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S1 Resolution power of `p norms vs D

To demonstrate the results shown in fig. 4 of the main paper (distance between misfit
value for true depth compared to noise in sigma) more intuitively, fig. S1 shows
perturbed waveforms and the resulting misfit values for a larger set of signal to noise
ratios and modelling errors. The figures are otherwise identical to fig. 3 in the paper.

S2 Likelihood distribution parameters

S2.1 µ and σ

To estimate the likelihood distribution of new earthquakes, we need to have an analyt-
ical fit function of the distribution parameters µP, µSH, σP, σSH in dependence of SNR.
Figure S2 shows the parameters with fit functions h(SNR) = a1 + a2 · exp(−a3 ·SNR).
To estimate the goodness of fit, 95% confidence intervals were estimated using the
bootstrapping method and added to the figure.

a1 a2 a3
µP −2.06 0.51 0.031
σP 0.6 −0.093 2.8 · 10−3

µSH −1.12 0.28 0.24
σSH 6.7 −6.3 −0.27 · 10−3
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Figure S1: Comparison of the `1, `2 norm and the signal decorrelation as misfit cri-
teria in noisy signals, as described in Sect. 2.3 in the main paper. A
perturbed synthetic waveform for a 10 km deep earthquake, measured in
40◦ distance was compared to synthetic seismograms for other depths, us-
ing the three misfit criteria. The shaded colours mark the 90% quantiles
of the misfit values, calculated by perturbing the reference waveform with
different random seeds. The figure shows the relatively high robustness
of the cross-correlation coefficient in recognizing reference signals in per-
turbed measurements. For better visualisation, all misfit values have been
normalized separately to have an average values of one between 20 and 30
km.
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Figure S2: Distribution of parameters µ and σ for P- (top row) and SH-waveforms
(bottom row) with respect to the Signal-to-Noise Ratio (SNR). µP is the
expectation value for ln(1 − CCmax) for a waveform with the given SNR,
while σP is the standard deviation. The values in each SNR bin are com-
pared with the fitting function h(SNR) = a1 + a2 · exp(−a3 · SNR) (red
dashed). Parameters a1, a2, a3 are given in table S2.1. The dotted lines
show 95% confidence intervals of the parameters estimated by the boot-
strapping method.
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Figure S3: Distribution of amplitude misfits for different signal to noise ratios. Fig-
ure is simular to Figure 6 in the paper, but shows the distribution of the
amplitude misfit as defined in eq. 28.

S2.2 Amplitudes

The amplitude misfit follows an exponential distribution |∆ log10(A)j−median(∆ log10(A)j)| ∼
Exp(γ), where γ takes the values 0.2 and 0.1 for P and SH respectively. We remove
the median(∆ log10(A)j) before fitting to account for wrongly determined body wave
magnitudes in our database. See figure S3 for an overview of the relationship between
signal-to-noise ratio and the distribution of ∆ log10(A)j .

S3 Inter-station correlation

The inter-station correlation was calculated as described in section 3.4 in the paper.
To fit it, the function g(ϑ) = b1 + b2 · exp(−b3 · ϑ2) was used, with the following
parameters as a result:

b1 b2 b3
r(ϑ) 0.049 0.31 2.17 · 10−4

The fit function follows the values well (see figure 7 in the paper), although there is
a non-explained rise from 160◦ on. We think that this is an artefact of imperfectly
determined focal mechanisms. Stations close to a nodal plane of the radiation pattern
will be strongly affected by an error in the strike angle. At the same time, this affects
stations at the opposite site of the earthquake, with a back-azimuthmal difference
of 180◦. Strike-slip events even have a quadrupole radiation pattern, where errors
in the strike parameter will influence stations at 0◦, 90◦, 180◦ and 270◦. So, if that
explanation was true, there should be another peak at 90◦, which is lost here.
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