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Abstract  Artemisia wudanica is an endemic, perennial, pioneering psammophyte 24 

species in the sand dune ecosystems of western Horqin Sand Land in northern China. 25 
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However, no studies have addressed how sexual and asexual reproduction modes of A. 26 

wudanica perform at the transitional zones between active dune inter-dune lowlands 27 

and active dunes. In early spring, quadrats were randomly set up in the study area to 28 

monitor surviving seedling and/or ramet density and frequency coming from 29 

sexual/asexual reproduction of A. wudanica. Iron sticks were also inserted near each 30 

quadrat to determine wind erosion (WE) intensity. Additionally, soil samples were 31 

collected nearby each quadrat to test for soil moisture (SM) and organic matter (OM) 32 

contents, and pH, respectively. Surviving seedlings of A. wudanica showed an inverse 33 

response in comparison with ramets to SM, OM and WE. Soil moisture showed the 34 

most positive effect, and WE the negative effect, on surviving, sexual reproduction 35 

seedlings. Contrarily, WE had the most positive effect, and SM the negative effect, on 36 

asexual reproduction ramets. This suggests that increases in SM and decreases in WE 37 

should benefit recruitment of A. wudanica seedlings. On the contrary, ramets coming 38 

from asexual reproduction showed a different response to environmental factors in 39 

transition zone habitats. While SM was not a key constraint for the survival of 40 

seedlings, they showed a better, positive response to wind erosion environments. 41 

Overall, various study environmental parameters could be improved to foster A. 42 

wudanica invasion and settlement in the plant community through different 43 

reproductive modes, thereby promoting vegetation restoration and rehabilitation. 44 

 45 

 46 

Keywords：Sexual reproduction, Asexual reproduction, Redundancy analysis, Wind 47 
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Introduction 51 

Soil and vegetation are key components in the earth system (Raven et al., 1986; 52 

Poelking et al., 2015). In spite of this, abusive exploitation (e.g., overgrazing; 53 

intensive agriculture on fragile, coarse-textured soils) of these renewable natural 54 

resources has led to a lack of soil cover with vegetation, and subsequent soil and 55 

water losses from various types of ecosystems to a world-wide scale (Dregne and 56 

Chou, 1992; Fernández and Busso, 1999; Ni et al., 2015). As a result, large surface 57 

areas in the world have been transformed into deserts because of their exploitation 58 

rather than a sustainable utilization (Dregne and Chou, 1992). Therefore, an 59 

appropriate cover of the soil with vegetation is critical to prevent degradation, and 60 

desertification, of the renewable natural resources (i.e., soil, vegetation, water 61 

resources). This has been the subject of much research, for example, in China where 62 

useless desert, sandy areas constitute more than 27%, or 2.5 million square kilometers, 63 

of the country (Deming et al., 2014; Liu et al., 2014b). 64 

Transition zones in sand dune ecosystems are located between sand dune systems 65 

and other ecosystems, different types of sand dunes and dune slacks. Under different 66 

environments, and their special background, different types of transition zones show 67 

variation in their structure and function (Yan et al., 2007). In recent years, research 68 

about transition zones has greatly increased. This has been the result of the need of 69 

studies on vegetation recovery to disturbances and diversity conservation. These 70 

studies were located between sand dune systems and other ecosystems [i.e.: ocean - 71 

sand dune transition zones (Greaver and Sternberg, 2006); swamp - sand dune 72 

transition zones (Munoz-Reinoso, 2001); sand dune - shrubby transition zones (Lei, 73 

1998), and sand dune - forest transition zones (Sykes and Wilson, 1991; Oyama, 74 

1994)]. However, there are few studies about inner sand dune systems (i.e., active 75 
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sand dune -dune slack transition zones). 76 

Each dune slack can be a self-containing, transition zone unit (McLachlan et al., 77 

1996; van der Hagen et al., 2008). This is the result that while small parts of the 78 

surface area are subjected to wind erosion, transition zone surfaces are composed by 79 

wind erosion zones that formed in recent years. Slack dunes might be isolated among 80 

themselves, and the transition zones occur here as small, naturally fragmented 81 

systems in the whole dune landscape (Bossuyt et al., 2003). The environment 82 

contrasts with that on the adjacent active dunes, and fluctuates throughout the year, 83 

maintaining available water in the winter, but being prone to drought stress in summer 84 

(Stark et al., 2003). Transition zones between active sand dunes and dune slacks in 85 

south-western Horqin Sandy Land are characterized by a vegetation mosaic of 86 

psammophyte, limnocryptophyte-meadow and steppe species (Wang et al., 2015; Yan 87 

et al., 2007; Yan, 2007). This is where pioneer species establishment is the initiation 88 

of community succession (Allen and Nowak, 2008). Therefore, it is essential to 89 

elucidate how pioneer species respond to transition zone habitats at different growth 90 

stages. This will allow to gain decision-making guidelines which contribute to plant 91 

recovery after disturbance, and control of wind erosion.  92 

Because of their ecotone nature, transition zones ecosystems contain gradients in 93 

environmental conditions that span a wide range of variation. They frequently 94 

intensify or concentrate the flow and processing of materials; nutrient retention may 95 

also be related to their spatial pattern of variation (Traut, 2005). The spatial (e.g., area 96 

and perimeter) and soil edaphic (e.g., salinity, redox, moisture, texture) characteristics 97 

of the transition zones might reflect changes in species richness and distribution 98 

(Cantero et al., 1998; Helzer and Jelinski, 1999). Since transition zones might be 99 

important for specific species (Morrison, 2001), and are sensitive to climate changes 100 
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and human activities (Peters, 2002a; Puyravaud et al., 1994; Gehrig-Fasel et al., 2007), 101 

they have become a hotspot landscape unit for ecologists. However, for many 102 

transition zones, there is little understanding of the key processes that allow dominant 103 

species to persist at those zones, and how differences in these processes affect species 104 

responses to changes in environmental conditions (Peters, 2000, 2002b). 105 

Artemisia wudanica, a perennial psammophyte (Liu et al., 2014a), is a an endemic, 106 

major pioneering species in sand dune ecosystems of western Horqin Sand Land in 107 

northern China (Liu et al., 2007b; Yan and Liu, 2010; Wendurihu et al., 2013). It is 108 

typically found only in active dunes, where wind erosion and sand burial are severe 109 

and frequent (Liu et al., 2007a; Liu et al., 2014a). This species has unique adaptive 110 

and functional traits (Yan and Liu, 2010). It can reproduce through either seedling 111 

recruitment (sexual reproduction) or vegetative propagation (asexual reproduction; 112 

ramet production) (Eriksson, 1988; Liu et al., 2014a). There are many perennial buds 113 

on its rhizomes which may grow out to produce aboveground shoots. Artemisia 114 

wudanica can be found in Wengniute Banner and surrounding areas in the western 115 

Horqin Sandy Land, and it grows in either drifting or semi-drifting dunes as a 116 

sand-fixing plant species. The distribution area of this species is narrow (Wendurihu, 117 

2013), with a recession trend in recent years (Liu et al., 2014a).  118 

Liu et al. (2014a) indicated that erosion has negative effects on sexual reproduction 119 

of A. wudanica. However, whether these negative effects can extend to asexual 120 

reproduction is not known in this species. Also, the importance of knowing how 121 

various factors affect seedling frequency and abundance of A. wudanica was recently 122 

emphasized by Yan and Liu (2010). These authors found that the (1) number of 123 

pioneer species (e.g., A. wudanica) relative to total species number, and (2) 124 

abundance of pioneer species relative to total abundance decreased on active and 125 
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stabilized sand dunes as the surface area increased in wetland areas. Also, soil fine 126 

particles, soil organic C, total N and P concentrations, and formation of biological soil 127 

crusts increase with the stabilization of sand dunes (Zhang et al., 2004; Su et al., 128 

2005). Creation of these favourable habitats for typical dune wetland (and steppe) 129 

species also led to a high plant species richness in inter-dune lowlands (Zhang et al., 130 

2004; Su et al., 2005). However, Yan and Liu (2010) determined the local 131 

disappearance of the endemic, pioneer A. wudanica from inter-dune wetlands in 132 

stabilized dunes. This was because this species did not find suitable habitats in 133 

stabilized sand dunes, as a result of its adaptation to unstable substrates in active 134 

dunes. These authors reported that the increase in species richness after dune 135 

stabilization was at the cost of the loss of endemic, pioneering species.  136 

The importance of studying regenerative strategies on plants inhabiting active 137 

dunes in the Horqin Steppe, Inner Mongolia, norheastern China, was highlighted by 138 

Liu et al. (2014b). They reviewed various morphological, reproductive and/or 139 

physiological adaptations in response to sand burial, wind erosion or sand abrasion. 140 

These authors reported different regenerative strategies in three typical psammophytes 141 

(e.g., A. wudanica) of the Horqin Steppe in response to wind erosion. Achenes of the 142 

semi-shrub A. wudanica produce mucilage after being moistened (Liu et al., 2005) 143 

which holds sand to form a sand-binding agglomerate as a mechanism to protect 144 

psammophyte diaspores of being removed from the active sand dunes. Plants of this 145 

species fall down because of wind erosion and trap blowing sand. Thereafter, the 146 

buried, falling plants produce adventitious roots and form a cluster of emergent 147 

ramets on the active sand dunes (Liu et al., 2014b).    148 

We hypothesized that density coming from asexual reproduction of A. wudanica is 149 

different from that coming from sexual reproduction in transition zone habitats of 150 
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sand dune systems in northeastern Inner Mongolia, China. We investigated the 151 

density (and frequency) of A. wudanica coming from either sexual or asexual 152 

reproduction at those habitats in the field. The relationship between sexual/asexual 153 

reproduction versus environmental factors was also evaluated in the study species. 154 

The importance of our study lies in the need to understand the reproductive strategy of 155 

pioneering species (like A. wudanica), and is especially relevant if we want to manage 156 

and restore natural ecosystems properly. 157 

 158 

Materials and Methods 159 

Study area 160 

The study was conducted at the Wulanaodu region (42°29′～43°06′N, 119°39′～161 

120°02′E, approx. 480 m.a.s.l.) in south-western Horqin Sandy Land, Inner Mongolia, 162 

China. Climate is semiarid, the mean annual temperature is 6.3°C, and the frost-free 163 

period extends over 130 days. The coldest and hottest months are January and July, 164 

respectively. The mean annual precipitation is 340.5 mm, 70% of which falls between 165 

June and September. Mean annual wind velocity varies between 3.2 and 4.5 m s
-1

, and 166 

is dominantly from the north-west in March - May and the south-west in June - 167 

September. The area has been intensively grazed since 1950, and as a result 168 

overgrazing is the major force leading to its desertification. Mobile dunes, advancing 169 

to a rate of 5-7 m year
-1

, are widely distributed. In this region, not only sand dune 170 

movement, but also wind erosion and sand burial are very frequent (Wang et al., 171 

2015). In these wind-eroded zones, vegetation is composed of only a few pioneering 172 

plant species such as Agriophyllum squarrosum and A. wudanica, with a coverage of 173 

less than 15%. 174 

 175 
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Experimental design 176 

In early April 2011, we randomly selected three dune slacks in mobile dunes. Their 177 

size was either 2.06 ha or 1.62 ha or 1.10 ha. Height of sand dunes was approximately 178 

equal around these study areas. At each of the three transition zones (see Fig. 1) with 179 

a vegetation cover of less than 5%, we randomly set up nine 1m×1m quadrats.  180 

 181 

Wind erosion intensity 182 

Iron sticks (2 mm diameter, 200 cm height) were inserted near each quadrat to 183 

monitor wind erosion intensity (WEI) (Liu et al., 2014a). In 2011, aboveground height 184 

of the sticks was measured and recorded at 5-day intervals from early April to late 185 

May, before and after seedling emergence, respectively. At the end of the experiment, 186 

we obtained a measure of the erosion depth on the 27 iron stich following Liu et al. 187 

(2014a). 188 

 189 

Soil physicochemical characteristics 190 

Ten soil samples were taken nearby each quadrat (core diameter 7.0 cm, depth 20 cm) 191 

in late May 2011. These samples were first pooled and then subdivided into 0–10 cm 192 

and 10–20 cm soil layers. Each soil sample was air-dried and then sieved through a 5 193 

mm screen to remove stones, roots and rhizomes. Large aggregates were gently 194 

processed by hand during the screening procedure (Zhang et al., 2013). Sample 195 

splitting methods were applied to a total of 54 soil samples (1 pooled sample/quadrat 196 

x 2 depths/quadrat x 9 quadrats/replicate x 3 replicates). These samples, repeatedly 197 

divided into halves by coning and quartering until the desired sample size was 198 

achieved, were brought to the laboratory for analyses. They included (1) pH, 199 

measured using a potentiometer, and (2) organic matter content, determined using the 200 
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potassium dichromate heating method (Cao et al., 2011).   201 

Also in late May 2011, four soil samples were taken close to each quadrat (core 202 

diameter 7.0 cm, depth 30 cm); vegetation and litter were removed from these 203 

samples (Karle et al., 2004). Thereafter, these samples were first subdivided into 0–10 204 

cm; 10–20 cm, and 20–30 cm soil layers, and immediately taken to the laboratory for 205 

SM analysis. Thereafter, a total of 324 soil samples (4 samples/depth/quadrat x 9 206 

samples/depth/replicate x 3 sampling depths/sample x 3 replicates) were obtained at 207 

the field. Soil moisture content was determined by gravimetry following Brown 208 

(1995).  209 

 210 

Sexual and asexual reproduction 211 

The number of surviving either seedlings (i.e, sexual reproduction) or ramets (i.e., 212 

asexual reproduction) of A. wudanica was counted within each of the 27 (1 x 1m) 213 

quadrats in late May 2011. Remaining seed coats on surviving seedlings after their 214 

emergence facilitated to distinguish their counting. Whenever doubts arised for 215 

counting, soil was excavated to distinguish if individuals came from either sexual or 216 

asexual reproduction. Frequency and density were determined following 217 

Müller-Dombois and Ellenberg (1974), Liu et al. (2007a), and Wu et al. (2015). 218 

 219 

Data analyses  220 

One-way ANOVA was used to compare density and frequency between the two (i.e., 221 

sexual versus asexual) reproduction modes of A. wudanica. The mean number of 222 

surviving seedlings per square meter was taken as a measure of plant density (Wu et 223 

al., 2015). Data to determine density were transformed to √x+0.5 (Soakal and Rholf, 224 

1984) previous to analyses because neither seedlings nor ramets survived in many 225 
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quadrats/replicate (i.e., there were many 0 values); untransformed values are reported 226 

in Figures. Multi-way ANOVA analyses were applied using SPSS version 16.0. 227 

(SPSS for Windows, Version 16.0, Chicago, Illinois, USA) to determine correlations 228 

among WE, pH, OM and SM versus density of either surviving seedlings or ramets of 229 

A. wudanica at the transition zone habitats in active dune fields. Furthermore, 230 

Redundancy Analysis (RDA) using CANOCO software (2012) was used to gain 231 

insights of the relationship between the two reproductive modes of A. wudanica 232 

versus WE, pH, OM, and SM (Liu et al., 2015).  233 

 234 

Results 235 

Environmental parameters 236 

From early April to late May, WE reached 4.67 cm (Table 2). In late May, soil 237 

moisture content was 13% greater at 20-30 than 0-10 cm soil depth (Table 2). At this 238 

time, pH was 2.9% greater at 10-20 than 0-10 cm soil depth (Table 2). Despite WE 239 

showed a negative correlation with SM, OM, and PH, these correlations were 240 

non-significant (p>0.05; Table 3). Soil moisture content showed positive correlations 241 

with OM and pH1 but none of these correlations was significant (p>0.05). Soil 242 

organic matter at 10-20 cm and 0-20 cm soil depth was positively correlated (p<0.05) 243 

with pH at 10-20 cm soil depth (Table 3).  244 

 245 

Sexual and asexual reproduction  246 

We found 34 and 18 individuals coming from sexual and asexual reproduction, 247 

respectively, in all 27 plots. The mean density coming from sexual reproduction was 248 

51% higher (p<0.05) than that coming from asexual, vegetative reproduction (Fig. 2). 249 

Frequency was approximately 11% greater for surviving ramets coming from asexual 250 
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than for surviving seedlings originated from sexual reproduction, but differences were 251 

not significant (p>0.05; Fig. 2).  252 

 253 

Relationship between sexual or asexual reproduction and environmental 254 

conditions 255 

Sexual reproduction 256 

The first axis of the RDA analysis explained 78.3% of the variation between the 257 

production of surviving seedlings and the environmental factors (i.e., WI, SM, OM 258 

and pH; Fig 3). The second axis of such analysis, however, only explained 13.7% of 259 

such variation. The amount of variability explained by all canonical axes was 92%. 260 

Environmental factors showed a significant effect (p<0.05) on the density of 261 

surviving seedlings.  262 

The length and angle of the arrows with respect to the small dashed, vertical lines 263 

show the degree to which the environmental factors affected seedling density. In this 264 

analysis, it was found a positive correlation between seedling density and SM (0-10 265 

cm, 10-20 cm, 20-30 cm, 0-30 cm), OM (0-10 cm, 10-20 cm, 0-20 cm) , and pH 1 266 

(0-10 cm). At the same time, a negative correlation was observed between seedling 267 

density and WE and pH 2 (10-20 cm). Additionally, SM (0-10 cm, 10-20 cm, 20-30 268 

cm, 0-30 cm) was the most relevant (p<0.05) soil physical property among all study 269 

environmental factors to explain seedling density on A. wudanica.  270 

 271 

Asexual reproduction  272 

The first axis explained 73.6% of the variation between ramet density and the study 273 

environmental factors (Fig. 4). However, it was more strongly correlated with these 274 

biotic and abiotic factors than it was the first axis for sexual reproduction. The second 275 
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axis explained 18.6% of the variation, and it was partially correlated with ramet 276 

density and the environmental factors. The amount of variability explained by all 277 

canonical axes was 92.2%. Environmental factors had a significant effect (p < 0.01) 278 

on ramet density.  279 

Wind erosion intensity and pH 1 (0-10 cm) showed positive effects on ramet 280 

density (Fig. 5). However, SM (0-10 cm, 10-20 cm, 20-30 cm, 0-30 cm), OM (0-10 281 

cm, 10-20 cm, 0-20 cm), and pH 2 (10-20 cm) showed negative effects on such 282 

density. Additionally, WE was the most positive (p<0.05), relevant factor for ramet 283 

density. 284 

 285 

Discussion 286 

It is well known that vegetation recruitment occurs via sexual and asexual 287 

reproduction, depending on the species and the environmental conditions in the 288 

habitat, and that this recruitment is critical for vegetation regeneration and succession 289 

(Wu et al., 2011; Qian et al., 2014). Invasive clonal plants have two reproduction 290 

patterns, namely sexual and vegetative propagation (Qi et al., 2014). In Horqin Sand 291 

Land most plants can reproduce both sexually and vegetatively, and the balance 292 

between these two reproductive modes may vary widely between and within species. 293 

Such a balance contributes that A. wudanica is a successful endemic and major 294 

pioneering species in transition zone habitats of active sand dune fields in the sand 295 

dune ecosystems of western Horqin Sand Land in northern China. To date, studies 296 

were focused on seeds of A. wudanica (Li et al., 2012), and its frequency and 297 

abundance within dune slack areas (Yan and Liu, 2010), where sand burial 298 

compensates for A. wudanica seedling losses (Liu et al., 2014b). Compensation is 299 

achieved by the production of adventitious roots and emergent ramets, and 300 
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modification of the biomass partitioning to above- and below-ground organs in this 301 

species on active dunes (Liu et al., 2014a). However, no studies dealt with recruitment 302 

of A. wudanica in transition zone habitats. In these habitats, seedling and ramet 303 

densities of A. wudanica showed different relationships with various environmental 304 

parameters (WE, SM, OM, pH) (Figs. 3 and 4). Therefore, our hypothesis that density 305 

coming from asexual reproduction of A. wudanica is different from that coming from 306 

sexual reproduction in transition zone habitats was supported.  307 

The results that more sexual than asexual reproduction was found in all 27 study 308 

plots (Fig. 2) suggest that seeds play an important role in A. wudanica preservation in 309 

transition-zone habitats. Previous studies suggested, however, that A. wudanica 310 

population recruitment most often takes place from vegetative reproduction (Li et al., 311 

2012; Liu et al., 2014b). Similarly, Zhao et al. (2013) found that while asexual 312 

recruitment made a major contribution to the increase of total offspring number after 313 

fire, sexual recruitment contributed little to post-fire recovery in a semiarid perennial 314 

steppe of the Loess Plateau of north-western China; lack of sexual recruitment was 315 

not related to fire management but to inherent traits of the occurring plant species. Wu 316 

et al. (2013) also showed that rapid recovery after fire of an arid steppe on the Loess 317 

Plateau was mainly attributed to the removal of litter, which provided better 318 

microhabitats for the vegetative, asexual regeneration of perennial species. The higher 319 

density on sexual than asexual reproduction (Fig. 2) indicates that surviving seedlings 320 

most likely showed an aggregate spatial distribution in the soil. This is because this 321 

distribution pattern has been reported to facilitate growth of plant individuals within a 322 

patch (Holmgren et al., 1997; Schleicher et al., 2011). Ma et al. (2010) indicated that 323 
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the delay in seed dispersal, and maintenance of high seed viability, after maturation 324 

until the end of the windy season and the start of the next growing season is a 325 

mechanism which allows the adaptation of the psammophyte A. wudanica to sand 326 

mobility. Our results are consistent with the Redundancy Analysis (RDA) in that the 327 

density of surviving seedlings showed a maximum, positive correlation with SM at all 328 

study layers, and a negative correlation with WE (Fig. 3). Xue et al. (2014) reported 329 

that even though plant recovery was limited because of the low density and high 330 

mortality of seedlings during early stages after a disturbance, long-term plant 331 

development would be benefited to a population scale. 332 

Generally, low levels of nutrients in coastal dune soils limit plant growth (Gilbert et 333 

al., 2008). Nutrient constraints may play a role in limiting the ability of plants to 334 

respond to sand-drift activity (Gilbert et al., 2008). Wu et al. (2013) reported that 335 

nutrient availability was indirectly related to seedling recruitment on five Saussurea 336 

species (Asteraceae) from the Qinghai-Tibetan Plateau in China by influencing their 337 

seedling relative growth rate and root/shoot dry mass ratio. Our findings agree with 338 

those of Yan and Xu (2012) who showed that soil moisture was the most limiting 339 

factor in the course for vegetation invasion in transition zone habitats of semiarid sand 340 

dunes. In our study, recruitment from different reproduction modes showed different 341 

responses to environmental factors. It is well known that individuals coming from 342 

asexual reproduction are nourished by soil resources obtained via their mother plants 343 

(Pitelka and Ashmun, 1985; Marshall, 1990; de Kroon and van Groenendael, 1996), 344 

and that these plants can absorb more water and nutrients from the soil through their 345 
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flourishing roots. These studies might help explain why SM and OM depicted a 346 

negative effect on surviving ramet density in our study. The ability to get water and 347 

nutrients from the soil is rather weak on seedlings with undeveloped roots. This is 348 

why we found a positive correlation between the density of surviving seedlings and 349 

SM and OM. However, the correlation between the density of those surviving 350 

seedlings and WE was negative (Fig. 3). Water and nutrient limitation may play a 351 

significant role in limiting the ability of A. wudanica sexual reproduction to respond 352 

to wind erosion. 353 

Soils in the 0-10 and 10-20 cm layers were weakly alkaline (pH>7), and pH in the 354 

10-20 cm layer was slightly higher than that in the 0-10 cm layer (pH2>pH1) (Table 355 

2). It might be that calcareous groundwater and surface water could re-enter most 356 

slacks in spring, and this might have led to higher pHs in most slacks (Grootjans et al., 357 

2002). Our results also suggested that while pH1 (the topsoil) showed a positive effect 358 

on density resulting from sexual and asexual reproduction, pH2 had a negative effect 359 

on the density of both reproduction types (Fig. 3, 4); however, the negative effect on 360 

the density of ramets was so weak that it could be considered negligible (Fig. 4). This 361 

result would indicate that the density of surviving seedlings will decrease as soil pH 362 

increases in the 10-20 cm layer, and alkaline soils are unfavourable for the successful 363 

establishment from sexual reproduction. Contrarily, alkaline soils in the 10-20 cm soil 364 

layer had little effect on the establishment of asexually-originated individuals.   365 

 366 

Conclusion 367 

Artemisia wudanica showed different responses to environmental parameters between 368 

its two study reproduction modes. This partially indicates why A. wudanica is a major 369 
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pioneering sand dune species in the sand dune ecosystems of western Horqin Sand 370 

Land in northern China. This species can invade and establish in dune slacks through 371 

different reproductive modes with changes in environmental conditions. This study 372 

revealed that we could improve the various study environmental parameters to foster 373 

A. wudanica invasion and settlement through different reproductive modes, thereby 374 

promoting vegetation restoration and rehabilitation.  375 
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 591 

Table legends 592 

Table 1. Abbreviated codes for the species and environmental factors. 593 

 594 

Table 2. Wind erosion intensity and soil physicochemical characteristics for the plots 595 

sampled in the transition zone. Values are mean ± 1 S.E. of n= 27 for WE, and n=108 596 

for each SM depth, and n= 27 for each OM and pH depths.  597 

 598 

Table 3. Pearson correlation coefficients between environmental (i.e., intensity of 599 

wind erosion) and soil physicochemical variables (i.e., soil moisture and organic 600 

matter contents, and pH) at the study site. Correlations were either non-significant or 601 

significant at the 0.01 (**) or 0.05 (*) level. 602 

 603 

Figure legends 604 

Fig. 1. A sketch map showing the transition zone in inter-dune lowlands of an active 605 

sand dune system (modified from Yan et al., 2007). 606 

 607 

Fig. 2. Density [number of surviving either seedlings (sexual reproduction) or ramets 608 

(asexual reproduction) per m
2
] and frequency (%) coming from either sexual or 609 

asexual reproduction in the shrub A. wudanica. Histograms are the mean ± 1 S.E. of 610 

n=27. Different letters above histograms indicate significant differences at p<0.05. 611 

 612 

Fig. 3. Redundancy analysis (RDA) of the relationship between sexual reproduction 613 

of A. wudanica (i.e., seedling density) at the field and environmental factors. The 614 

amount of variability explained by all the canonical axes was 92% (F=3.520, 615 
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p=0.0100). Abbreviations for the study variables are given in Table 1. 616 

 617 

Fig. 4. Redundancy analysis (RDA) of the relationship between asexual reproduction 618 

of A. wudanica (i.e., ramet density) at the field and environmental factors. The 619 

amount of variability explained by all the canonical axes was 92.2% (F=2.864, 620 

p=0.0080). Abbreviations for the study variables are given in Table 1. 621 

 622 

 623 

 624 

 625 

 626 

 627 

 628 

 629 

Table 1  630 

 Abbreviated 

code 

Life form Full name 

1 Ar.wu. SS Artemisia wudanica 

2 WE — wind erosion intensity（cm） 

3 SM 1 — soil moisture of 0-10 cm layer 

4 SM 2 — 
soil moisture of 10-20 cm 

layer 

5 SM 3 — 
soil moisture of 20-30 cm 

layer 

6 SM 4 — soil moisture of 0-30 cm layer 

7 OM 1 — 
organic matter of 0-10 cm 

layer 

8 OM 2 — 
organic matter of 10-20 cm 

layer 

9 OM 3 — 
organic matter of 0-20 cm 

layer 

10 pH 1 — pH of 0-10 cm layer 

11 pH 2 — pH of 10-20 cm layer 

 631 
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Table 2 632 

 
WE 

(cm) 

SM1 

(%) 

SM2 

(%) 

SM3 

(%) 

SM4 

(%) 

OM1 

(%) 

OM2 

(%) 

OM3 

(%) 
pH1 pH2 

Mean 4.67±1.00 6.10±1.35 6.48±1.23 7.01±1.64 6.53±1.39 0.016±0.00 0.016±0.00 0.016±0.00 7.32±0.01 7.54±0.06 

 633 
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 634 

Table 3 635 

environmental 

parameters 
WE(cm) SM1 SM2 SM3 SM4 OM1 OM2 OM3 pH1 pH2 

WE(cm) 1 - - - - - - - - - 

SM1(%) -0.170 1 - - - - - - - - 

SM2(%) -0.212 0.969** 1 - - - - - - - 

SM3(%) -0.203 0.962** 0.965** 1 - - - - - - 

SM4(%) -0.197 0.988** 0.988** 0.989** 1 - - - - - 

OM1(%) -0.202 0.164 0.083 0.179 0.147 1 - - - - 

OM2(%) -0.198 0.269 0.190 0.304 0.263 0.888** 1 - - - 

OM3(%) -0.206 0.229 0.147 0.256 0.218 0.964** 0.978** 1 - - 

pH1 -0.045 0.293 0.286 0.299 0.297 -0.132 -0.124 -0.131 1 - 

pH2 -0.279 -0.026 -0.048 0.015 -0.017 0.334 0.460* 0.416* -0.063 1 

 636 

 637 

 638 

 639 

 640 

 641 

 642 

 643 

 644 

 645 

 646 

 647 

 648 

 649 

 650 

 651 

 652 

 653 
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Fig. 1  665 
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