
1 

 

Phase Segmentation of X-Ray Computer Tomography Rock 

Images using Machine Learning Techniques: an Accuracy 

and Performance Study 

Swarup Chauhan
1
, Wolfram Rühaak

1,2
, Hauke Anbergen

3
, Alen Kabdenov

3
, Marcus Freise

3
, 

Thorsten Wille
3
, Ingo Sass

1,2
 5 

1
 Department of Geothermal Science and Technology, Institute of Applied Geosciences, Technische Universität 

Darmstadt, Germany  
2
 Darmstadt Graduate School of Excellence Energy Science and Engineering, Technische Universität 

Darmstadt, Germany 
3
 APS Antriebs-, Prüf- und Steuertechnik GmbH, Göttingen Rösdorf, Germany 10 

Correspondence to: Wolfram Rühaak (ruehaak@geo.tu-darmstadt.de, w.ruehaak@online.de) 

Abstract. Performance and accuracy of machine learning techniques to segment rock grains, matrix and pore 

voxels, from a 3D volume of X-ray tomographic (XCT) grey-scale rock images was evaluated. The 

segmentation and classification capability of unsupervised (k-means, fuzzy c-means, self-organized maps), 

supervised (artificial neural networks, least square support vector machines) and ensemble classifiers (bragging 15 

and boosting) was tested using XCT images of Andesite volcanic rock, Berea sandstone, Rotliegend sandstone 

and a synthetic sample. The averaged porosity obtained for Andesite (0.15 ± 0.017), Barea sandstone (0.15 ± 

0.02), Rotliegend sandstone (0.14 ± 0.08), synthetic sample (0.50 ± 0.13) is in very good agreement to the 

respective laboratory measurement data and varies by a factor of 0.2. The k-means algorithm is the fastest of all 

machine learning algorithms, whereas least square support vector machine is the most computationally 20 

expensive. Assessment of accuracy by entropy and purity values for unsupervised techniques; mean squared 

root error, receiver operational characteristics (to train the classification model) for supervised techniques; and 

10-fold cross validation for the ensemble classifiers was performed. In general, the accuracy was found to be 

largely affected by the feature vector selection scheme. As it is always a trade-off between performance and 

accuracy, it is difficult to isolate one particular machine learning algorithm which is best suited for the complex 25 

phase segmentation problem. Therefore, our investigation provides parameters that can help selecting the 

appropriate machine learning techniques for phase segmentation. 

1 Introduction 

Accurate segmentation of different phases from X-ray computer tomography (XCT) rock images is a well know 

and complex problem in the digital rock physics community (DRP). The assessment and accurate segmentation 30 

of different phases from the XCT rock images is crucial for a reliable prognosis of the transport processes, 

elastic and electric properties; simulated using digital rock physics (DRP) models (Iassonov et al., 2009). The 

segmentation problem is reduced to the need to quantify the binary solid-void phase distribution (i.e., a 

binarization problem); choosing an appropriate scheme to binarize an image is key to characterizing a porous 

space with a good degree of accuracy and further decreasing the magnitudes of the uncertainties involved in 35 

determining the geometries of pore networks (Leu et al., 2014). Therefore, machine learning (ML) techniques 

provide a promising alternative to segment and classify different voxel phases from XCT rock images. Based on 

Solid Earth Discuss., doi:10.5194/se-2016-44, 2016
Manuscript under review for journal Solid Earth
Published: 1 April 2016
c© Author(s) 2016. CC-BY 3.0 License.



2 

 

the heterogeneity of the sample the user can employ different ML techniques to obtain the best segmented 

image(s) which can be further used for simulating physical processes. 

In Chauhan et al. (2016) a workflow was developed to segment XCT images using unsupervised, supervised and 

ensemble classifiers ML techniques (Figure 1). The focus of this study is to assess the performance and 

accuracy of the above mentioned ML techniques to segment rock grain, matrix and pore phases in 5 

heterogeneous rock samples such as Andesite, Berea sandstone, Rotliegend sandstone and synthetic sample 

containing micro porosities.  

2. Experimental Approach 

For this study Andesite (Tongariro National Park, New Zealand), Berea sandstone (Andrä et al., 2012), 

Rotliegend sandstone (Rotliegend Germany) and Synthetic sample Musli (provided by APS Antriebs, Prüf und 10 

Steuertechnik Gmbh Göttingen Rösdorf Germany) were used. Figure 2 shows the rock samples and respective 

histogram plots obtained from the XCT raw files. Effective porosity of Andesite (17 ± 2 %) and Rotliegend 

sandstone (14 ± 2 %) was measure using a GeoPyc pycnometer (Micromeritics Instrument Corporation 

Norcross, GA, USA). Thin section analysis using polarized microscope revealed Andesite has a porphyritic 

texture with large plagioclase crystals (up to 3 mm in diameter), pyroxene in a cryptocrystalline matrix, and 15 

isolated vesicles up to 6 mm in diameter (Chauhan et al., 2016). Whereas, Rotliegend Sandstone had different 

grain size (between 0.5 to 5 mm) of fine sand and gravel, with monocrystalline quartz 26 %, poly-crystalline 

quartz up to 35 % , Feldspate 8 %, sedimentary volcanic lithoclast grains 9 % along with 13 % cement (Aretz et 

al., 2013). Andrä et al., 2012 confirms that the porosity of the Berea sandstone (total porosity 19.97 %; TM 

Petroleum Cores Ohio USA) was performed using Helium Pycnometer 1330 (Micrometrics Instrument Corp. 20 

Belgium) and a mercury porosimetry using Pascal 140+440 Mercury Porosimeter (Thermo Electron 

Corporation, Germany). Madonna et al. (2012) scanning electron microscope revealed Berea Sandstone has 

Ankerite, Quartz, Zircon, K-spar and Clay. The Synthetic sample contained large pores, micro pores and 

mineral grain. 

Andesite volcanic rock and Rotliegend sandstone where imaged using custom-built XCT scanner based on CT-25 

Alpha system (ProCon, Sarstedt Germany) at the institute for Geoscience laboratory in Mainz Germany. The 

samples were scanned by applying X-ray energy of 110 keV and using a prefilter of 0.3 copper. During the 

reconstruction of the projections noise filter was not used. The projections were Radon-transformed in 

sinograms, thereafter converted through back-projection into tomograms. These stacked tomograms resulted in a 

16-bit 3D imagery, with a resulting voxel resolution of 13 µm and 21 µm for Andesite and Sandstone 30 

respectively. Andesite required no beam hardening correction (BHC), whereas BHC for Sandstone was done 

based on regression analysis using 2D paraboloid fitting. Finally, the tomograms are saved in raw format. 

The Berea sandstone dataset was obtained from GitHub FTP server (https://github.com/cageo/Krzikalla-2012). 

Andrä et al. (2012) performed XCT scans at tomographic microscopy and coherent radiology experiment 

(TOMCAT) (Stampanoni et al., 2006) beamline at Swiss Light Source (Paul Scherrer Institute, Villigen, 35 

Switzerland). The beam energy was tuned for best contrast at 26 keV with an exposure time of 500 ms to 

retrieve a magnification of factor 10 (Andrä et al., 2012). The projections were magnified by microscope optics 

and digitized by high resolution CCD camera (PCO.2000), to obtain images of elements 1024 x 1024x 1024 
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with voxel resolution of 0.74 μm. Tomographic images were reconstructed from the by applying Fourier 

transform (Marone et al., 2009), were saved in desired file formats (Andrä et al., 2012). 

3 Machine learning and image processing 

The main focus of this study is to demonstrate the computational performance and accuracy of the different 

machine learning (ML) algorithm to segment/classify different phases in XCT rock samples - meaning, to map 5 

pixels of similar values in to respective classes. ML algorithms rely of features; features are a set of instances 

which contains descriptive information based on which the ML algorithm trains it classification model and 

further identifies these features in an unknown dataset and group them in to respective classes. Which in our 

case are the associated feature values of noise, rock grain, matrix and pore voxels. ML algorithms in general fall 

in to categories of unsupervised, supervised and ensemble classifiers.  10 

3.1 Unsupervised techniques 

In the unsupervised technique k-means (MacQueen, 1967), fuzzy c-means (FCM) (Dunn, 1973) and self-

organized maps (SOM) (Kohonen, 1990) were used for segmentation pore, mineral and matrix phases. k-means 

is one of the simplest unsupervised ML algorithms commonly used to address clustering problem. The k-means 

algorithm through an iterative scheme calculates the Euclidean distance between the data point (pixel value) to 15 

its nearest centroid (cluster). The algorithm converges when the mean squared root error of Euclidean distance 

reaches minimum, that is, when no further pixel is left to be assigned to the nearest centroid (cluster). The 

performance of the k-means algorithm is strongly governed by the initial choice of the cluster centres. The k-

means has the tendency to terminate without identifying the global minimum of the objective function (Chauhan 

et al., 2016). Therefore, it is recommended to run the algorithm several times to increase the likelihood that the 20 

global minimum of the objective function will be identified.  

Unlike k-means, in the FCM iterative scheme each data point can be a member of multiple clusters by varying 

the membership function (Jain, 2010 and Jain et al., 1999). The FCM clustering procedure involves minimizing 

the objective function  

𝐽𝑓𝑐𝑚 (𝑍; 𝑈; 𝑉) =  ∑ ∑ (𝜇𝑖𝑗)𝑚𝑘
𝑖=1

𝑛
𝑗=1  ‖𝑥𝑖

(𝑖) − 𝑐𝑘‖
2

 (1) 25 

where 𝑐𝑘 =  ∑ 𝑢𝑖𝑗𝑥𝑖
𝑛
𝑗=1   

 

Where 𝑐𝑘   is the 𝑘𝑡ℎ fuzzy cluster centre, 𝑚 is the fuzziness parameter (for 𝑚 = 1 FCM simplifies to k-means), 

𝑚. 𝑢𝑖𝑗 is the membership function. In our context, if we consider the entire raw image as a fuzzy set of data 

points (pixel values), which lie very close to each other - FCM uses membership criterial to “loosely” or 30 

“tightly” isolate subsets of rock grains, matrix and pore phase. Membership function influences the segregation 

of intersection subsets of values that lie in between rock grains/matrix phases for densely packed pixels 

(Rotliegend sandstone) and pore throat/matrix phases for micro pores dataset (Synthetic sample Musli). FCM 

can be a better choice in comparison to k-means; but it has a tendency to converge to the local minima of the 

objective function. Therefore, it is vital to test range of membership values in combination with several 35 

centroids (classes) for accurate analysis (Cannon et al., 1986). 
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For detailed description of SOM the reader is recommended to Kohonen (1990) and Chauhan et al (2016). SOM 

procedure uses a competitive learning process based on an artificial neural network framework (ANN). In our 

context, a raw CT image is considered as input pattern, which has to be classified. SOM first arranges nodes 

(called as neurons) in one of the desired topologies (grid, hexagon, or random topology; as specified by the user) 

and assign random weight (values). These nodes are trained using the pixel value of the CT image(s), iteratively 5 

using Kohonen rule (Kohonen, 1990).  During this competitive learning process the difference between the 

nodal weight and the neighbouring pixel(s) is calculated. The iterative process stops when the difference reaches 

to a minimum. The amount of adaptation of the nodal weight to its neighbouring values can be influenced and 

monitored using learning rate parameter 𝛼. The nodes that do not change to it surrounding value are classed as 

winner nodes. These winner nodes are nothing but different classes in the segmented image. 10 

The unsupervised algorithms were configured to perform segmentation of three to seven classes. These classes 

in one-dimensional feature space are the non-overlapping segments of pixel bins in a histogram. Filter based 

feature vector selection (Euclidian and Manhattan distance function) were used to initialize centroids for k-

means, FCM and SOM. In the case of FCM different degree of membership values [1.10 to 1.85] were tested to 

‘loosely’ or ‘tightly’ segregate pixel values between rock grains and matrix phase. Grid topology was chosen in 15 

the case of SOM. 

3.2 Supervised techniques 

In the supervised category feed forward artificial neural Network (FFANN) (Jain et al., 1999) and least square 

support vector machine (LS-SVM) (Suykens and Vandewalle, 1999) were used to classify rock grains, matrix 

and pore phases (Chauhan et al., 2016). In general, the supervised algorithms rely on a classification model 20 

which has to be trained using example set of data that represent each class.  

ANN is an information processing paradigm that mimics the behaviour of the human brain (Haykin, 1994). 

FFANN is based on the ANN framework and uses so called error back propagation algorithm (Hopfield, 1982). 

FFANN can be used for any input-output mapping problem but is best suited for modelling linear and nonlinear 

problems. In our case The XCT dataset was partitioned in to training and testing dataset. Thereafter, FFANN 25 

was setup with input layer, one hidden layer and output layer. The hidden layer was assigned 10 nodes, and the 

nodes of input and output layer varied depending on training and testing slices. The k-means, FCM segmented 

dataset were used as feature vector to train the classification model using Levenberg-Marquardt 

backpropagation method (Levenberg, 1944; Marquardt, 1963). The classification model was tuned using ten-

fold cross validation function (repeated trained and testing) and the misclassification rate was determined using 30 

mean squared root error (MSE). Once the classification model reached optimal accuracy it was tested on rest of 

XCT raw slices.  

For LS-SVM a training data set was created, which contained range of pixel values which best represented pore, 

mineral, matrix and noise regions, these pixel ranges where further labelled in to different classes, which ranged 

from one to seven. For FFANN and LS-SVM the models were tuned using ten-fold cross-validation function 35 

(repeated training and testing) and misclassification rate was determined using mean square root error (MSE) in 

the case of FFANN. Once the classification model reached an optimal performance threshold it was tested on 

rest of the XCT slices. 
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3.3 Ensemble classifiers techniques 

In the ensemble classifier technique RUSBoost and Bragtree algorithms are used (Seiffert et al., 2008; Breiman, 

1996) to classify pore, rock grains and matrix phases (Chauhan et al., 2016). In general ensemble classifiers are 

a ‘bootstrap aggregation’ of different weak classifiers. The main difference between Bragging and RUSBoost is 

the way they train their weak classifiers. Bragtree is an iterative scheme, classifiers are trained with randomly 5 

chosen samples from the training data set, in the second step the misclassified instances are collected and its 

classifiers are retrained until the misclassification error is minimized. Whereas, RUSBoost sequentially trains its 

classifiers using the whole training set, essentially focusing on retraining inaccurate classifiers with the large 

data set until its misclassification error is minimized. The ensemble classifiers where trained using the same 

feature vector (FV) which was used for LS-SVM, with a minimum leaf size of five and learning rate of 0.1.  10 

3.4 Feature selection 

In a practical rock CT segmentation/classification task a set of apriori information in the form of most useful 

pixel values is given to ML algorithms for segmentation or training the classification model. This dataset 

containing apriori information is termed as feature vectors (FV). For unsupervised k-means, FCM, SOM a set of 

ten XCT images were used to develop the FV. For FFANN five images out of ten were used to train the 15 

network; for LS-SVM and ensemble based classifiers different subset of pixels representing the pore, mineral, 

matrix and noise regions were used as feature vectors. The total number of pixel used to train and test each ML 

algorithm is shown in Table. 1 

3.5 Performance and Accuracy 

Computational performance was measured in terms of the segmentation and classification speed of the ML 20 

algorithms. Test were performed on Windows Server 2008 R2 Standard 64-bit Operating System, with two six-

core processor Intel Xenon, CPU (E645, 2.40 GHz) and installed memory (RAM) of 48.0 GB. For unsupervised 

techniques accuracy or cluster validation was studied to identify ideal class(es), representing the ‘best’ porosity 

values and to compare the clustering approaches. External validation measures ‘Purity’ and ‘Entropy’ was 

performed on all the pixels corresponding to the classes’ three to seven. The Purity and Entropy measure the 25 

ability of the clustering method to recover the know classes, despite number of classes are different from 

number of segmented classes (Jain et al., 1999). Purity is a real number between [0, 1], the larger the purity 

values, the better is the clustering method. Conversely, the lower the entropy value, the better is the clustering 

performance. In the case of FFANN, an objective method to determine the critical classification is by 

calculating the mean square root error (MSE) between the output and the targets. The lower the MSE value, the 30 

better is the classification; zero corresponds to no misclassification. For LS-SVM receiver operation 

characteristics (ROC), a curve was plotted to compute the accuracy. This ROC curve gives the quality of the 

classification model. It shows a trade-off between the sensitivity of the classification model, with respect to the 

accuracy with which it can classify unknown data set. The area under the ROC curve represents the accuracy of 

the classification model. The area of 1 represents a prefect classification; an area of 0.5 represents a 35 

misclassification (Khan et al., 2016). In case of Bragging and Boosting misclassification cost of the ensemble 

classifiers is estimated using 10 K fold cross-validation techniques. 
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4 Results and discussions 

4.1 Porosity and pore size distribution 

The porosities which were determined from the stack of ten XCT slices for three to seven classes using different 

ML techniques are shown in the Figure 3. The estimated porosity is the ratio between the pore phase voxels and 

entire sample volume multiplied by 100. In general, the porosity using unsupervised ML techniques agree well 5 

for all the four samples within ±1.2 % for each class. For Andesite, Berea, sandstone, Rotliegend sandstone and 

Musli, the averaged estimated porosity sum over all classes is 15.8 ± 2.5 %, 16.3 ± 2.6 %, 13.4 ± 7.4 % and 48.3 

± 13.3 % respectively. This is in good agreement to the experimental porosity values obtained for Andesite, 

Rotliegend sandstone using GeoPycpynometer and Berea Sandstone as reported in Ändra et al. (2012). The 

large standard deviation in the case of sandstone and Musli is caused by FCM segmentation scheme. When the 10 

membership function is tightly constrained [1.10, 1.35] the segregation between pore phase voxels and pore 

throat voxels is underestimated contributing to the increase in porosity. Conversely, when membership function 

loosely constrained [1.60, 1.85] pore throat and micro pores are segmented as matrix phases resulting in 

decrease in porosity and increase in matrix phase, which is clearly visible in the volume fraction plot of 

Sandstone and Musli in Figure 4. The low standard deviation in the estimated porosity values of Andesite is due 15 

to the absence of micro porosity and interconnected pores. The pore, mineral and matrix phases are distinct from 

each other therefore the ML techniques have less difficult in segmentation and classification. Figure 5 shows the 

segmented images using unsupervised technique and respective volume rendered images.  

Pore size distribution (PSD) of Andesite, Sandstones and Musli was computed using the method suggested by 

Rabbani et al. (2014). The segmented grey scale images where first converted to binary images using 20 

thresholding technique. Morphological and filtering operations were performed based on the complexity of the 

segmented images. Distance transform to convert the bright area into catchment basin and later watershed 

transformation was performed to segment the pore boundaries. Figure 6 shows the PSD and average pore radius 

of Andesite, Berea sandstone, Rotleigend sandstone and Musli from k-means segmented images. 

4.2 Performance and Accuracy analysis 25 

Performance in the form of computational time is tabulated in Table 2. k-means algorithm is the fastest among 

all the ML techniques because segmentation of phases into different classes is based on nearest neighbourhood 

distances measurements; unlike other ML techniques (exception FCM), where the classification is governed by 

classification models. 

In case of supervised techniques the computational speed is correlated to the size of the feature vector used for 30 

training the classification model and post processing of the unknown dataset. One reasons is that supervised 

techniques are based on a ‘single’ classification model; training and cross validation of the model with a large 

amount of feature vectors consumes time. This can be correlated to the high computational time of the Andesite 

sample using FFANN, were five slices were used to train the classification model compared to other samples 

where the classification model was trained using only one slice. For LS-SVM – as feature vector pixels are less 35 

than 1 % of the total pixel values for the all the samples – the training of the classification model took 1 to 10 

minutes. The high computational time was consumed in post processing, large unknown dataset using the 

trained model. In the case of ensemble classifiers the post processing of an unknown dataset took longer 

compared to the training of the respective (bootstrapped weak) classification schemes. As the Rotliegend 
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sandstone is densely packed with very low porosity, it resulted in low contrast and badly resolved XCT dataset. 

As a consequence, the individual (weak) classification models required more computational time to reach to a 

consolidated nearly accurate well classified result. Therefore, the processing time of Rotliegend sandstone 

images by ensemble classifiers was higher compares to other XCT samples. 

Our clustering problem is to determine the most appropriate class for each phase. That is, we wish to identify 5 

which of the unsupervised ML technique satisfies properties of “cluster homogeneity” (i.e. not mixing items 

belonging to different categories) and “cluster completeness” (i.e. how good items belonging to same categories 

are group together) defined by Amigó et al. (2008). Therefore, the metrics entropy and purity were chosen to 

evaluate the accuracy of unsupervised ML techniques. The entropy values were calculated using 3D stack of ten 

slices for each class and are shown in Figure 7. In general class three and four have the lowest entropy values 10 

compared to other classes. This shows that if cluster homogeneity is over-segmented and cluster completeness 

gets violated this may lead to misclassification. Among the three unsupervised ML techniques, k-means has the 

lowest entropy values therefore it can be assumed that k-means performs the best segmentation compared to 

SOM and FCM. 

For FFANN the accuracy was interpreted using the MSE error shown in Figure 8. FFANN was trained using k-15 

means and FCM and was tested on raw XCT images of the respective samples. The testing dataset (3D stack of 

raw images) was scaled between three to seven class values before the start of the testing cycle. In the case of 

Berea, Rotliegend and Synthetic sample, when the membership function was tightly constrained to 1.10, FCM 

was able to segment, pore, matrix and mineral grain phases into maximum of three and four classes. Similarly, 

on moderate (1.60) and loose constrained (1.85) membership function FCM yield maximum of five, six and 20 

seven classes respectively. This explains the variance in the number of dataset used for validation of FFANN. 

The lower the MSE value, the better is the accuracy; the accuracy decreases with over classification (for class 

five to six). Different settings such as, increase of the number of training slices up to five and increasing the 

number of neuron from ten to thirty did not shown any significant improvement in the accuracy. Among all the 

XCT samples, the worst accuracy was found for Rotliegend sandstone. Based on our analysis, we suggest that 25 

FFANN may not be the best suited ML technique for clustering analysis. 

In the case of LS-SVM, the low variance seen in the porosity values up to class six, is the indication that LS-

SVM is one among the most suitable ML technique for phase segmentation analysis of XCT images. As the 

hand-picked feature vector dataset of class four had an appropriate mix of all the phases and desired amount of 

noise, it gave the best trade-off between quality and speed. Hence we show the accuracy of LS-SVM for 30 

classification of class four using ROC curve (Metz, 1978) in Figure 9. The slope of the ROC curve gives the 

accuracy of classification. The accuracy ranges between 77 % for Berea sandstone, 88 % for Rotliegend 

sandstone and 90 % for Andesite and Synthetic sample Musli. Up to 100 % accuracy in achieved in 

discriminating the pore phase with respect to mineral and matrix phases.  

Ensemble classifiers also show low variance in the porosity values as LS-SVM because of the same feature 35 

vectors used. The accuracy of the ensemble classifiers were tested using 10 K fold validation technique 

(Quinlan, 1996) is shown in Figure 10. Both Bragging and Boosting classifiers where trained using the training 

data set. The training dataset comprises of the pixel values representing pore, mineral, matrix, noise phases and 

feature vectors. The initial growth of the leaf size was started with five and the corresponding weak classifiers 

were trained up to thousand iterations. On the onset of the 10 K fold validation procedure the training dataset 40 
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was mixed in a random order, thereafter the dataset was partitioned in to chucks of 10 blocks. Using a for-loop 

with an increment of from one to ten, the classifier was trained with the examples which did not belong to the i
th

 

fold and tested with the examples of the i
th

 fold. The accuracy was determined by computing the mean square 

root error of number of pixels which were wrongly classified to the total number of pixels. The best accuracy 

was achieved for Andesite and Musli XCT (with an exception for class six) images and the worst for Rotliegend 5 

sandstone going up to 0.56. 

Conclusions 

In this study the performance and accuracies of ML techniques were validated and relative porosity and pore 

size distribution of Andesite (altered minerals), Berea sandstone, Rotliegend sandstone (inter connected pores) 

and Musli (micro porosity) rock samples were computed. The total averaged porosity values obtained using 10 

unsupervised, supervised and ensemble classifiers are shown in Figure 11 and are in good agreement with the 

experimental values obtained using GeoPycpynometer and data reported in Ändra et al. (2012). The high 

standard deviations up to 13 % seen in the case of Synthetic sample Musli can be attributed to the 

misclassification caused by ensemble classifiers in class six, seen in Figure 3.  

Our analysis shows unsupervised ML techniques perform well with filter based feature extraction techniques. In 15 

terms of computational time, k-means outperforms all the other ML techniques. Fuzzy c-means can distinguish 

well between pore and pore-throat boundaries, given that the membership function is loosely constrained 

between 1.60 - 1.85. It was found that different tuning parameters (such as different FCM membership criteria 

and different SOM topologies and distance functions) need to be tested for the unsupervised techniques. A SOM 

topology “gridtop” layout (neurons arranged in a grid format) and a SOM Manhattan distant function (sum of 20 

the absolute difference) gave consistent results and FCM membership function between [1.35 - 1.85] gave 

consistent results. Low entropy values of k-means indicates that k-means is more accurate compared to fuzzy c-

means and self-organized maps. 

In the case of supervised techniques the computational time was significantly improved by reducing the training 

dataset of feed forward artificial neural networks (FFANN) and by careful selection of feature vector dataset for 25 

least square support vector machine (LS-SVM). Based on our analysis we conclude that FFANN may not be 

best suited for clustering analysis; due to difficulty in scaling the training dataset (XCT raw files), the 

interpretation of clustering labels and accuracy becomes extremely difficult. Additionally, the accuracy in terms 

of mean square root error of the validation cycle (training and repeated testing) is largely regularized by fine and 

coarse scaling of the testing dataset, which may not always correspond to the image classification. As a 30 

consequence, there were cases where despite low accuracy (high MSE error) the classification performed by 

FFANN was good. On the contrary LS-SVM showed to be one of the best and accurate supervised ML 

technique for phase segmentation problem. However, it strongly relies on the craft with which the feature vector 

dataset is constructed. The user has the flexibly to decide which phases or feature are most relevant for phase 

segmentation. The authors suggest using the histogram plot of the raw image or k-means (or any other 35 

unsupervised ML technique) as an orientation for feature vector selection. It is further recommended that the 

first and second class labels (ex. class three and class four) should contain predominantly phases such as pore, 

matrix, mineral and noise pixels. Consequently, other interesting feature pixels can be included. A suitable 

balance has to be found, such that the classifier is not excessively trained on one particular feature and get stuck 
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in local minima. Thereafter, the receiver operation characteristic (ROC) curve validation technique is best suited 

for accuracy assessment of LS-SVM. 

Ensemble classifier can be the second best alternative to tackle phase segmentation problems as it also relies on 

the feature vector dataset to train the classification model; therefore, the user has more control over the 

classification scheme. However, the weak learners involved in the ensemble classification scheme remain as 5 

black-box to a large extent; therefore, appropriate tuning of the individual weak learners to optimise 

computational speed and accuracy may be cumbersome. To have a better control over the ensemble 

classification scheme, and for future work we suggest an ensemble classifier with k-means, FCM and LS-SVM 

as weak learners.  

 10 
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Figure 1. Schematic diagram of the work flow (after Chauhan et al., 2016). 

 

Figure 2. The top panel shows the Andesite and Rotliegend sandstone rocks used for XCT measurements. Middle panel 

shows the raw images of Andesite (16bit), Rotliegend sandstone (16 bit), synthetic sample (16 bit) and Berea sandstone (16 5 
bit). Mineral composition of Andesite and Rotliegend sandstone was determined from thin sections using polarized 

microscope. Bottom panel shows, histogram plot of the respective samples. Mineral composition of Berea sandstone is based 

on Madonna et al. (2012) and Andrä et al. (2013). 
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Figure 3. Relative porosity values obtained using unsupervised, supervised and ensemble classifier techniques for respective 

samples. 

 

 5 

Figure 4. Total volume fraction plotted for respective samples 
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Figure 5. The top, middle and last panel show the 2D segmented images and volume rendered plots of respective samples 

using unsupervised networks (Andesite figure has been modified after Chauhan et al 2016). 
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Figure 6. The right panel shows relative porosity using machine learning algorithms for different rock samples. Middle 

panel shows the volume fraction of different phases quantified using machine learning techniques and the right panel show 

the pore size distribution of different sample using watershed technique.  5 
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Figure 7. Entropy values of unsupervised techniques plotted for respective samples. 

 

Figure 8. Mean square root error values of feed forward artificial neural network obtained for respective samples. 

 5 
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Figure 9. Receiver operational characteristic curves depicting the accuracy of least square support vector machine multi 

classification scheme for class four. 
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Figure 10. Accuracy of ensemble classifiers Boosting and Bragging calculated using 10 K-fold validation for respective 

samples.  

 

  5 
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Figure 11. Mean porosity value obtained using supervised, ensemble classifiers and unsupervised machine 

learning techniques. 

 

Table 1. The number of pixels used for training and testing the classification model. 5 

Type of classifiers 

Andesite Rotliegend Sandstone 

No. of 

training 

pixels 

No. of testing 

pixels 

No. of training 

pixels 

No. of testing 

pixels 

k-means  31,577,290  13,681,600 

fuzzy c-means 

 

31,577,290  13,681,600 

self-organized maps 

 

31,577,290  13,681,600 

artificial neural networks 15,788,645 31,577,290 6,840,800 13,681,600 

least square support vector machine 2077 31,577,290 1511 41,943,040 

Bragging and Boosting 2077 31,577,290 1511 41,943,040 

Type of classifiers 

Synthetics sample (Musli)  Berea sandstone 

No. of 

training 

pixels 

No. of testing 

pixels 

No. of training 

pixels 

No. of testing 

pixels 

k-means  10,000,000  40,56,000 

fuzzy c-means 

 

10,000,000  40,56,000 

self-organized maps 

 

10,000,000  40,56,000 

artificial neural networks 5,000,000 10,000,000 20,28,000 40,56,000 

least square support vector machine 1655 10,000,000 1366 40,56,000 

bragging and boosting 1655 10,000,000 1366 40,56,000 

 

 

 

 

 10 
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Table 2. Show the computational time for processing ten slices. 

Machine learning 

Techniques 

CPU: Time (hrs:min:sec) 

 Andesite Rotliegend 

sandstone 

Synthetic sample Musli Berea 

sandstone 

K-means 00:15:35 00:12:04 00:10:59 00:05:33 

FCM 00:29:19 00:56:03 00:42:21 00:41:05 

SOM 01:07:06 1:41:47 01:11:23 00:33:32 

FFANN  

(training using K-means) 

08:58:18 00:11:50 00:10:40 00:11:12 

LS-SVM
a
 63:29:35 03:22:58 03:02:15 01:45:17 

Bragging 05:57:05 07:32:22 12:19:40 03:51:13 

Boosting 07:47:05 09:52:56 06:14:58 03:20:42: 

 

a open source public library provided by K.U. Leuven university –ESAT department- SCD-SISTA division was used. http://www.esat.kuleuven.be/sista/lssvmlab/ 
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