. All sampled plots were restricted to upper
187 slope positions of a catena where the slope angle did not exceed 2° to ensure that catenary variation in soil
188 properties between the farms studied was minimal. Local farmers served as the main source of information on the
189 age distribution of the cocoa plantations and their permission was also sought to use their farms as research plots.
190 Each research plot was visited at least once several times before soil sampling. During the field visits no evidence
191 of substantial soil erosion was observed on any of the plots, as the floors of the selected cocoa agro-ecosystems
192 are covered with leaves and plant litter. and notes were made on the physical characteristics of the fields, their
193 approximate sizes, presence of other crops and neighbouring trees, levels of farm maintenance and evidence of
194 soil erosion.

195

196 2.3 Soil sample collection for laboratory analysis

197 Soil sampling was conducted in May 2013. A quadrant quadrat measuring 1000 m² was demarcated at the centre
198 of each cocoa agro-ecosystem plantation. Each quadrant quadrat was subdivided into ten 100 m² sub-quadrants
199 sub-quadrats and serially labelled. Soil samples were drawn at the centre of the even-numbered sub-quadrants
200 sub-quadrats, resulting in a total of five soil samples per plot. Measurements were deliberately restricted to a
201 depth of the top 0 to -20 cm soils for the following reasons: (i) most significant changes in soil characteristics in
202 any vegetation (especially in a tropical environment) are confined to the topmost layer of the soil profile (Aweto,

1981; Aweto and Iyanda, 2003; [Tondoh et al., 2015](#)); (ii) these depths cover the main distribution of roots and
204 soil nutrient stocks of cocoa plantations (Hartemink, 2005), [and is therefore usually used in soil surveys for](#)
205 [fertilizer recommendations in West Africa cocoa-based agro-ecosystem](#) (Snoeck et al., 2010); (iii) several studies
206 (e.g. Isaac et al, 2007) demonstrated that cacao trees tend to have shallow root activity within the topsoil (0-20
207 cm); (iv) biological processes, such as earthworm activities are restricted to 0-10 cm layer of tropical soils; -(v)
208 to facilitate future replication of the methodology as routine soil samples are usually [taken from kept at the topsoil](#)
209 [top soil](#) layer (plough layer); [and \(vi\) the soil degradation index developed in this study is expected to be used by](#)
210 [farmers and extension officers for rehabilitating degraded cocoa plantations in the study area and similar](#)
211 [environments, by confining the samples to the topsoil the likelihood of adoption by the end users is greater.](#)

212 Two categories of soil samples were taken at each sampling point to promote a detailed investigation of
213 soil-property differences. The first was an undisturbed sample using a [BD bulk density](#) ring measuring 5 x 5 cm
214 (diameter and height), whereas the other sample was taken using a soil auger. The first sample was used to
215 determine [BD bulk density \(BD\)](#), [WHC water holding capacity \(WHC\)](#) and saturated hydraulic conductivity
216 (SHC), and the second sample was used to determine the other studied soil properties. The soil samples were
217 stored in labelled polythene bags and taken to the laboratory for analysis. The composite soil samples aggregated
218 from the five samples collected in each plot were air-dried for two weeks, hand ground in a ceramic mortar,
219 passed through a 2 mm sieve and analysed for chemical properties and particle-size distribution. Twenty-two soil
220 properties were selected for analysis. The analytical methods are summarized in Table 1, [and average values \(in](#)
221 [range\) of all the soil degradation parameters considered are provided in Table S1\(supplementary material\).](#)

222 **2.4 Statistical analyses and index development**

223 Based on extensive review of literature on soil quality and degradation assessment indexing, CSDI was developed
224 using a range of statistical techniques and procedures. The methodology consisted of eight steps as shown
225 schematically in [fig. Figure 2](#). Each of these steps is outlined below.

226 Step 1) involved selection of relevant indicators of soil degradation. Here, we selected twenty-two (22) analytical
227 soil properties widely acknowledged as soil quality and degradation indicators.

228 In Step 2) a factor analysis was performed to group all the soil data into statistical factors with [PCA principle](#)
229 [component analysis \(PCA\)](#) as the method of factor extraction (Tesfahunegn et al., 2011). Factors were subjected
230 to varimax rotation with Kaiser normalization in order to generate factor patterns that load highly significant
231 variables into one factor, thereby producing a matrix with a simple structure that is easy to interpret (Ameyan and
232 Ogidiolu, 1989; de Lima et al., 2008; Momtaz et al., 2009). Factors with eigenvalues of less than one (1) were
233 ignored. The order in which the factors were interpreted was determined by the magnitude of their eigenvalues.
234 Under each factor, soil properties regarded as highly important were retained. These were defined as those that
235 had a loading value within 10% of the highest loading within an individual factor (Andrews et al., 2002). Soil
236 properties that are widely acknowledged as good indicators of soil quality, but with factor loading scores ≤ 0.70 ,
237 were also retained.

238 Soil physical, chemical and biological properties that have been suggested as important soil quality indicators
239 include soil organic carbon, available nutrients and particle size, [BD bulk density](#), pH, soil aggregate stability,
240 [CEC cation exchange capacity](#) and available water content (Doran and Parkin, 1994; Larson and Pierce, 1994;

241 Karlen et al., 1997; Zornoza et al., 2007; García-Ruiz et al., 2008; Qi et al., 2009; Marzaioli et al., 2010; Fernandes
242 et al., 2011; Lima et al., 2013; Merrill et al., 2013; Rousseau et al., 2013; Singh et al., 2014; Zornoza et al. 2015).
243 In cases where more than one soil property was found to be of high importance under a single PC, Pearson's
244 correlation coefficients were used to determine if any of these variables are redundant (Qi et al., 2009). When two
245 highly important variables were found to be strongly correlated ($r^2 > \pm 0.70$; $p < 0.05$), the one with the highest
246 factor loading (absolute value) was retained (Andrews and Carroll, 2001; Andrews et al., 2002; Montecchia et
247 al., 2011).

248 In Step 3) of the CSDI development, the highly important soil properties under each factor were subjected to
249 stepwise discriminant analysis (STEPDA) to select key soil properties (variables). In principle, stepwise
250 discriminant analysis generates two or more linear combinations of the discriminating variables, often referred to
251 as discriminant functions (Tesfahunegn et al., 2011). Whereas, the discriminant functions can be represented as:

$$D_i = d_{i1}Z_1 + d_{i2}Z_2 + \dots + d_{ip}Z_p. \quad (\text{eq 1})$$

252 where D_i is the score on discriminant function i , the d 's are weighting coefficients, and the Z 's are the standardized
253 values of the p discriminating variables used in the analysis (Awiti et al., 2008). In this study, STEPDA was used
254 to select variables with the highest power to discriminate between the treatments. The validity of the result was
255 evaluated using the Wilk's Lambda value. This value is an index of the discriminating power ranging between 0
256 and 1 (the lower the value, the higher the discriminating power). At each step of STEPDA, the variable that
257 minimizes the overall Wilks' Lambda was selected. One of the advantages of STEPDA is that the final model
258 contains the variables that are considered useful. The result of this process was an MDS consisting of the most
259 important variables for quantifying soil degradation in the selected plantations.

260 Step 4) involved the normalisation of the MDS variables to numerical scores between 0 and 1 using a linear
261 scoring function (Masto et al., 2008; Ngo-mbogba et al., 2015). The "more is better" scoring curve was used to
262 determine the linear score of soil variables:

$$S_L = \left(\frac{X - l}{h - l} \right) \quad (\text{eq 2})$$

263 where, S_L is the linear score (between 0 and 1) of a soil variable, x is the soil variable value, l is the minimum
264 value and h is the maximum value of soil variable.

265 During Step 5), the normalized MDS values were transformed into degradation scores (D) as described by Gómez
266 et al., (2009) and obtained from:

$$D = 1 - SL \quad (\text{eq 3})$$

267 where D is the degradation score and SL is the normalized MDS value. Here, a score of 1 signifies the highest
268 possible soil degradation score and 0 represents complete absence of degradation for a particular soil property.

269 In Step 6) the degradation scores (D) were integrated into an index using the weighted additive method:

$$\text{CSDI} = \sum_{i=1}^n (W_i D_i) \quad (\text{eq 4})$$

270 where CSDI represents the composite soil degradation index, W_i is the weight of variable i , D_i represents the
271 degradation scores of the parameters in the MDS for each of the cocoa farms, and n is the number of indicators

277 in the MDS. W_i in eq. [4] was derived by the percentage of the total variance explained by the factor in which
278 the soil property had the highest load divided by the total variance explained by all the factors with eigenvalues
279 ≥ 1 (Masto et al., 2008; Armenise et al., 2013).

280 In Step 7) CSDI values were categorized into number of desired (3) classes of degradation using their Z -score
281 value as obtained by:

282
$$Z = \frac{x - \mu}{\sigma} \quad (\text{eq 5})$$

283 where, Z is the z-score, x is the CSDI value of each plot, μ is the mean value and σ is the standard deviation. In
284 principle, z-scores explain the standard deviations of input values from the mean (Hinton, 1999). For this purpose,
285 a Z values between -1 and 1 were regarded as having a *moderate* degradation status, while values of more than 1
286 was regarded as *high* and less than -1 as *low* (see results section for further explanation on this categorization).

287 In Step 8) the CSDI classification was statistically validated using a canonical discriminant analysis (CDA).

288 (CANDA). **CDA** Canonical discriminant analysis is a multivariate statistical technique whose objective is to
289 discriminate among pre-specified groups of sampling entities. The technique involves deriving linear
290 combinations of two or more discriminating variables (canonical variates) that will best discriminate among the

291 *a priori* defined groups. In this study, we used the “leave-one-out” cross validation procedure of **CDA CANDA**.

292 Using this procedure, a given observation is deleted (excluded) and the remaining observations are used to
293 compute a canonical discriminant function that is used to assign the observation into a degradation class with the
294 highest probability. For instance, a sample with a probability of 0.003, 0.993 and 0.004 belonging to low,
295 moderate and high degradation class respectively was assigned to medium (see supplementary Table S2 for
296 detail). This procedure is repeated for all observations and the result is a “hit ratio” or confusion matrix, which

297 indicates the proportions of observations that are correctly classified. Additionally, **CDA CANDA** was used to
298 confirm the significance of the explanatory variables that discriminate between the three soil degradation classes.

299 In this study, the threshold (T) for the selection of variables correlating significantly with the canonical
300 discriminant functions was taken as $T = 0.2/\sqrt{e}$ (eigenvalue) as suggested by Hadgu et al., (2009). Scoring and
301 indexing were performed using Microsoft Excel 2013. All statistical analyses were performed using XLSTAT
302 version 2016 (Addinsoft New York, USA).

303

304 3.0 Results and discussion

305 3.1 Identification of soil degradation processes using factor analysis

306 Table 2 shows the results of the factor analysis and reveals that the first five PCs had eigenvalues > 1 as illustrated
307 by the scree test (Figure 3). Each PC explained 5% or more of the variation of the dataset. The first five
308 PCs jointly accounted for more than 77% of the total variance in the data set. In addition, it explained 68% of the
309 variance in available phosphorus, 84% in SOM, 76% in calcium, 65% in pH, 87% in clay, 90% in TN total
310 nitrogen, 77% in silt, 83% in magnesium, 83% in sand, and 58% in BD bulk density. The high communalities
311 among the soil properties suggests that variability in selected soil properties is well accounted for by the extracted
312 factors (Tesfahunegn et al., 2011).

313 Extractable zinc, extractable manganese and silt had high positive loadings on PC1 (0.875, 0.857, and
314 0.838 respectively). Because a significant correlation exists between extractable zinc and extractable manganese

315 (r=0.834, p<0.001; Table 3), the latter variable was excluded. For ease of association, PC1 was labelled *soil*
316 *micronutrient degradation factor*. PC2 was loaded highly by CEC (0.884) and exchangeable calcium (0.871), but
317 given that the correlation analysis showed a strong relationship (r=0.870, p<0.001; Table 3) between CEC and
318 exchangeable calcium, the latter was also excluded. SOM, with a relatively high factor loading (0.711), was
319 retained owing to its relevance in monitoring soil quality degradation (Brejda et al., 2000; Sharma et al., 2009;
320 Masto et al., 2008; 2009; Zornoza et al., 2015). Because the correlation coefficient between SOM and CEC was
321 relatively low (r=0.578; p<0.001; Table 3), both were retained as highly important variables. Given that SOM
322 was significantly correlated with several of the eliminated soil properties in the group, the second component
323 factor was labelled the *soil organic matter degradation factor*.

324 The third component factor (PC3) was highly loaded on available phosphorus (0.810) and TP total
325 porosity (0.801). Because the correlation coefficient between the two variables is relatively low (r=0.578;
326 p<0.001; Table 3), both properties were retained. The group of variables associated with the third factor was
327 termed the *available phosphorus degradation factor*. The fourth factor was labelled as *soil acidity degradation*
328 *factor* because it was highly loaded on pH (0.791) only. Similarly, the fifth factor was labelled *soil textural*
329 *degradation factor* because it was dominated by clay (0.812).

330 So far, the PCA result suggests that soil degradation in the study region is mainly linked to four
331 degradation processes, namely 1) decline in soil nutrient, 2) loss of soil organic matter, 3) increase in soil acidity
332 and 4) the breakdown of soil textural characteristics arising from differences in clay eluviation (Figure 4). Figure
333 4.5 summarises the results of the interrelationship among the 22 soil properties as a correlation circle. The figure
334 shows that the first two PCA axes jointly accounted for 40.08 % of the total variance, with the first axis
335 (eigenvalue = 8.545) representing mainly micronutrients with extractable manganese, zinc, silt and TN total
336 nitrogen in contrast to bulk density, copper and sand. The second axis (eigenvalue = 3.96) is represented by CEC
337 and exchangeable calcium as opposed to the pH content of the soils. Figure 6 Figure 5 represents the percentage
338 contributions of the investigated soil properties in selected cocoa plantation chronosequence (CPC).

339

340 3.2 Selecting a MDS minimum dataset (MDS) of soil degradation indicators

341 The PCA results presented thus far suggest that eight indicators (extractable zinc, silt, SOM, CEC,
342 available phosphorus, TP total porosity, pH, and clay) can be used to assess soil degradation in the study area.
343 However, the collection and analysis of such a large number of indicators is not viable for monitoring programmes
344 covering extensive areas and the identification of key soil degradation indicators will be very useful. The eight
345 soil properties were consequently subjected to forward STEPDA stepwise discriminant analysis (STEPDA) to
346 determine which of them are most important for soil degradation monitoring in the study area. Figure 7 Figure 6
347 and Table 4 show that STEPDA separated CPC eeeoa plantation chronosequence (CPC) into three groups (YCP,
348 MCP and SCP), based on the explanatory variables (8 soil parameters) included in the model. The first
349 discriminant function separates the MCP from YCP and SCP, while the second discriminant function separates
350 YCP from MCP and SCP. The overall Wilks' lambda test (lambda=0.047; p<0.001) confirms that the means of
351 the CPC eeeoa plantation chronosequence (CPC) were significantly different for the two discriminant functions.

352 Table 4 shows that the first discriminant function which accounts for more than 80% of the variance in
353 soil properties is positively correlated with organic matter (0.952; $p<0.001$), extractable zinc (0.806; $p<0.001$),
354 CEC (0.611; $p<0.001$), thus it is labelled *soil organic matter and macro nutrients* dimension. This result suggests
355 that the plots in MCP have higher concentrations of soil nutrients than YCP and SCP. Similarly, the second
356 discriminant function, which accounts for more than 19% of the variance in soil properties is positively correlated
357 with CEC (0.622; $p<0.001$) and SOM (0.096), but negatively correlated with silt (0.520), clay (0.139), porosity
358 (0.309), zinc (0.527), and available phosphorus (0.035). This suggests that the YCP cases have poor physical soil
359 properties compared to MCP and SCP. This function is labelled *soil physical and micronutrient dimension*.

360 The result of STEPDA confirmed that only four soil properties are significant in discriminating between
361 the CPC cocoa plantation chronosequence (CPC). These soil properties and their partial regression (R^2) are SOM
362 ($R^2=0.797$, $p<0.001$; Wilks' Lambda=0.203), extractable zinc ($R^2=0.548$, $p<0.001$; Wilks' Lambda=0.259), CEC
363 ($R^2=0.379$, $p<0.001$; Wilks' Lambda=0.432) and clay ($R^2=0.169$, $p<0.05$; Wilks' Lambda=0.866). The relative
364 importance of these variables, as indicated by the length of their eigenvectors, is (in decreasing order) SOM,
365 extractable zinc, CEC, and clay. Consequently, these four soil properties constitute a MDS minimum dataset
366 (MDS) of soil degradation indicators in our study area.

367 3.3 MDS normalization, transformation and integration into CSDI

368 The four selected indicators of the MDS were normalized and transformed into degradation scores (D) as
369 described in Section 2.4. Weights were assigned to each degradation score using the result of the factor analysis
370 (Table 2). As an example, the procedure to calculate the weighting factor for extractable zinc was as follows: the
371 individual percentage variance for PC1 (23.70), was divided by 77.15%, the cumulative percentage of variation
372 explained by all the retained PCs (Table 3), to yield the weight of 0.31. After assigning different weights to each
373 parameter, they were integrated into a CSDI. This index is the sum of the normalised and weighted values of each
374 parameter. CSDI was computed for each cocoa agro-ecosystemsforests as:

$$375 \text{CSDI} = 0.21 (\text{DSOM}) + 0.31 (\text{DZn}) + 0.21 (\text{DCEC}) + 0.17 (\text{DClay}) \quad (\text{eq 6})$$

376 Ordering the variables included in the equation as a function of the loading of the coefficient gave:

$$377 \text{CSDI} = 0.31 (\text{DZn}) + 0.21 (\text{DSOM}) + 0.21 (\text{DCEC}) + 0.17 (\text{DClay}) \quad (\text{eq 7})$$

378 where, CSDI is the composite soil degradation index and DZn, DSOM, DCEC and DClay are the degradation
379 scores of extractable zinc, organic matter, CEC and clay respectively.

380 One significant result from this study is that Zn was identified as the most important degradation indicator
381 and play a key role in maintaining soil quality in the study area. Zn deficiency has been widely reported in
382 agricultural soils in Africa (Vanlauwe et al., 2015), and cocoa is highly sensitive to Zn deficiency (Ogeh and
383 Ipinmoroti, 2013; Van Vliet and Giller, 2017). Our results suggest that there is a Zn deficiency in the study area
384 with potential effect on the growth and yield of cocoa over time.

385

386 3.4 Classification into degradation classes

387 Table 5 shows the soil degradation classification of CSDI scores by solving equation 5. In our case, μ and σ were
388 calculated as 0.289 and 0.094 respectively, resulting in CSDI values of 0.195 when $Z = -1$ and 0.383 when $Z = 1$.

389 Consequently, the CSDI classes are *Low* (<0.0195) and *High* (>0.383). CSDI values between 0.195 and 0.383
390 were regarded as *Moderate*. The interpretations of these classes is shown in [table 6](#) [Table 5](#) (modified from Gómez
391 et al., 2009). Most (65%) of the selected cocoa [agro-ecosystems](#) farms (65%) are moderately degraded, while 18%
392 have a high degradation status ([Table 5](#)). A significant difference was observed in the degradation status of YCP,
393 MCP and SCP (ANOVA test, $F_{2,39}=57.59$; $P<0.001$; [Table not shown](#)). [Fig. 8](#) [Figure 7](#) shows that 30% of YCP,
394 53.33% of MCP, and 100% of SCP are moderately degraded. However, 70% of YCP is highly degraded and 47%
395 of MCP show no sign of degradation. This implies that MCP plots are less degraded compared to YCP and SCP.
396 This result is consistent with other studies in West Africa. For instance, Dawoe et al., (2014) reported that, in
397 humid lowland Ghana, soil properties and quality parameters of a ferric lixisol improved under cocoa plantations
398 that have been operating for 15-30 years and were better than that of [YCP young cocoa plantations](#) with a three-
399 year production age. Similar results were obtained by Tondoh et al., (2015), who reported that, in Côte d'Ivoire,
400 there was a steady degradation of soil quality over time in full-sun cocoa stands planted on ferralsols for 10 years,
401 but the degradation value was less pronounced in 20-year-old plantations. Comparing our results with those of
402 Dawoe et al., (2014) and Tondoh et al., (2015) highlights the effects of poor and unsustainable land management
403 practices on soil degradation in peasant cocoa [agro-ecosystems](#) [agroforests](#) in West Africa. Traditionally, cocoa
404 plots are cultivated with food crops in the first three to five years of development until the canopies have formed.
405 Given that smallholder cacao farmers in the study area do not use chemical fertilizers to improve soil quality,
406 degradation of the physical, chemical and biological properties of cocoa soils are imminent during this phase of
407 plantation establishment.

408

409 3.5 Statistical validation of CSDI

410 A [CDA canonical discriminant analysis \(CANDA\)](#) was used to validate the CSDI classification. The
411 values of the four soil properties (organic matter, extractable zinc, CEC and clay) were used as data input. [Fig. 9](#)
412 [Figure 8](#) and Table 6 show that the three soil degradation classes (*low*, *moderate* and *high*) were significantly
413 separated on the first and second canonical functions (Wilks Lambda=0.156, $F_{6,68}=13.04$, $p<0.0001$). Of the total
414 variance, 93.46% was accounted for by the first canonical function, which was significant at $p<0.001$. The second
415 canonical function accounted for 6.54% of the total variance and was significant at $P<0.005$. Extractable zinc,
416 organic matter and [CEC cation exchange capacity](#) significantly contributed to the distinction among soil
417 degradation classes and were positively associated with the first canonical function (Table 6) . Clay also
418 contributed significantly to the distinction among soil degradation classes, but was positively associated with the
419 second canonical function (Table 6).

420 [CANDA CDA](#) classification results in Table 7 reveals that the CSDI model performs reasonable well,
421 showing a low level of misclassification. The table shows that for the original grouped cases, the [CDA CANDA](#)
422 correctly classified 6 of the 7 (85.7%) low, 23 of 26 (88.4%) moderate and all of the high cases. The implication
423 of the [CANDA CDA](#) accuracy assessment is that the proposed classes of soil degradation (*Low*, *Moderate* and
424 *High*) were significantly separated by the four canonical variables included in the model and that the model can
425 consequently be used with a high degree of confidence. Result from this study indicates that the CSDI can
426 effectively be used to monitor and evaluate the degree of soil (Alfisols) degradation under cocoa plantation in the

study area (and similar environments). Nevertheless, the results of this study confirm that composite indicators, which are intended as tools for assessing the state and evolution of complex and multifaceted environmental phenomena (OECD,2008), are generally easier to interpret than an array of individual indicators (Renzi et al., 2017). Therefore, the CSDI developed in this study represents a promising methodology for assessing soil degradation in cocoa agro-ecosystem. More work is needed to apply and evaluate the index on different soil types from different cocoa producing regions or and countries.

4.0 Conclusions

In this study, we developed a composite soil degradation index (CDSI) to cost-effectively assess the status of soil degradation under cocoa agro-ecosystems agroforests. Of the initial twenty-two (22) soil properties evaluated, multivariate statistical analyses revealed that four (4) soil properties (extractable zinc, SOM, CEC and clay) were the main indicators of soil degradation. This MDS minimum dataset (MDS) of soil degradation indicators was used to produce a CSDI, which was classified into three classes of degradation. According to this classification 65% of the selected cocoa farms are moderately degraded, 17.5% have a high degradation status and 17.5% show no sign of degradation. This classification corresponded well with a CANDA classification performed on the same dataset.

The findings suggest that the selection of a small set of relevant indicators will be more cost-efficient and less time consuming than using a large number of soil properties that may be irrelevant to the processes of degradation. They also suggest that soil degradation under cocoa agro-ecosystemagroforests (in this region at least) is mainly attributed to a decline in soil nutrient, loss of soil organic matter, increase in soil acidity and the breakdown of soil textural characteristics over time. This study shows that both physical and chemical soil properties are degraded under long-term cocoa agro-ecosystems production. The implications are serious for sustainability of cocoa agro-ecosystem production sustainability on acidic Alfisols. While, degradation of physical components of these soils portends serious risks to crop yields, degradation. Degradation of chemical soil properties, coupled with non-application of fertilizers, will likely exacerbate soil degradation processes. To prevent smallholder cocoa production from becoming unsustainable in the long-term, it is critical to advise farmers of the need for the application of artificial (organic) fertilizers, particularly under YCP young cocoa plantations. Obviously, Although the application of organic fertilizers will substantially improve the soil structure and nutrient conditions of cocoa soils (Van Vliet and Giller, 2017) but the poor transportation system in rural areas and prohibitive costs associated with artificial fertilizer application in cocoa groves remains a challenge to both farmers and government. Therefore, alternative fertilizers in term of organic residues, with potential of increasing organic matter has been proposed in recent times (Van Vliet & Giller, 2017). Studies have reported that addition of organic plant residues to crop soils helps to improve soil structure (Jordan et al.2010). In addition, animal manures can be added to cocoa soils, but the potential effect on cocoa yield is yet to be reported in the literature. Although this study sets a basis for soil quality monitoring, more work is needed to improve our knowledge of changes in soil quality/health under cocoa agro-ecosystem of different ages. Hopefully this will lead to much-needed evidence-based recommendations for rehabilitation of degraded cocoa soils in West Africa.

465 **5.0 Acknowledgement**

466 Financial support provided by the TETfund, administrated by the Osun State University Research Committee, is
 467 gratefully acknowledged. A special word of gratitude is owing to Dr Kayode Are, soil physicist at the Institute of
 468 Agricultural Training, Obafemi Awolowo University, for his assistance during fieldwork. The efforts of the
 469 technical and laboratory staff of Soil and Land Resource Management, Obafemi Awolowo University, Ile-Ife,
 470 Nigeria are sincerely acknowledged. We are also grateful to the chiefs of the various villages for their support
 471 during the interviews and the forty cocoa farmers for their permission to carry out this study on their farms.

472

473

474 Supplementary data associated with this article are also provided

475

476

477 **6.0 References**

478

479 Abiodun, J.: Service centres and consumer behaviour within the Nigerian Cocoa Area, *Geografiska Annaler series*
 480 *B, Human Geography*, 53(2),78–93, 1971.

481

482 Adejuwon, J.O., and Jeje, L.K.: Land element of the environmental system of Ife area. *Occasional Publication*,
 Department of Geography, University of Ife, 1975.

483

484 Adejuwon, J.O., and Ekanade, O.: A comparison of soil properties under different landuse types in a part of the
 Nigerian cocoa belt, *Catena*, 15, 319–331, 1988.

485

486 Adeoye, N.O., and Ayeni. B.: Assessment of deforestation, biodiversity loss and the associated factors: case
 487 study of Ijesa-Ekiti region of Southwestern Nigeria, *GeoJournal*, 76, 229–243, doi:10.1007/s10708-009-
 9336-z, 2011.

488

489 Adesodun, J.K., Davidson, D.A., and Mbagwu, J.S.C.: Soil quality assessment of an oil-contaminated tropical
 490 Alfisol amended with organic wastes using image analysis of pore space, *Geoderma*, 146, 166–74,
 doi:10.1016/j.geoderma.2008.05.013, 2008.

491

492 Akinyemi, F.O. : An assessment of landuse change in the cocoa belt of south-west Nigeria, *Int. J. Remote Sens.*,
 34, 2858–2875, 2013.

493

494 Ameyan, O., and Ogidiolu, O.: Agricultural landuse and soil degradation in a part of Kwara State, Nigeria,
 Environmentalist, 9, 285–290, 1989.

495

496 Anderson, J.M., and Ingram, J.S.I. (eds): *Tropical soil biology and fertility: a handbook of methods*. CAB
 international. Wallingford, UK, 1993 .

497

498 Andrews, S.S., and Carroll, C.R.: Designing a soil quality assessment tool for sustainable agro-ecosystem
 management, *Ecol. Appl.*, 11,1573–1585, 2001.

499 Andrews, S.S., Karlen, D.L., and Mitchell, J.P.: A comparison of soil quality indexing methods for vegetable
500 production systems in Northern California, *Agr. Ecosyst Environ.*, 90, 25–45, doi:10.1016/S0167-
501 8809(01)00174-8, 2002.

502 Andrews, S.S., D.L. Karlen, and C.A. Cambardella.: The soil management assessment framework: a quantitative
503 soil quality evaluation method, *Soil Sci. Soc. Am. J.*, 68, 1945–1962, doi:10.2136/sssaj2004.1945, 2004.

504 Areola, O.: Extractable copper content of soils under peasant cocoa farms in Ibadan region, Nigeria, *Turrialba*,
505 35, 229–232, 1985.

506 Armenise, E., Redmile-Gordon, M.A., Stellacci, A.M., Ciccarese, A., and Rubino, P.: Developing a soil quality
507 index to compare soil fitness for agricultural use under different managements in the Mediterranean
508 environment, *Soil Till. Res.*, 130, 91–98, doi:10.1016/j.still.2013.02.013, 2013.

509 Asare, R.: Cocoa agroforests in West Africa: a look at activities on preferred trees in the farming systems.
510 Forestry and Landscape Working Paper, Arboretum Working Paper, No. 6. Forest and Landscape Denmark,
511 2005.

512 Aweto, A.O.: Organic matter in fallow soil in a part of Nigeria and its effects on soil properties, *J. Biogeogr.*, 8:
513 67–74, 1981.

514 Aweto, A.O., and Iyanda, A.O.: Effects of *Newbouldia Laevis* on soil subjected to shifting cultivation in the
515 Ibadan Area, Southwestern Nigeria, *Land Degrad. Dev.*, 56, 51–56, 2003.

516 Awiti, A.O., Walsh, M.G., Shepherd, K.D., and Kinyamario, J.: Soil condition classification using infrared
517 spectroscopy: A proposition for assessment of soil condition along a tropical forest-cropland
518 chronosequence, *Geoderma*, 143, 73-84, 2008.

519 Bastida, F, Luis M.J., and García C.: Microbiological degradation index of soils in a semiarid climate, *Soil Biol.*
520 *Biochem.*, 38: 3463-3473. doi:10.1016/j.soilbio.2006.06.001, 2006.

521 Baumhardt, R.L., Stewart, B.A., and Sainju, U.M.: North American soil degradation: processes, practices, and
522 mitigating strategies, *Sustainability* , 7: 2936-2960, 2015.

523 Beniston, J.W., Lal, R., and Mercer, K.L.: Assessing and managing soil quality for urban agriculture in a degraded
524 vacant lot soil, *Land Degrad. Dev.* doi:10.1002/ldr.2342, 2015.

525 Berry, S.: The concept of innovation and the history of cocoa farming in western Nigeria, *The Journal of African*
526 *History*, 15(1),83–95, 1974.

527 Biswas S., Hazra G.C., Purakayastha , T. J., Saha N., Mitran ,T., Roy S.S., Basak,N., Mandal B.:
528 Establishment of critical limits of indicators and indices of soil quality in rice-rice cropping systems under
529 different soil orders, *Geoderma* ,292, 34–48, 2017.

530 Bravo-Espinosa, M., Mendoza, M.E., Carlón-Allende, T., Medina. L., Sáenz-Reyes, J.T., and Páez, R.: Effects of
531 converting forest to avocado orchards on topsoil properties in the Trans-Mexican volcanic system, Mexico,
532 *Land Degrad. Dev.*, 25, 452-467, 2014.

533 Bray, R.H., and Kurtz, L.T.: Determination of total organic and available forms of phosphorus in soils, *Soil Sci.*,
534 59, 39-45, 1945.

537 Brejda, J. J., Karlen, D.L., Smith, J. L., and Allan, D.L.: Identification of regional soil quality factors and
538 indicators: II. Northern Mississippi Loess Hills and Palouse Prairie, *Soil Sci Soc Am J.*, 64, 2125–2135,
539 2000.

540 Bremner, J. M.: Total nitrogen, in: *Methods of Soil Analysis: Chemical Methods*, edited by: Sparks, D. L., Soil
541 Science Society of America, Madison, WI, 1085–1086, 1996

542

543 Brevik, E.C., Cerdà A., Mataix-Solera, J., Pereg, L., Quinton, J.N., Six, J., and Van Oost, K.: The interdisciplinary
544 nature of SOIL, *SOIL* 1: 117-129, doi:10.5194/soil-1-117-2015, 2015.

545 Cambardella, C.A., Gajda, A.M., Doran, J.W., Wienhold, B.J., and Kettler, T.A.: Estimation of particulate and
546 total organic matter by weight loss-on-ignition. In: Lal, R., Kimbe, J.M., Follet, R.F., and Stewart, B.A.
547 (eds), *Assessment methods for soil carbon*. Boca Raton (FL): Lewis Publishers. 349–359, 2001.

548 Condom, N., Kuper, M., Marlet, S., Valles, V., and Kijne, J.: Salinization, alkalinization and sodification in
549 punjab (pakistan): characterization of the geochemical and physical processes of degradation, *Land Degrad.
550 Dev.*, 10, 123-140, 1999.

551

552 Cerdà, A.: Aggregate stability against water forces under different climates on agriculture land and scrubland in
553 southern Bolivia, *Soil Till. Res.*, 57: 159-166, 2000.

554 Cerdà, A., Morera A.G., and Bodi, M.B.: Soil and water losses from new citrus orchards growing on sloped soils
555 in the western, *Earth surf. processes*, 34: 1822-1830, 2009.

556 Chen, J., Chen, J., Tan, M., Gong, Z.: Soil degradation : a global problem endangering sustainable development.
557 *Journal of Geographical Sciences*, 12, 2: 243–252, 2002.

558 Chude, V.O.: The nutritional status of cacao (*theobroma cacao L.*) with respect to boron and zinc in soils of south-
559 western Nigeria. PhD thesis, University of Ibadan, 1983.

560 Critchley, W., and Bruijnzeel, L.A.: Environmental impacts of converting moist tropical forest to agriculture and
561 plantations. UNESCO International Hydrological Programme accesed at
562 <http://unesdoc.unesco.org/images/0010/001096/109608eo.pdf>, 1996.

563 de Lima A.C.R., Hoogmoed W., and Brussaard, L.: Soil quality assessment in rice production systems:
564 establishing a minimum data set, *J. Environ. Qual.*, 37, 623-630, doi:10.2134/jeq2006.0280, 2008.

565 Dawoe, E.K., Isaac, M.E., and Quashie-Sam, J.: Litterfall and litter nutrient dynamics under cocoa ecosystems in
566 lowland humid Ghana, *Plant Soil*, 330: 55–64, 2010.

567 Dawoe, E. K., Quashie-Sam, J.S., and Oppong S.K.: Effect of landuse conversion from forest to cocoa agroforest
568 on soil characteristics and quality of a Ferric Lixisol in lowland humid Ghana, *Agroforestr Syst*, 88, 87–
569 99, doi:10.1007/s10457-013-9658-1, 2014.

570 De la paix, M. J., Lanhai, L., Xi, C., Ahmed, S., and Varenyam, A.: Soil degradation and altered flood risk as a
571 consequence of deforestation, *Land Degrad. Dev.*, 24, 478–485, 2013.

572 De la Rosa, D.: Soil quality evaluation and monitoring based on land evaluation, *Land Degrad. Dev.*, 16, 551–
573 559, 2005.

574 De Souza Braz A.M., Fernandes A.R., and Alleoni L.R.F.: Soil attributes after the conversion from forest to
575 pasture in Amazon, *Land Degrad. Dev.*, 24, 33-38, 2013.

576 Doran, J.W. and Parkin, T. B.: Defining and Assessing Soil Quality, in: Defining soil quality for a sustainable
577 environment, edited by: Doran, J.W., Coleman, D. F., Bezdicek, D. F., and Stewart, B. A., Soil Sci. Soc.
578 Am., Special Publication 35, Madison, WI, 3-21, 1994.

579 Driesien, I.H.O.: Patterns of land holding and land distribution in Ife Region, African, 41,42-53, 1971.

580 Ekanade, O.: The impact of cocoa cultivation on soil characteristics in southwestern Nigeria. unpublished PhD.
581 Thesis, Department of Geography, University of Ife, Ile-Ife, Nigeria, 1985.

582 Ekanade, O. Small-scale cocoa farmers and environmental change in the tropical rain forest regions south-western
583 Nigeria, *J. Environ. Manage.*, 25: 61-70. 1987.

584 Falade, J.A.: Soil bulk density moisture supply interaction in Amazon Cocoa, *West African Journal of Biological
585 and Applied Chemistry*, 18:15-22, 1975.

586 Faniran, A., and Areola, O. (eds): *Essentials of soil study (with special reference to tropical areas)*. Heineman,
587 London, 1978.

588 Fernandes, J.C., Gamero, C.A., Rodrigues, J.G.L., and Mirás-Avalos, J.M., Determination of the quality index of
589 a Paleudult under sunflower culture and different management systems. *Soil Till. Res.* 112, 167-174, 2011.

590

591 Fisher, K.A., Yarwood, S.A. and James, B.R.: *Soil urease activity and bacterial ureC gene copy numbers: Effect
592 of pH*, *Geoderma*, 285:1-8, 2017

593

594 Ganjegunte, G.K., Sheng Z., and Clark, J.A.: Soil salinity and sodicity appraisal by electromagnetic induction in
595 soils irrigated to grow cotton, *Land Degrad. Dev.*, 25: 228-235, doi: 10.1002/ldr.1162, 2014.

596 García-Ruiz, R., Ochoa, V., Hinojosa, M. B., and Carreira, J. A.: Suitability of enzyme activities for the
597 monitoring of soil quality improvement in organic agricultural systems, *Soil Biol. Biochem.*, 40, 2137-
598 2145, 2008.

599 Gee, G.W., and Or, D.: Particle-size analysis. In: *methods of soil analysis, Part 4. soil physical properties*,
600 *agronomy monograph 5*. Dane, J. H., and Topp, G. C. (eds.) SSSA, Madison, WI, 225-275, 2002.

601 Grossman, R.B., and Reinsch, T.G.: Bulk density and linear extensibility: core method. In: Dane, J.H., Topp, G.C.
602 (eds). *Methods of soil analysis. Part 4. Physical methods*. Madison (WI), Soil Science Society of America.
603 208-228, 2002.

604 Gómez, J.A., Sonia, Á., and María-Auxiliadora, S.: Development of a soil degradation assessment tool for organic
605 Olive groves in Southern Spain, *Catena*, 79, 9-17, 2009.

606 Hadgu, K.M., Rossing, W.A., Kooistra, L., and van Bruggen, A.H.: Spatial variation in biodiversity, soil
607 degradation and productivity in agricultural landscapes in the highlands of Tigray, Northern Ethiopia. *Food
608 Security* 1, 83-97, doi:10.1007/s12571-008-0008-5, 2009.

609 Hartemink, A.E. Nutrient stocks, nutrient cycling, and soil changes in cocoa ecosystems: A Review. *Adv.Agron.*,
610 86 : 227–253, 2005.

611 Hueso-González, P., Martínez-Murillo J.F., and Ruiz-Sinoga, J.D.: The impact of organic amendments on forest
612 soil properties under Mediterranean climatic conditions, *Land Degrad. Dev.*, doi: 10.1002/ldr.2296, 2014.

613 Hinton, P.R.: *Statistics explained: A guide for social science students*. NY: Routledge, 1999.

614 Isaac, M.E., Gordon, A.M., Thevathasan, N., Oppong, S.K., and Quashie-Sam, J.: Temporal changes in soil
615 carbon and nitrogen in West African multistrata agroforestry systems: a chronosequence of pools and fluxes,
616 *Agroforestry Systems*, 65, 23–31, 2005.

617 Isaac, M. E., Timmer, V. R., and Quashie-Sam, S. J.: Shade tree effects in an 8-year-old cocoa agroforestry system:
618 Biomass and nutrient diagnosis of *Theobroma cacao* by vector analysis; *Nutrient Cycling in Agro-
619 ecosystems*, 78, 155-165, 2007

620 Jagoret, P., Michel-Dounias, I., and Malézieux, E.: Long-term dynamics of cocoa agroforests: a case study in
621 central Cameroon, *Agroforestry Systems* 81: 267–278. DOI:10.1007/s10457-010-9368-x, 2011.

622 Jagoret, P., Michel-Dounias, I., Snoeck, D., Ngnogué, H.T., and Malézieux, E.: Afforestation of savannah with
623 cocoa agroforestry systems: a small-farmer innovation in central Cameroon, *Agroforestry Systems*, 86,
624 493–504. doi:10.1007/s10457-012-9513-9, 2012.

625 Jagoret, P., Snoeck, D., Bouambi, E., Ngnogue, T.H., Nyasse, S. and Saj, S.: Rehabilitation practices that shape
626 cocoa agroforestry systems in Central Cameroon : key management strategies for long-term exploitation.
627 *Agroforestry Systems*, DOI 10.1007/s10457-016-0055-4, 2017

628 Jordán, A., Zavala, L. M., Gil, J.: Effects of mulching on soil physical properties and runoff under semi-arid
629 conditions in southern Spain, *Catena*, 81; 77-85, doi:10.1016/j.catena.2010.01.007
630

631 Karlen, D.L., Mausbach, M.J., Doran, J.W., Cline, R.G., Harris, R.F., Schuman, G.E., Soil quality: a concept,
632 definition, and framework for evaluation. *Soil Sci. Soc. Am. J.* 61, 4–10, 1997.

633 Karlen, D.L. and Rice, C.W.: Soil degradation: Will humankind ever learn? *Sustainability* 7(9):12490–12501,
634 2015.

635 Keesstra, S.D., Geissen, V., Mosse, K., Piiranen, S., Scudiero, E., Leistra, M., and van Schaik, L.: Soil as a filter
636 for groundwater quality, *Current Opinions in Environmental Sustainability* 4, 507-516,2012

637 Kessler, C. A., and Stroosnijder, L.: Land degradation assessment by farmers in Bolivian mountain valleys, *Land
638 Degrad. Develop.* 17: 235–248 ,2006.

639 Khaledian, Y., Kiani, F., Ebrahimi, S., Brevik, E.C., and Aitkenhead-Peterson, J.: Assessment and monitoring
640 of soil degradation during land use change using multivariate analysis,. *Land Degradation &
641 Development*.28, 128-141, doi:10.1002/ldr.2541, 2017

642 Krasilnikov, P., Makarov, O., Alyabina, I., Nachtergael, F.: Assessing soil degradation in northern Eurasia,
643 *Geoderma Regional* 7, 1–10, 2016

644 Lal, R.: Soil degradation by erosion, *Land Degrad. Dev.*, 12 : 519–39, 2001.

645 Lal, R.: Soil degradation as a reason for inadequate human nutrition. *Food Security*, 1:45–57, 2009.

646

649
650 Lal, R.: Restoring soil quality to mitigate soil degradation. *Sustainability*, 7(5):5875–5895, 2015.

651 Lal R, and Cummings, D.J.: Clearing a tropical forest I. Effects on soil and micro-climate, *Field Crops Research*
652 2: 91–107, 1979.

653 Larson, W. E. and Pierce, F. J.: The dynamics of soil quality as a measure of sustainable management, in: *Defining*
654 *soil quality for a sustainable environment*, edited by: Doran, J.W., Coleman, D. C., Bezdicek, D. F., and
655 Stewart, B. A., SSSA-Special Publication 35, Soil Science Society of America, Madison, WI, 37–51, 1994

656 Leirós, M.C., Trasar-Cepeda, C., García-Fernández, F. and Gil-Sotres, F.: Defining the validity of a biochemical
657 index of soil quality. *Biology and Fertility of Soils*. 30(1-2):140–146, 1999.

658 Lemenih, M., Karlstun, E., and Olsson, M.: Soil organic matter dynamics after deforestation along a farm field
659 chronosequence in southern highlands of Ethiopia, *Agriculture, Ecosystems & Environment* 109: 9–19,
660 doi:10.1016/j.agee.2005.02.015, 2005.

661 Lima, A.C.R., Brussaard, L., Totola, M.R., Hoogmoed, W.B., and de Goede, R.G.M.: A functional evaluation of
662 three indicator sets for assessing soil quality. *Appl. Soil Ecol.* 64, 194–200, 2013.

663 Marzaioli, R., D'Ascoli, R., De Pascale, R. A., and Rutigliano, F. A.: Soil quality in a Mediterranean area of
664 Southern Italy as related to different land use types, *Appl. Soil Ecol.*, 44, 205–212, 2010

665 Masto, R.E., Chhonkar, P.K., Singh, D., and Patra, A.K.: Alternative soil quality indices for evaluating the effect
666 of intensive cropping, fertilisation and manuring for 31 years in the semi-arid soils of India. *Environmental*
667 *Monitoring and Assessment* 136: 419–435, 2008.

668 Masto, R.E., Chhonkar P.K., Singh, D., and Patra, A.K.: Changes in soil quality indicators under long-term
669 sewage irrigation in a sub-tropical environment, *Environmental Geology*, 56, 1237–1243,
670 doi:10.1007/s00254-008-1223-2, 2009.

671 Mbile, P., Ngaunkam, P., Bésingi, M., Nfoumou, C., Degrande, A., Tsobeng, A., Sado, T., and Menimo, T.:
672 Farmer management of cocoa agroforests in Cameroon: Impacts of decision scenarios on structure and
673 biodiversity of indigenous tree species, *Biodiversity*, 10, 4, 12–19, doi:10.1080/14888386.2009.9712857,
674 2009.

675 Merrill, S.D., Liebig, M.A., Tanaka, D.L., Krupinsky, J.M., and Hanson, J.D.: Comparison of soil quality and
676 productivity at two sites differing in profile structure and topsoil properties. *Agriculture, Ecosyst. Environ.*
677 179, 53–61, 2013.

678 Milgroom, J., Gomez, J.A., Soriano, M.A., and Fereres, E.: From experimental research to an on-farm tool for
679 participatory monitoring and evaluation : an assessment of soil erosion risk in organic olive orchards, *Land*
680 *Degrad. Dev.*, 18, 397–411, 2007.

681 Momtaz, H.R., Jafarzadeh, A.A., Torabi, H., Oustan, S., Samadi, A., Davatgar, N., and Gilkes R.J.: An
682 assessment of the variation in soil properties within and between landform in the Amol region, Iran,
683 *Geoderma* 149: 10–18, 2009.

684 Montecchia, M.S., Correa, O.S., Soria, M.A., Frey, S.D., García, A.F., and Garland, J.L.: Multivariate approach
685 to characterizing soil microbial communities in pristine and agricultural sites in Northwest Argentina,
686 *Applied Soil Ecology*, 47, 176–183, doi:10.1016/j.apsoil.2010.12.008, 2011.

687 Ngo-mbogba, M., Yemefack, M., and Nyeck, B.: Assessing soil quality under different land cover types within
688 shifting agriculture in South Cameroon, *Soil and Tillage Research*, 150,124–131, 2015.

689 Novara, A., Gristina, L., Bodì, M.B., and Cerdà A. The impact of fire on redistribution of soil organic matter on
690 a Mediterranean hillslope under maquia vegetation type, *Land Degrad. Dev.*, 22, 530-536. doi:
691 10.1002/ldr.1027, 2011.

692

693 Ntiamoah, A. and Afrane, G.: Environmental impacts of cocoa production and processing in Ghana: life cycle
694 assessment approach, *Journal of Cleaner Production* 16 1735-1740, 2008.

695

696 **OECD.: Handbook on constructing composite indicators. ISPRA, Paris, 2008.**

697

698 Oke, O. C., and Chokor, J. U.: Land snail populations in shade and full-sun cocoa plantations in South Western
699 Nigeria, *West Africa, African Scientist*, 10, 1, 19-29, 2009.

700

701 **Ogeh, J. S., and Ipinmoroti, R R,: Micronutrient assessment of cocoa , kola , cashew and coffee plantations for
702 sustainable production at Uhonmora , Edo State , Nigeria, Journal of Tropical Soils, 18, 2; 1-5, 2013**

703

704 Olsen, S.R., and Sommers, L.E.: Phosphorus. In Sparks, D.L., Page, A.L., Helmke, P.A., and Loepert, R.H. (eds)
705 method of soil analysis: chemical and microbiological properties, Part 2, agronomy monograph 9, 403 -
706 430. Soil Science Society of America, Wisconsin, WI, 1982

707

708 **Parras-Alcántara I., and Lozano-García, B.: Conventional tillage versus organic farming in relation to soil organic
709 carbon stock in olive groves in Mediterranean rangelands (southern Spain), Solid Earth, 5, 299–311, 2014**

710

711 Peech, M. Hydrogen-ion activity. In methods of soil analysis. Black, C.A. (ed), 2, 914-926, 1965.

712

713 Prager, K., Schuler, J., Helming, K., Zander, P., Ratinger, T., and Hagedorn, K.: Soil degradation, farming
practices, institutions and policy responses: an analytical framework, *Land Degrad. Dev.*, 22, 32–46, 2011.

714

715 Puglisi, E., Nicelli, M., Capri, E., Trevisan, M., and Del Re, .AA.M.: A soil alteration index based on
phospholipid fatty acids, *Chemosphere*, 61,1548-1557, 2005.

716

717 Puglisi, E., Del Re, A.A.M., Rao, M.A., and Gianfreda, L.: Development and validation of numerical indexes
718 integrating enzyme activities of soils, *Soil Biology and Biochemistry*, 38, 1673-1681,
doi:10.1016/j.soilbio.2005.11.021, 2006.

719

720 Pulido, M., Schnabel, S., Contador, J.F.L., Lozano-Parra, J. and Gómez-Gutiérrez, Á.: Selecting indicators for
721 assessing soil quality and degradation in rangelands of Extremadura (SW Spain). *Ecological Indicators*. 74,
49–61, 2017.

722

723 Qi, Y., Darilek, J.L., Huang, B., Zhao, Y., Sun, W., and Gu, Z.: Evaluating soil quality indices in an agricultural
region of Jiangsu Province, China, *Geoderma*, 149, 325-334, doi:10.1016/j.geoderma.2008.12.015, 2009.

724

725 Rahmanipour, F., Marzaioli, R., Bahrami, H.A., Fereidouni, Z. and Bandarabadi, S.R. Assessment of soil quality
726 indices in agricultural lands of Qazvin Province, Iran. *Ecological Indicators*. 40,19–26, 2014.

727

728 Renzi, G., Canfora, L., Salvati, L., Benedetti, A.: Validation of the soil Biological Fertility Index (BFI) using a
multidimensional statistical approach: A country-scale exercise, *Catena*, 149, 294-299, 2017

729 Reynolds, W.D., and Elrick, D.: Constant head soil core (tank) method. In: Dane, J.H., and Topp, G.C., (eds).
730 Methods of soil analysis. Part 4. Physical methods. Madison (WI): Soil Science Society of America, 804–
731 808, 2002.

732 Rice, R.A., and Greenberg, R.: Cacao cultivation and the conservation of biological diversity, *Ambio: A Journal*
733 of the Human Environment

734 Rodrigo Comino, J., Quiquerez, A., Follain, S., Raclot, D., Le Bissonnais, Y., Casalí, J., Giménez, R., Cerdà, A.,
735 Keesstra, S.D., Brevik, E.C., Pereira, P., Senciales, J.M., Seeger, M., Ruiz Sinoga, J.D., Ries, J.B.: Soil
736 erosion in sloping vineyards assessed by using botanical indicators and sediment collectors in the Ruwer-
737 Mosel valley. *Agric. Ecosyst. Environ.* 233, 158–170. doi:10.1016/j.agee.2016.09.009, 2016a

738

739 Rodrigo Comino, J., Ruiz Sinoga, J.D., Senciales González, J.M., Guerra-Merchán, A., Seeger, M., Ries, J.B.:
740 High variability of soil erosion and hydrological processes in Mediterranean hillslope vineyards (Montes
741 de Málaga, Spain). *CATENA* 145, 274–284. doi:10.1016/j.catena.2016.06.012, 2016b

742

743 Rousseau, G.X., Deheuvels O., Rodriguez Arias I., and Somarriba E.: Indicating soil quality in cacao-based
744 agroforestry systems and old-growth forests: The potential of soil macrofaunal assemblage, *Ecological*
745 *Indicators* 23, 535–543, 2012.

746

747 Rousseau, L., Fonte, S.J., Téllez, O., van der Hoek, R., and Lavelle, P.: Soil macrofauna as indicators of soil
748 quality and land use impacts in smallholder agro-ecosystems of western Nicaragua. *Ecological Indicators*.
749 27, 71–82, 2013..

750 Saj, S., Jagoret, P., and Ngogue, H.T.: Carbon storage and density dynamics of associated trees in three contrasting
751 Theobroma cacao agroforests of Central Cameroon, *Agroforestry Systems*, 87, 1309–1320,
752 doi:10.1007/s10457-013-9639-4, 2013.

753 Salami, A.T.: Vegetation modification and man-induced environmental change in rural southwestern Nigeria.
754 *Agriculture, Ecosystems and Environment* 70: 159–167, 1998.

755 Salami, A.T.: Agricultural colonisation and floristic degradation in Nigeria's rainforest ecosystem.
756 *Environmentalist* 21 : 221–229, 2001.

757 Sánchez-Navarro, A., Gil-Vázquez, J.M., Delgado-Iniesta, M.J., Marín-Sanleandro, P., Blanco-Bernardeau, A.,
758 and Ortiz-Silla, R.: Establishing an index and identification of limiting parameters for characterizing soil
759 quality in Mediterranean ecosystems. *Catena* 131, 35–45, 2015

760 Scherr, S.J.: Soil degradation: a threat to developing country food security by 2020? vision 2020: food, agriculture,
761 and the environment discussion paper 27, 14-25, 1999.

762 Schoneveld, G.C.: The politics of the forest frontier: Negotiating between conservation, development, and
763 indigenous rights in Cross River State, Nigeria, *Land Use Policy* 38, 147–162,
764 doi:10.1016/j.landusepol.2013.11.003, 2014.

765 Schulte, R.P., Bampa, F., Bardy, M., Coyle, C., Fealy, R., Gardi, C., Ghaley, B.B., Jordan, P., Laudon, H.,
766 O'Dononghue, C., and Ó'hUallacháin, D.: Making the most of our land: managing soil functions from local
767 to continental scale, *Frontiers in Environmental Science*, 3, 1-14, 2015.

768 Sharma, K.L., Mandal, U.K., Srinivas, K., Vittal, K.P., Mandal, B., Grace, J.K., and Ramesh, V.: Long-term soil
769 management effects on crop yields and soil quality in a dryland Alfisol, *Soil and Tillage Research*, 83, 246–
770 259, 2005.

771 Sharma, K.L., Grace, J.K., Mandal, U.K., Gajbhiye, P.N., Srinivas, K., Korwar, G.R., Hima Bindu, V., Ramesh,
772 V., Ramachandran, K., and Yadav, S. K.: Evaluation of long-term soil management practices using key
773 indicators and soil quality indices in a semi-arid tropical Alfisol, *Soil Research*, 46, 368–37, 2008.
774

775 Sharma, K.L., Raju, K.R., Das, S.K., Rao, B.P., Kulkami, B.S., Srinivas, K., Grace, J.K., Madhavi, M., and
776 Gajbhiye, P.N.: Soil fertility and quality assessment under tree-, crop-, and pasture-based landuse systems
777 in a rainfed environment, *Communications in Soil Science and Plant Analysis*, 40, 1436–1461, 2009.

778 Singh, A.K., Bordoloi, L.J., Kumar, M., Hazarika, S., Parmar, B.: Land use impact on soil quality in eastern
779 Himalayan region of India. *Environ. Monit. Assess.* 186, 2013–2024, 2014.

780 Smyth A.J., and Montgomery, R.F.: Soils and landuse in central western Nigeria. Government Printer; Ibadan,
781 Nigeria, 1962.

782 Snoeck, D., Afrifa, A., Ofori-Frimpong, A.K., Boateng, E., Abekoe, M. K.; **Mapping Fertilizer Recommendations
783 for Cocoa Production in Ghana Using Soil Diagnostic and GIS Tools** *West African Journal of Applied
784 Ecology*, 17, 97-107, 2010

785 Soil Survey Staff.: Keys to soil taxonomy, 12th Ed. USDA-natural resources conservation service, Washington,
786 DC, 2014.

787 Sonwa D.J., Weise, S.F., Schroth, G., Janssens, M.J.J., and Shapiro, H.: Plant diversity management in cocoa
788 agroforestry systems in West and Central Africa—effects of markets and household needs, *Agroforestry
789 Systems*, 88, 1021–34. doi:10.1007/s10457-014-9714-5, 2014.

790 Tesfahunegn, G.B., Tamene, L. and Vlek, P.L.G.: Evaluation of soil quality identified by local farmers in Mai-
791 Negus catchment, northern Ethiopia. *Geoderma*. 163(3-4):209–218, 2011.
792

793 Tesfahunegn, G.B.: Soil quality assessment strategies for evaluating soil degradation in northern Ethiopia.
794 *Applied and Environmental Soil Science*. 2014:1–14, 2014.
795

796 Tesfahunegn, G.B.: Soil quality indicators response to land use and soil management systems in northern
797 Ethiopia's Catchment. *Land Degradation and Development*. 27, 438–448, 2016.

798 Thomaz, E.L., and Luiz, J.C.: Soil loss , soil degradation and rehabilitation in a degraded land area in Guarapuava
799 (BRAZIL), *Land Degrad. Dev.*, 23: 72–81, 2012.

800 Tondoh, J.E., Kouamé, F.N., Guéi, A.M., Sey, B., Koné, A.W., and Gnessougou, N.: Ecological changes induced
801 by full-sun cocoa farming in Côte d'Ivoire. *Global Ecology and Conservation*, 3, 575-595,
802 doi:10.1016/j.gecco.2015.02.007, 2015.
803

804 Trabaquini, K., Formaggio, R.A., and Galvão, L.S.: Changes in physical properties of soils with land use time in
805 the Brazilian savanna environment, *Land Degrad. Dev.*, 26, 397-408, 2015.
806

807 USDA: Soil survey laboratory methods manual, Soil survey investigation report No. 42, Version 4.0, USDA-
808 NCFS, Lincoln, NE, 2004
809

810 Virto, I., Imaz, M., Fernández-Ugalde, O., Gartzia-Bengoetxea, N., Enrique, A., and Bescansa, P.: Soil
811 degradation and soil quality in western Europe: Current situation and future perspectives. *Sustainability*.
812 7(1):313–365, 2014.

813

814 Van Vliet, J. A., and Giller, K. E.: Mineral nutrition of cocoa: A review, *Advances in Agronomy*, 141, 185-270,
815 2017

816

817 Vanlauwe, B., Descheemaeker, K., Giller K. E., Huisng, J., Merckx, R., Nziguheba1, G., Wendt, J., and Zingore,
818 S.: Integrated soil fertility management in sub-Saharan Africa: unravelling local adaptation *SOIL*, 1, 491–
819 508, 2015

820

821 Vocomil, J.A.: Porosity. In methods of soil analysis part 1 Black CA. (ed) A.S.A Madison WI, 299-314, 1965.

822

823 Walkley, A., and Black I.A.: An examination of the Degtjareff method for determining soil organic matter and a
proposed modification of the chromic acid titration method, *Soil Science*, 37, 29-38, 1934.

824

825 Wessel, M.: Fertilizer requirement of cocoa (*Theobroma cacao L.*) in south-western Nigeria. *Communication* 61.
Department of Agriculture Resources. Royal Tropical Institute Amsterdam, 1971.

826

827 World Reference Base for Soil Resources (WRB).: International soil classification system for naming soils and
creating legends for soil maps FAO Rome, 2014

828

829 Xu, M., Li, Q., Wilson, G.: Degradation of soil physicochemical quality by ephemeral gully erosion on sloping
cropland of the hilly Loess Plateau, China, *Soil & Tillage Research*, 155, 9–18, 2016

830

831 Yamashita, N., Ohta, S., and Hardjono, A.: Soil changes induced by *Acacia mangium* plantation establishment:
Comparison with secondary forest and *Imperata cylindrica* grassland soils in South Sumatra, Indonesia.
Forest Ecology and Management, 254 : 362–370. doi:10.1016/j.foreco.2007.08.012, 2008.

832

833 Zhao, Q., Shiliang, L., Li, D., Shikui, D., and Wang, C.: Soil degradation associated with water-level fluctuations
in the Manwan Reservoir, Lancang River Basin, *Catena* 113: 226–235, 2014.

834

835 Zornoza, R., Mataix-Solera, J., Guerrero, C., Arcenegui, V., García-Orenes, F., Mataix-Beneyto, J., and Morugán,
836 A.: Evaluation of soil quality using multiple lineal regression based on physical, chemical and biochemical
837 properties. *Sci. Total Environ.* 378, 233–237, 2007.

838

839 Zornoza, R., Mataix-Solera, J., Guerrero, C., Arcenegui, V., Mataix- Beneyto, J., and Gómez, I.: Validating the
840 effectiveness and sensitivity of two soil quality indices based on natural forest soils under Mediterranean
841 conditions, *Soil Biol. Biochem.*, 40, 2079– 2087, 2008

842

843 Zornoza, R., Acosta, J.A., Bastida, F., Domínguez, S.G., Toledo, D.M. and Faz, A.: Identification of sensitive
844 indicators to assess the interrelationship between soil quality, management practices and human health.
845 *Soil*. 1(1), 173–185, 2015.

846

847

848

Figure 1: Location map of the study area

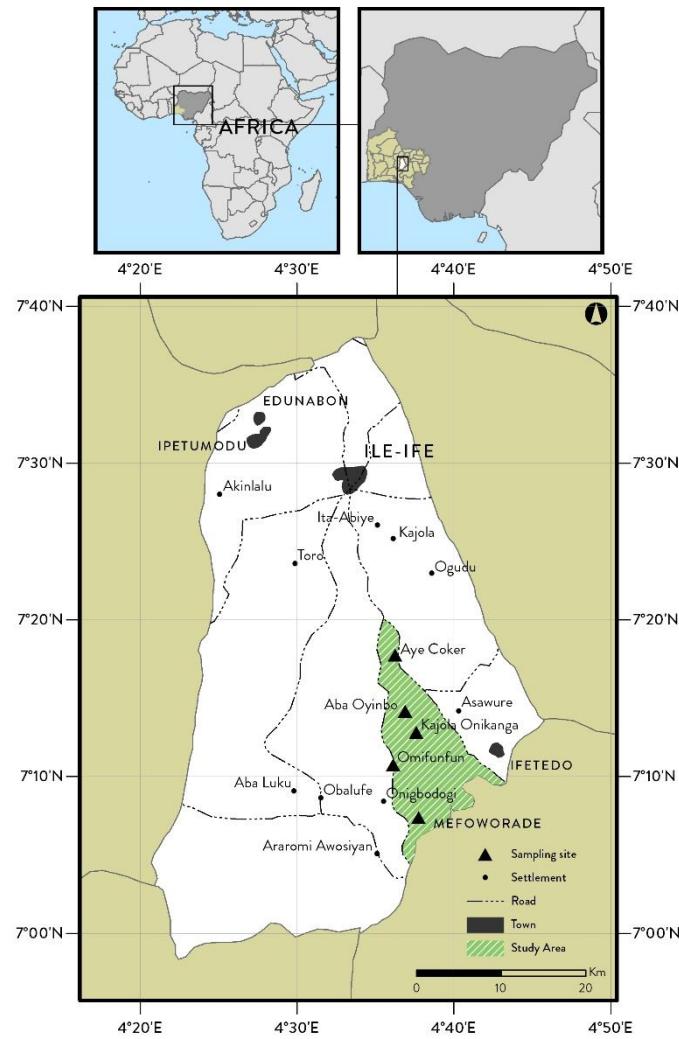
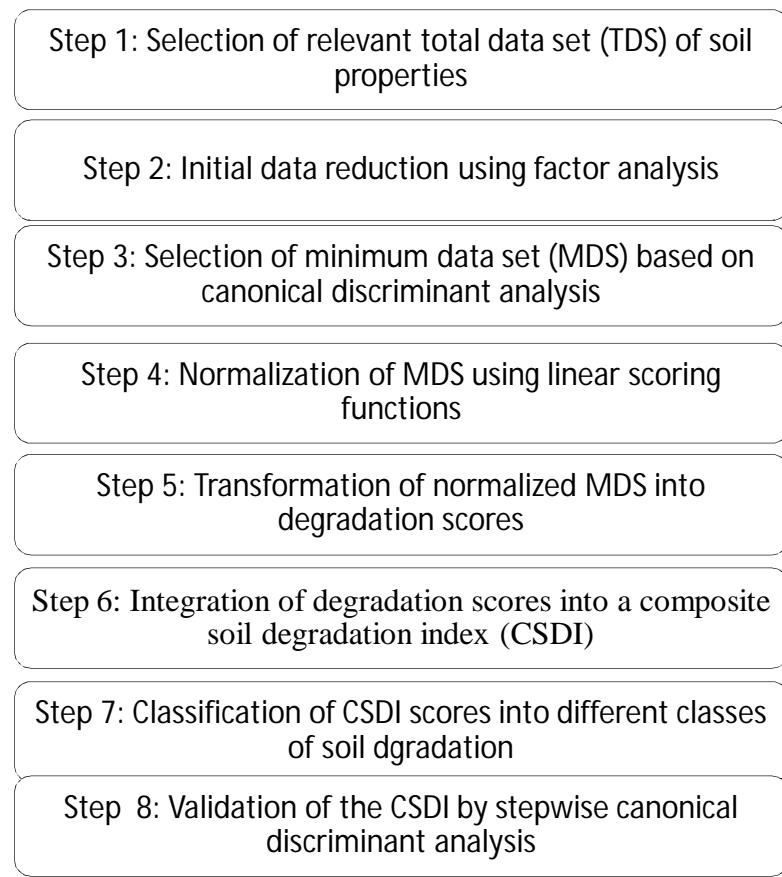
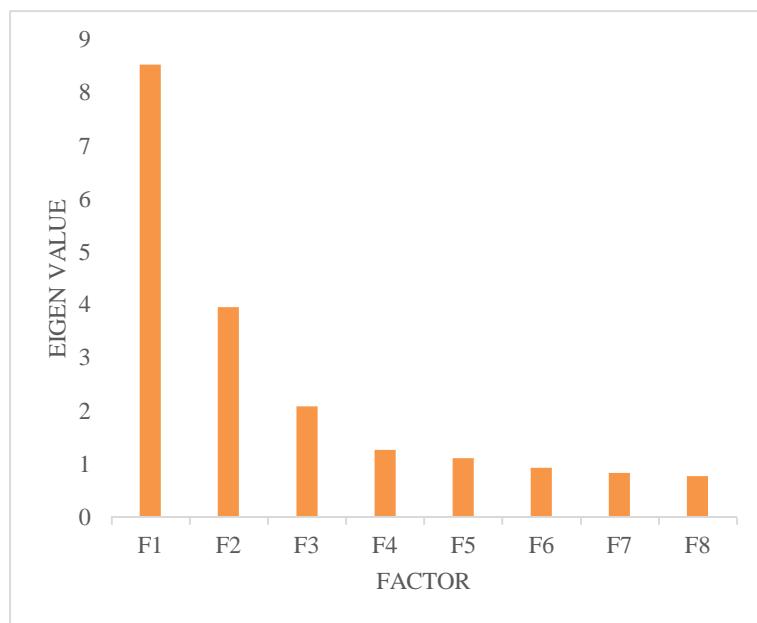
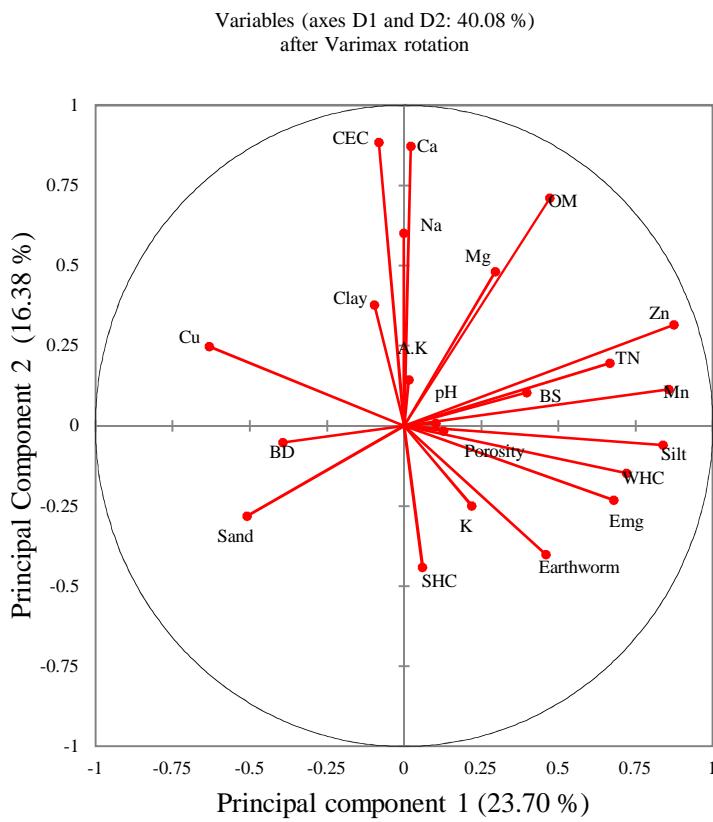




Figure 2. Analytical framework for development of CSDI



854
855
856

Figure 3: Scree test result from factor analysis

857

858

859 Figure 45: Principal Components' distribution of the investigated soil properties in age-sequenced peasant cocoa
 860 plantations. BD- Bulk density; WHC- Water holding capacity; SHC- Saturated hydraulic conductivity; OM- Organic matter;
 861 A.P – Available phosphorus; TN-Total nitrogen; Ca-Exchangeable calcium, Mg- Exchangeable magnesium; K- Exchangeable
 862 potassium; .Na- Exchangeable sodium; CEC- Cation exchange capacity; BS- Base saturation; Cu – Extractable copper; Zn-
 863 Extractable zinc; Mn- Extractable manganese ; EMg – Extractable magnesium; Earthworm population.
 864

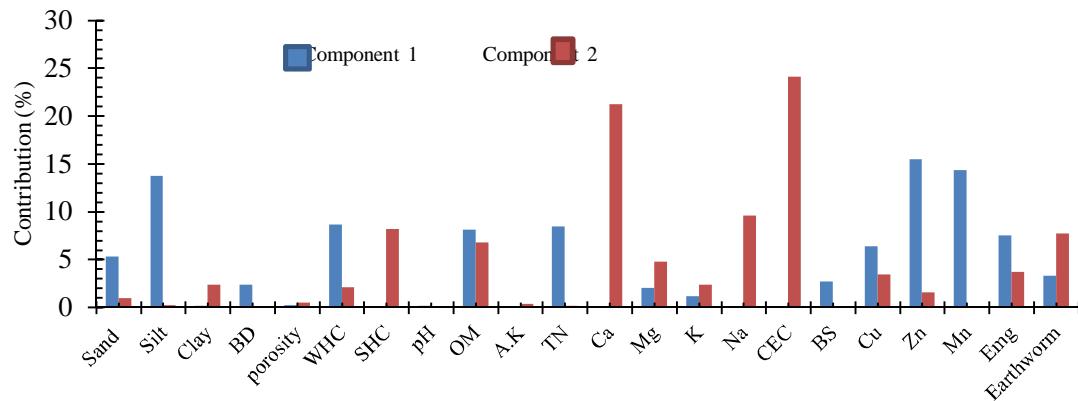


Figure 5. Percentage contributions of the investigated soil properties in age-sequenced peasant cocoa plantations. BD- Bulk density; WHC- Water holding capacity; SHC- Saturated hydraulic conductivity; OM- Organic matter; A.P – Available phosphorus; TN-Total nitrogen; Ca-Exchangeable calcium, Mg- Exchangeable magnesium; K- Exchangeable potassium; .Na- Exchangeable sodium; CEC- Cation exchange capacity; BS- Base saturation; Cu – Extractable copper; Zn- Extractable zinc; Mn- Extractable manganese ; Emg – Extractable magnesium; Earthworm population.

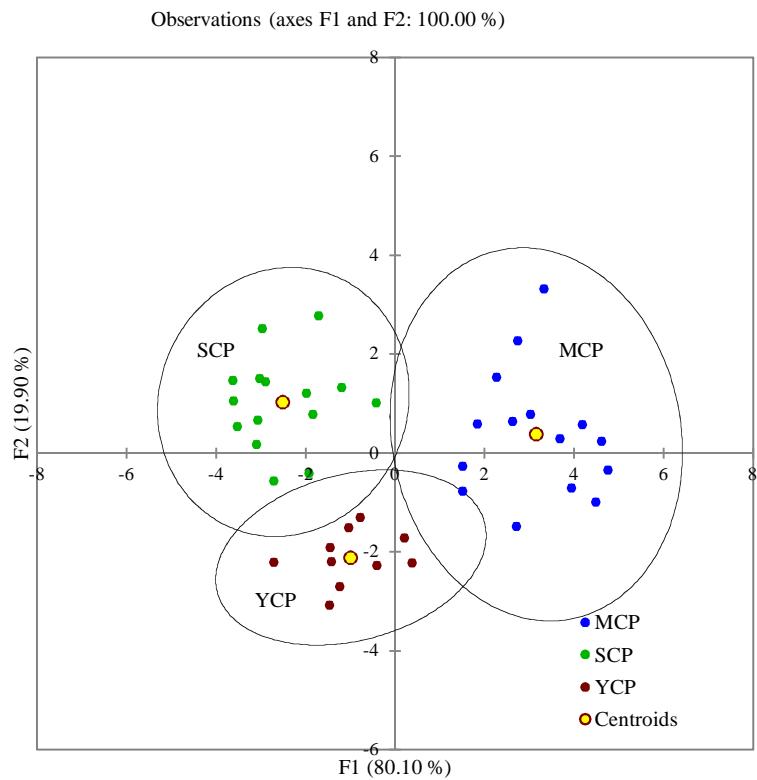


Figure 6: First and second discriminant function separating different cocoa plantations in southwest Nigeria

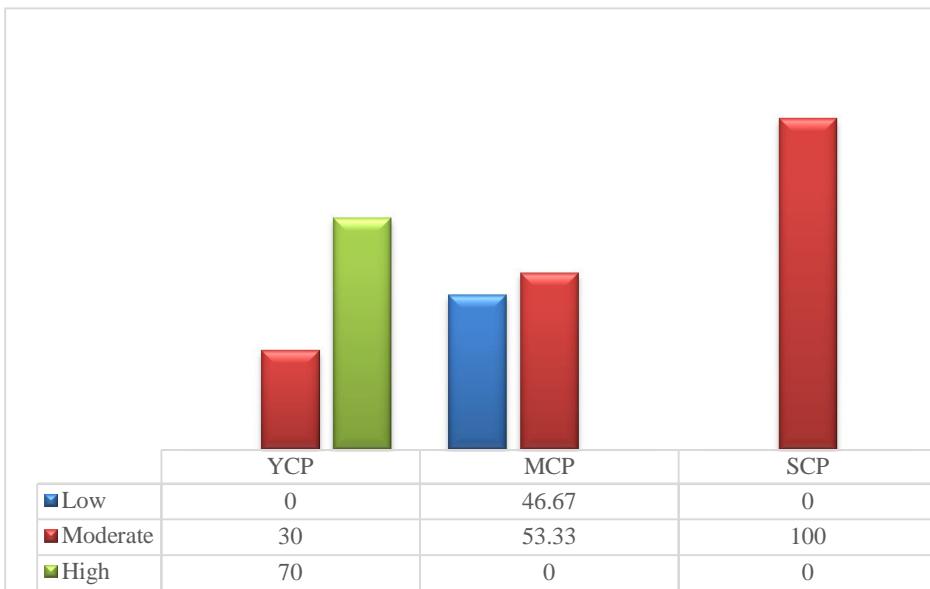


Figure 7 Percentages of degraded farms across cocoa chronosequence plantations (YCP, MCP and SCP)

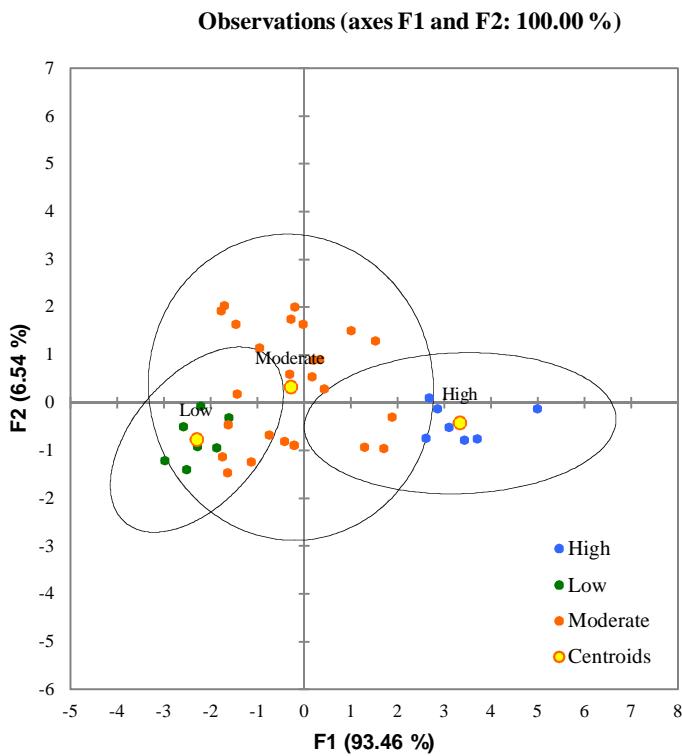


Figure 8. First and second canonical function of canonical discriminant analysis separating studied soils into three degradation classes (*Low, Moderate and High*)

Table 1. Methods and field analysis of soil data

Soil properties	Method of determination and reference
<u>*Particle size distribution</u> [Sand, silt and clay (%)]	Pipette method (Gee & Or 2002)
Bulk density (g/cm ³).	Core method (Grossman & Reinsch 2002)
Total porosity (%)	Computed from value of bulk density (Vomocil, 1965)
Water-holding capacity (%)	Oven dry method
Saturated hydraulic conductivity (cm hr ⁻¹)	Determined in the laboratory using a constant head permeameter (Reynolds & Elrick 2002)
pH (KCl)	Potentiometrically in 0.1 M CaCl ₂ solution (Peech 1965)
Organic matter (%)	Walkley and Black (1934)
Available phosphorus (mg kg ⁻¹)	Olsen and Sommer (1982)
Total nitrogen (%)	Kjeldahl method (Bremner, 1996)
Exchangeable Ca and Mg (mg kg ⁻¹)	Atomic absorption spectrophotometer
Exchangeable Na and K (mg kg ⁻¹)	Flame photometer
Cation exchange capacity (cmol _c kg ⁻¹)	Summation method (Juo, <i>et al.</i> 1976)
Base saturation (%)	Calculated as the percentage of the CEC occupied by basic cations
Extractable Zn, Mn, Mg and Cu (mg kg ⁻¹)	Atomic absorption spectrophotometer
Earthworm population (per m ²)	Anderson & Ingram (1993)

Ca= calcium; Mg= magnesium; Na = sodium; K= potassium; Zn= zinc; Mn= manganese Cu= copper.

* For determining the particle size distribution, samples were treated with H₂O₂ (6 %) to remove organic matter (OM). Particles larger than 2 mm were determined by wet sieving and smaller particles were classified according to Gee & Or (2002)

Table 2: Rotated factor loadings for the first five factors including proportion of variance, eigenvalues and communalities of measured soil properties

Eigenvalue	8.545	3.964	2.088	1.265	1.113	
Total Variance (%)	23.702	16.382	14.642	9.131	13.300	
Cumulative variance	23.702	40.083	54.725	63.856	77.155	
Soil degradation indicators	Principal component, PC					Communalities
	PC 1	PC 2	PC 3	PC 4	PC 5	
Sand (%)	-0.510	-0.282	-0.093	-0.094	-0.688	0.830
Silt (%)	0.838	-0.060	-0.154	0.217	-0.014	0.777
Clay (%)	-0.097	0.378	0.235	-0.070	0.812	0.871
Bulk density (g cm ⁻³)	-0.393	-0.051	-0.143	-0.633	0.055	0.582
Total porosity (%)	0.128	-0.016	0.801	-0.087	0.233	0.719
Base saturation (%)	0.397	0.104	0.355	0.272	0.661	0.806
pH (KCl)	0.104	0.008	-0.029	0.791	0.143	0.658
Cation exchange capacity (cmol _c kg ⁻¹)	-0.081	0.884	-0.124	-0.094	-0.067	0.816
Water-holding capacity (%)	0.721	-0.147	0.358	0.367	0.278	0.882
Saturated hydraulic conductivity (cm hr ⁻¹)	0.060	-0.442	0.603	0.480	0.204	0.835
Total nitrogen (%)	0.667	0.196	0.583	0.187	0.225	0.908
Available phosphorus (mg kg ⁻¹)	0.016	0.144	0.810	0.063	0.075	0.686
Exchangeable potassium (mg kg ⁻¹)	0.219	-0.249	0.099	0.094	0.624	0.518
Exchangeable calcium (mg kg ⁻¹)	0.022	0.871	-0.007	0.028	0.084	0.767
Exchangeable magnesium (mg kg ⁻¹)	0.295	0.481	0.260	0.079	0.508	0.650
Extractable zinc (mg kg ⁻¹)	0.875	0.315	0.037	0.062	0.162	0.896
Extractable manganese (mg kg ⁻¹)	0.857	0.114	0.152	-0.007	0.313	0.868
Extractable copper (mg kg ⁻¹)	-0.632	0.247	-0.382	-0.463	-0.168	0.849
Extractable magnesium (mg kg ⁻¹)	0.679	-0.232	0.518	0.210	0.078	0.834
Exchangeable sodium (mg kg ⁻¹)	-0.001	0.601	0.032	0.289	0.393	0.600
Organic matter (%)	0.472	0.711	0.142	-0.209	0.231	0.846
Earthworm population (per m ²)	0.459	-0.401	0.552	0.144	0.282	0.776

Rotation method: Varimax with Kaiser normalization.
 Boldface factor loadings are considered highly weighted;
 Extraction method: principal component analysis.

Table 3: Correlation coefficient between highly weighted variables under PC's with high factor loading

PC 1 variables	Extractable zinc	Extractable manganese	Silt
Extractable zinc	1.000	0.834**	0.653*
Extractable manganese	0.834**	1.000	0.612*
Silt	0.653*	0.612*	1.000
PC2 variables	Cation exchange capacity	Exchangeable calcium	Organic matter
Cation exchange capacity	1.000	0.870**	0.523*
Exchangeable calcium	0.870**	1.000	0.619*
Organic matter	0.523*	0.619*	1.000
PC3 variables	Available phosphorus	Total porosity	
Available phosphorus	1.000	0.578*	
Total porosity	0.578*	1.000	
PC4 variable	pH		
pH	1.000		
PC5 variable	Clay		
Clay	1.000		

* Significant difference at P = 0.05. ** Significant difference at P = 0.01.

Table 4: Result of stepwise discriminant analysis (STEPDA) separating YCP, MCP and SCP

Discriminant function		
	1	2
Significance	0.000	0.000
Eigenvalue	6.826	1.696
% of variance	80.101	19.899
Cumulative % variance	80.101	100.000
Canonical correlation coefficient	0.934	0.793
Variables	Canonical correlation coefficients	
Silt	0.353	-0.520
Clay	0.373**	-0.139
Porosity	0.158	-0.309
pH	0.029	-0.211
Cation exchange capacity	0.611*	0.622
Available Phosphorus	0.186	-0.035
Extractable Zinc	0.806*	-0.527
Organic matter	0.952*	0.096

*, **, Significant at $p<0.05$ and $p<0.001$ respectively.

Table 5: Classification of soils into degradation levels and their interpretations modified after Gómez et al. (2009)

Range	Classes of degradation	Interpretation
< 0.195	Low	Farms with little or no form of degradation and their nutrient deficiencies can be restored with moderate effort
0.195 -0.383	Moderate	Farms with moderate soil quality degradation, where some action should be taken to improve soil conditions
> 0.383	High	Farms are currently degraded and their soil quality restoration will require sustained management efforts

Table 6: Standardized and unstandardized coefficient functions of canonical discriminant analysis

	Constant	Zn	OM	CEC	Clay
Function 1 ^Ψ	-11.863	0.599*	1.225*	0.226*	0.054 ^{ns}
Function 2 ^Ψ	-5.248	-0.326*	0.092 ^{ns}	0.214 ^{ns}	0.365 *
Classes of degradation					
Low	-145.980	6.851	10.885	6.634	3.977
Moderate	-104.651	5.889	7.806	5.776	3.459
High	-74.970	3.359	3.489	5.202	3.564

OM- Organic matter (%); CEC- Cation Exchange Capacity (cmol_c kg⁻¹); Zn - Extractable zinc (mg kg⁻¹); Clay (%).

^Ψ Wilks' lambda test of functions ($F_{\text{observed}} = 22.576$ and $F_{\text{critical}} = 2.499$) shows that the discriminant model was significant at probability $P=0.000$, for the two functions, indicating that these functions contributed more to the model.

^Ψ Eigen value for $F1 = 3.506$ and $F2 = 0.426$;

Threshold for $F1$ is $0.2/\sqrt{3.506} = 0.106$; $F2$ is $0.2/\sqrt{0.426} = 0.30$

* Significant;

^{ns} Not Significant

Table 7: Cross-validation results by canonical discriminant analysis

Case	Actual group	Discriminant analysis of classification of predicted group membership					%
		from \ to	Low	Moderate	High	Total	
Original group	Low	6	1		0	7	85.71%
	Moderate	2	23		1	26	88.46%
	High	0	0	7	7	100.00%	
	Total	8	24		8	40	90.00%
Cross-validated							
	from \ to	Low	Moderate	High	Total	correct	%
	Low	6	1	0	7	85.71%	
	Moderate	2	22	2	26	84.62%	
	High	0	0	7	7	100.00%	
	Total	8	23	9	40	87.50%	

Percent of "grouped" cases correctly classified =87.50%

Boldface figure in each group is number of cases correctly classified by canonical discriminant analysis

Table S1(supplementary material).

Soil Properties	Minimum	Maximum	Mean	Standard Deviation	Coefficient of Variation (%)
Sand (%)	64.40	78.00	68.22 (± 0.49)	3.07	5.50
Silt (%)	6.90	16.80	12.11 (± 0.34)	2.17	17.91
Clay (%)	10.80	26.00	19.68 (± 0.42)	2.64	13.41
Bulk density (g cm ⁻³)	1.15	1.81	1.41 (± 0.02)	0.14	9.92
Total porosity (%)	0.45	0.73	0.60 (± 0.01)	0.06	10.00
Water-holding capacity (%)	9.70	26.80	16.76 (± 0.76)	4.81	28.69
Saturated hydraulic conductivity (cm hr ⁻¹)	2.93	9.90	5.71 (± 0.29)	1.83	32.00
pH (KCl)	4.60	6.50	5.74 (± 0.06)	0.40	6.90
Organic carbon (%)	0.58	2.32	1.34 (± 0.08)	0.54	40.29
Available phosphorus (mg kg ⁻¹)	6.10	15.50	10.55 (± 0.58)	3.25	30.80
Total nitrogen (%)	0.50	1.44	1.00 (± 0.05)	0.31	31.00
Exchangeable calcium (mg kg ⁻¹)	4.70	10.00	6.62 (± 0.22)	1.39	20.99
Exchangeable magnesium (mg kg ⁻¹)	1.90	4.50	3.48 (± 0.10)	0.64	18.30
Exchangeable potassium (mg kg ⁻¹)	0.10	0.90	0.44 (± 0.04)	0.24	54.54
Exchangeable sodium (mg kg ⁻¹)	0.10	0.40	0.17 (± 0.01)	0.09	52.94
Cation exchange capacity (cmolc kg ⁻¹)	9.50	16.30	12.28 (± 0.28)	1.77	14.41
Percent Base saturation (%)	70.68	98.18	86.79 (± 1.41)	8.90	10.25
Extractable copper (mg kg ⁻¹)	4.00	13.20	8.65 (± 0.38)	2.39	27.63
Extractable zinc (mg kg ⁻¹)	4.70	17.70	10.36 (± 0.58)	3.67	35.42
Extractable manganese (mg kg ⁻¹)	13.20	23.90	18.98 (± 0.56)	3.52	18.54
Extractable magnesium (mg kg ⁻¹)	4.30	16.90	8.83 (± 0.51)	3.19	36.12
Earthworm population (per m ²)	3.20	11.10	6.20 (± 0.30)	1.90	30.64

Table S2(supplementary material). CSDI value, classification and membership probabilities

CPC	CSDI Value	Z-Score value	Membership probabilities		
			Low	Moderate	High
YCP1	0.3693	0.8543	0.000	0.175	0.825
YCP2	0.3982	1.1615	0.000	0.040	0.960
YCP3	0.4421	1.6289	0.000	0.001	0.999
YCP4	0.4430	1.6379	0.000	0.001	0.999
YCP5	0.5261	2.5227	0.000	0.000	1.000
YCP6	0.3624	0.7807	0.000	0.209	0.791
YCP7	0.4238	1.4337	0.000	0.005	0.995
YCP8	0.4034	1.2173	0.000	0.030	0.970
YCP9	0.3591	0.7459	0.000	0.389	0.610
YCP10	0.3936	1.1131	0.000	0.071	0.929
MCP1	0.1916	-1.0359	0.471	0.529	0.000
MCP2	0.2175	-0.7604	0.410	0.590	0.000
MCP3	0.1977	-0.9715	0.844	0.156	0.000
MCP4	0.2333	-0.5931	0.426	0.574	0.000
MCP5	0.2386	-0.5359	0.613	0.387	0.000
MCP6	0.1757	-1.2051	0.449	0.551	0.000
MCP7	0.2790	-0.1068	0.012	0.988	0.000
MCP8	0.2669	-0.2347	0.046	0.954	0.000
MCP9	0.2584	-0.3256	0.078	0.922	0.000
MCP10	0.2564	-0.3463	0.030	0.970	0.000
MCP11	0.1187	-1.8117	0.993	0.007	0.000
MCP12	0.1836	-1.1217	0.703	0.297	0.000
MCP13	0.1645	-1.3246	0.928	0.072	0.000
MCP14	0.1476	-1.5039	0.944	0.056	0.000
MCP15	0.1367	-1.6203	0.986	0.014	0.000

CPC= Cocoa plantation chronosequence = YCP, MCP and SCP

Table S2 continue (supplementary material). CSDI value, classification and membership probabilities

CPC	CSDI Value	Z-SCORE value	Membership probabilities		
			Low	Moderate	High
SCP1	0.2331	-0.5948	0.100	0.900	0.000
SCP2	0.2949	0.0625	0.008	0.977	0.015
SCP3	0.2733	-0.1668	0.012	0.988	0.000
SCP4	0.2802	-0.0938	0.010	0.989	0.001
SCP5	0.3326	0.4636	0.000	0.992	0.008
SCP6	0.2851	-0.0411	0.003	0.997	0.000
SCP7	0.3242	0.3739	0.000	0.996	0.003
SCP8	0.2837	-0.0563	0.002	0.998	0.000
SCP9	0.3770	0.9365	0.000	0.995	0.005
SCP10	0.3520	0.6705	0.000	0.930	0.070
SCP11	0.2218	-0.7153	0.078	0.922	0.000
SCP12	0.2941	0.0539	0.001	0.999	0.000
SCP13	0.2589	-0.3200	0.007	0.993	0.000
SCP14	0.2918	0.0302	0.002	0.998	0.000
SCP15	0.2551	-0.3611	0.007	0.993	0.000

CPC= Cocoa plantation chronosequence = YCP, MCP and SCP

Table S2 continue (supplementary material). Pearson correlation coefficient among soil quality indicators

Variables	Sand	Silt	Clay	BD	Porosity	WHC	SHC	pH	SOC	AP	TN	Ca	Mg	K	Na	CEC	BS	Cu	Zn	Mn	Emg
Silt	-0.539																				
Clay	-0.720	-0.197																			
BD	0.309	-0.465	0.024																		
Porosity	-0.333	0.032	0.360	-0.135																	
WHC	-0.593	0.575	0.214	-0.520	0.391																
SHC	-0.152	0.034	0.146	-0.408	0.447	0.596															
pH	-0.178	0.273	-0.020	-0.300	0.034	0.336	0.268														
SOC	-0.545	0.262	0.419	-0.137	0.209	0.224	-0.272	-0.021													
AP	-0.208	0.029	0.218	-0.205	0.579	0.228	0.364	0.079	0.293												
TN	-0.650	0.480	0.359	-0.446	0.536	0.803	0.446	0.217	0.533	0.536											
Ca	-0.281	-0.110	0.417	-0.033	-0.035	0.003	-0.331	0.053	0.619	-0.003	0.168										
Mg	-0.647	0.275	0.528	-0.151	0.337	0.305	0.126	0.197	0.586	0.397	0.563	0.339									
K	-0.345	0.119	0.304	-0.275	0.194	0.405	0.334	0.179	0.151	0.225	0.270	-0.108	0.258								
Na	-0.440	0.008	0.505	-0.117	0.097	0.167	-0.038	0.185	0.433	0.170	0.298	0.443	0.436	0.013							
CEC	-0.102	-0.190	0.276	0.074	-0.164	-0.234	-0.457	-0.084	0.523	-0.063	0.006	0.870	0.333	-0.150	0.350						
BS	-0.713	0.351	0.541	-0.321	0.450	0.644	0.399	0.370	0.439	0.388	0.644	0.217	0.650	0.452	0.392	-0.142					
Cu	0.432	-0.531	-0.063	0.506	-0.346	-0.850	-0.684	-0.395	-0.090	-0.296	-0.744	0.219	-0.322	-0.341	-0.124	0.354	-0.546				
Zn	-0.605	0.653	0.167	-0.423	0.191	0.642	0.009	0.161	0.658	0.079	0.717	0.283	0.526	0.278	0.276	0.199	0.494	-0.556			
Mn	-0.625	0.612	0.222	-0.267	0.314	0.752	0.161	0.173	0.601	0.163	0.733	0.122	0.485	0.382	0.282	-0.007	0.577	-0.661	0.834		
Emg	-0.382	0.465	0.059	-0.367	0.443	0.877	0.596	0.229	0.169	0.314	0.748	-0.053	0.183	0.284	-0.018	-0.300	0.560	-0.790	0.556	0.657	
EP	-0.308	0.288	0.120	-0.210	0.509	0.749	0.638	0.291	0.052	0.353	0.630	-0.153	0.190	0.497	-0.158	-0.407	0.618	-0.644	0.339	0.508	0.823

Values in bold are different from 0 with a significance level alpha=0.05; BD=Bulk density; WHC= Water hydrolic capacity; SHC=Saturated hydraulic conductivity; SOC = soil organic carbon; AP= Available phosphorus; TN=Total nitrogen; Ca=Exchangeable calcium; Mg=Exchangeable magnesium; K= Exchangeable potassium; Na = Exchangeable sodium; CEC= Cation exchange capacity; BS= Base saturation; Cu= Extractable copper; Zn= Extractable zinc; Mn= Extractable manganese; Emg= Extractable magnesium; EP= Earthworm Population;