
Authors’ response to G. Caumon interactive comment on “Monte Carlo Simulations for Uncertainty Estimation 

in 3D Geological Modeling, A Guide for Disturbance Distribution Selection and Parameterization”. 

This paper shows on a synthetic and real examples that using spherical orientation distributions to describe 

structural data uncertainty is important in 3D structural uncertainty quantification. This is important, as most 

work considering structural uncertainty (including some papers I co-authored) have neglected spherical 

distributions and used simpler and independent statistical models for plane strike and dip. The results show that 

a more careful consideration of spherical distributions can have an impact on Uncertainty Quantification results, 

and some interesting statistical insights are provided. The authors also provide their models as supplemental 

material, which I consider very useful, and give practical guidelines to use Fisher distributions in the Appendix, 

which is also useful for practioners. So, I think this paper deserves publication. However, I have a few problems 

and I am still unclear about some parts of the paper. Therefore, I am making several comments and 

recommendations below, which I hope will help the authors to make the paper easier to read and more precise. 

Specific comments 

1. I had some difficulties to understand the paper. There are locally some purely formal aspects to it, which 

a careful reading could easliy fix. More importantlty, part of the reason is that several of the statements 

appear as general truths in the paper, whereas they only hold in some cases or under some assumptions 

that are not explicitly described. I think these inappropriate generalizations should be addressed before 

publication. Another reason is that some of the ideas and principles are not always clearly expressed (in 

particular in Section 3.2). Overall, I find the beginning of the paper not very easy to read and to 

understand. I have higlighted several of these issues in the annotated pdf manuscript, I hope this will 

help the authors make the paper easier to follow. 

2. I think the term MCUE does not precisely describe what the authors have in mind (by the way, "Monte 

Carlo simulation **for** uncertainty estimation" (as in the title) seems clearer to me than "Monte Carlo 

simulation uncertainty estimation" as in the abstract and main text). Indeed, the fact that this paper 

focuses on ** data ** perturbation is not clear from this wording. Indeed, MC perturbation of model 

parameters is another (and widely used) approach to sample uncertainty in structural modeling (see 

seminal work by Abrahamsen (Geostats 1993) for horizons; Lecour et al (Petrol. Geosci 2001) for faults 

and many other papers since then). MC simulation is also used to change how data can be connected in 

structural modeling (see work by my co-authors N. Cherpeau and C. Julio). I understand these model 

perturbation approaches are not the focus of this paper, but it should be clear to the readers from the 

outset that there is more to geological uncertainty than orientation data perturbation. Therefore, I would 

recommend to replace MCUE by a more specific term (inclusing in the paper’s title). My two-dime 

suggestion would be "data-related structural uncertainty quantification", but the authors may find a 

better term. This distinction is essential and should be clarified. 

3. I disagree with the statement (line 26, page 3) that data perturbation and kriging are “equivalent to 

running geostatistical simulation”: has this been mathematically shown or experimentally proven? I 

have 99 

4. Geological modeling is bound to be implemented with software; however, a paper can gain much by 

clearly separating the mathematical and methodological principles from the software platform used for 

demonstrating these principles. So, in clear, I consider that this work is compatible with other implicit 

structural modeling methods, and that this could be argued before the introduction. Also, a key feature 

of implicit modeling schemes and a motivation for using them is this work is that they use orientation 

data. This could be stressed in Section 2. 

5. Maybe merging Sections 1 and 2 could help more effectively set the scene and introduce the 

contributions of this paper? 

6. I would recommend to comment on the links between this paper and Carmichael and Aillères, (JSG 

2016). They also use spherical distributions in a 3D structural modeling context. 

7. I am not sure I agree with the statement that “Uncertainty will then be best represented by disturbance 

distributions that are consistent with the Central Limit Theorem”. The CLT holds when N independent 



random variables are added; in the case of orientation data independence may be assumed but is not 

granted, and N is likely small. I would, therefore, rather state this as a convenient hypothesis for the 

argument than as an ideal objective. More generally, the main point of Section 3.1 seems to be that 

Normal and Von Mises-Fisher distributions are appropriate for structural uncertainty management. I 

am ready to accept that they are very convenient and useful, but I don’t think I agree with the term 

“appropriate”. For example, Thore et al (2002) show that propagation of seismic velocity uncertainties 

through reflection data imaging yields non-symetric distributions about horizon positions. The same 

comments holds for the first sentence of the discussion (Section 5). 

8. Section 3.2 is not really clear to me. When I first read the paper, I understood that Eq. (4) suggested that 

all orientation data samples have the same mean/dispersion (and was not clear about why this should 

be the for samples taken at different locations). I now think that (4) concerns a single orientation at a 

given location. But then, it would be good to state that X1, . . . , Xn on line 26 correspond to repeated 

measurements (or whatever it stands for), and to specify the meaning of n. Overall, expressing the idea 

and assumptions behind the equations would help the non-mathematically-inclined readers better 

understand Section 3.2 and how it can be applied. For example, it would be worth mentioning that xi 

are assumed to be independent samples before Eq. (9); That Eq. (10) is nothing else than the total 

probability formula. I don’t get what N stands for in (11). Overall, after reading through, I get the 

general idea but I am still unclear about the details and whether n stands for the number of repeated 

measurements (which is not available in most data sets) or for some number of simulated points. 

9. I don’t understand the principles behind Eqs. (12-17). More explanations would be much welcome. In 

the end, I am not fully sure at the end of the section about how the development can be used in practice, 

and what a “propoer parameterization” (page 7, line 26) exactly means. If some orientation 

measurement device came up with a good evaluation of the orientation probability distribution based 

on a sound error propagation, would we still need Section 3.2? 

10. Overall, maybe I missed a point, but it seems that section 3 summarizes some facts from the statistics 

literature. This is probably useful, but I feel that this is a bit long and I don’t clearly see connections to 

the experiments made in Section 4, which essentially address the use of spherical distributions for 

sampling data uncertainty. So I am not really clear about the point on posterior predictive distributions 

(PPD) in section 3.2. Is it really needed in this paper? What does it bring in? Similarly, the discussion 

in Section 3.3 seems to mainly serve the point that two angle distributions instead of a spherical 

distribution entail heteroscedastic effects. So maybe it would help to get more rapidly to that point 

directly 

11.  in Section 4. on p. 10, I am a bit puzzled by the term "dip vector". It is clear that a plane should be 

represented by the spherical distribution of its pole; but it seems to me that the experiment mainly 

describes the “dip vector” by the dip and dip angles. If so, the term dip vector seems inappropriate (as 

it could also be described by a spherical distribution). 

12. some more details about how the input uncertainty used in the Mansfield case study would be useful 

(see comments on page 11). Does this connect to Section3.2 ? 

13. In the discussion, the authors may want to add a point on spatial correlation or C5orientation data. Does 

it make sense to sample orientation data independently? Wouldn’t something like Gibbs sampling be 

good in that case? 

14. Form: please check that all math symbols in the text have the same font as in the equations. (e.g., line 

10, p5) 

  



Author’s answer to the general comment: 

The authors thank the referee for his positive review and agree that assumptions need to be made clearer. The 

paper was reworked to address both referees’ general, specific and inline comments. 

Answer to the specific comments: 

1. The paper was revised and edited to address the formal comments (syntax, fonts, symbols). Formerly 

implicit assumptions are now clearly stated. The descriptions of several equations were updated and, 

two equations were simplified to improve readability. 

2. Title was changed to Monte Carlo Uncertainty Estimation on Structural Data in implicit 3D Geological 

Modeling, A Guide for Disturbance Distribution Selection and Parameterization. The method was not 

renamed to preserve consistency with previous works (Pakyuz-Charrier et al., 2017;Giraud et al., 

2016a;Giraud et al., 2017;Giraud et al., 2016b). 

3. The statement about geostatistical simulation was removed. 

4. The case for MCUP being applicable with any implicit 3D geological modeling engine is now made 

clearly. 

5. Initially, section 1 and 2 were one. However, this made for a very lengthy introduction that spilled into 

method description. Describing MCUP in detail is not the purpose of the introduction and that is why 

we had it split. 

6. Reference was made to Carmichael and Ailleres 2016 work were due. 

7. Structural data measurements arguably fall under the CLT due to the numerous source of uncertainty 

that add themselves in the surveying procedure (see inline comments). The authors agree that other 

types of data may or may not abide to the CLT. However, these other types are beyond the scope of this 

paper. 

8. � and N are now explicitly defined. Equation 4 describes the variable of interest that the operator 

samples from when making measurements on the field at a single location. Our objective is to give the 

best estimate possible of �. Equation 10 describes � in light of the measurements. It is very different 

from Equation 6 in that it gives the empirical distribution of � instead of the distribution of the average 

of �. 
9. A quick example to understand about section 3.2 and the meaning of equations 11 to 17 

When a single measurement is made at a specific location, the sample size is 1 ��	 = 	 	
�� and the 

observed average is equivalent to the measurement itself �� ≡ 
�. If we assume the dispersion function 

to be completely deterministic then we already know �����. Obviously, the posterior distribution will 

be 

��� = 
�|� = 
� = ��
|
�, �����	 
Now we could think that	��� = 
�|� = 
� is the disturbance distribution we want to draw from but 

that will lead to systematic underestimation of the effect of ����� because ���|� only quantifies our 

knowledge of � in regard to 
�. Indeed ���|� tells us about all the possible � that 
� might be sampled 

from, it is a distribution of the average and ultimately, we do not know exactly how far � is from �����. 

That is, if we choose to sample from ���|� we are ignoring the fact that ∆� = ��� −	������ is 

unknown and that means we will be perturbing with an unknown bias. To account for this, we compound 

���|� to itself 

��
|���|�, �����, 
Which, is practically equivalent to a double sampling of ���|�. Consequently, regardless of the quality 

of our prior knowledge about �����, sampling from the posterior predictive distribution is better than 

sampling from the posterior distribution. Eq.11 and Eq.14 give easy ways to achieve that for the normal 

and vMF cases respectively. 

Equation 12 and 13 can be removed without damaging the meaning of the paper. Although, we would 

then fail to give credit to previous work and, in fact, “pretend” that no solution was ever thought of to 

obtain a vMF predictive posterior distribution. 



The empirical approximation at Equation 14 is a byproduct of this research. I will probably submit the 

detailed process of obtaining it as a short note the future. 

See the figure below for graphical explanation. 

 
 

10. Yes and no, Section 3.2 gathers facts from the statistics literature and puts them together into a coherent 

procedure with a defined aim (MCUP). A mere summary would lack that aim. It is difficult to 

simultaneously have this section shortened and address the implicit assumptions issue that was pointed 

at earlier. 

11. Dip vectors are now called dip vectors where due. As a side note, the dip angle and dip direction angle 

are an expression of the components of a dip vector under a specific spherical coordinate system. 

12. The disturbance distribution parameterization used in the Mansfield case is reasonable in regard to 

previous metrological studies. However, it is by no means ideal and the Mansfield case is merely a 

proof of concept example. Defining the error functions is the responsibility of the practitioners. 

Practitioners may use existing metrological studies if their specifics match that of the survey. In absence 

of such data, one may define disturbance distribution parameters heuristically or conduct their own 

metrological studies. 

13. Even if there is strong spatial correlation there is actually not much sense to let it alter the sampling 

itself. Indeed, the error about a structural measurement from, say, a regular compass is largely 

independent from the previous measurement. What may be correlated is the average, not the error. That 

is so even if one repeats measurements at the same location over the same feature. Spatial correlation 

comes into play when one considers final model uncertainty stationarity issues. 

14. Symbol fonts in the text were adjusted to match the equations. 
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Answer to the inline comments: 

 

Page 1, line 7: 

G. Gaumon’s comment: 

structural would be more precise 

Author’s answer: 

Updated to geological structural modeling 

Changes to the paper: 

 …geological [structural] modeling… 

Page 1, line 11-13: 

G. Gaumon’s comment: 

There is more: the lack of klnowledge about what occurs bewteen the observations. 

Author’s answer: 

Agreed. Added. 

Changes to the paper: 

…parameterization)[ and the inherent lack of knowledge in areas where there are no observations] 

combined… 

Page 1, line 15: 

G. Gaumon’s comment: 

Is this paper only useful as a Geomodeller extension or can it be useful with other geomodeling 

approaches / tools? 

Author’s answer: 

On principle, MCUE is applicable to any implicit modeling engine. Removed incriminated section. 

Changes to the paper: 

 …modeling using GeoModeller API. 

Page 1, line 15-16: 

G. Gaumon’s comment: 

This wording does not seem very standard. MC methods are a classical way to produce Uncertainty 

Quantifications. 

Author’s answer: 

In general, they are, although their application to implicit 3D geological modeling engines is still 

emerging. 

Changes to the paper: 

 Monte Carlo simulation [for] Uncertainty Estimation  



Page 1, line 16: 

G. Gaumon’s comment: 

Not sure why MC is termed "heuristic". 

Author’s answer: 

This is a remnant of a previous reviewer’s remark. At the time it was argued that MCUE is heuristic 

because propagation of uncertainty from the random variables through the Kriging process to the 

estimated random function may be achieved analytically (under a series of more or less safe 

assumptions). I have no sympathy for this term and will therefore remove it. 

Changes to the paper: 

 …MCUE), a heuristic stochastic… 

Page 2, line 10: 

G. Gaumon’s comment: 

Wording unclear to me. Please rephrase. 

Author’s answer: 

Rephrased  

Changes to the paper: 

 …uncertainty, which can be equivalent to their reliability for decision making.[ as an aid to risk-aware 

decision making.] 

Page 2, line 11: 

G. Gaumon’s comment: 

For what ? 

Author’s answer: 

For uncertainty estimation in implicit geological 3D modeling. However, the sentence is clunky, 

inelegant and, at the time this paper will be published, inaccurate. 

Changes to the paper: 

Nearly all the methods proposed in the past five years [Monte Carlo Simulation for Uncertainty 

Estimation (MCUE) has been a widely used uncertainty propagation method in implicit 3D geological 

modeling during the last decade] (references) are based on Monte Carlo simulation uncertainty 

estimation (MCUE). 

  



Page 2, line 12-13: 

G. Gaumon’s comment: 

I find this description confusing, as it mixes two related but distinct elements: methods to sample the 

prior distribution and Bayesian methods based on likelihood computation.  

Reading this suggests that Wellmann and Regenauer-Lieb (2012) or Lindsay et al (2012) use Bayesian 

methods, which they don't. 

Author’s answer: 

Although this paper discusses solely the particulars of input data perturbation, MCUE itself is not 

limited to that and is supposed to include validation steps as a condition to merging (Figure 1). This 

validation step may or may not be based on Bayesian methods and in that sense the cited works are 

“partial/incomplete” MCUE. However, discussing validation steps is beyond the scope of this particular 

paper. 

Changes to the paper: 

 …MCUE). This [A similar] approach… 

Page 2, line 15-16: 

G. Gaumon’s comment: 

I understand that the main point of the paper is about data perturbation, but this statement needs to be 

modulated: Perturbing the data is only one way to sample geological uncertainties. Perturbing how the 

data are connected by geological features and perturbing the geometry of these features is another (and 

quite significant) way to sample uncertainty as well. 

Author’s answer: 

In its very general wording, MCUE could integrate “all” perturbing methods. Regardless of its type, if 

one wants to perturb data, a disturbance distribution of some sort has to be defined beforehand. This 

process of selecting, parameterizing and sampling from the disturbance distribution makes the 

perturbation strategies mentioned compatible with the basic definition of MCUE. 

Changes to the paper: 

Instead of estimating the uncertainty from a single best-guess model, MCUE (Fig. 1) simulates it [input 

data uncertainty propagation] by… 

Page 2, line 22: 

G. Gaumon’s comment: 

You could also add kriging estimation variance. 

Author’s answer: 

True, although it could also be a statistic derived from it as kriging error and kriging is computed for 

each realization. In any case, this statement is about uncertainty indexes used for MCUE  

Changes to the paper: 

…final [model] uncertainty [in MCUE], including...2012), stratigraphic variability [and kriging 

error]… 

  



Page 3, line 11: 

G. Gaumon’s comment: 

And on a variogram model (or regularization : smoothness term for discrete implicit approaches) 

Author’s answer: 

Agreed. 

Changes to the paper: 

 …data [variographic analysis] and topological… 

Page 3, line 19: 

G. Gaumon’s comment: 

reference? 

Author’s answer: 

Added. 

Changes to the paper: 

 ..used [(Maxelon and Mancktelow 2005)]…. 

Page 3, line 23: 

G. Gaumon’s comment: 

This paper is not about the interpolator, but about MCMC perturbation of models by mathematical 

morphology. 

Author’s answer: 

This is a mistake, I meant to cite only Part I of the “double” paper. 

Changes to the paper: 

 …(Calcagno et al. 2008; Guillen et al. 2008; FitzGerald et al. 2009)… 

  



Page 3, line 24: 

G. Gaumon’s comment: 

Not sure what this means. 

Author’s answer: 

It means there is sense to perturbing the input data to estimate uncertainty because kriging actually 

considers the dataset via variographic analysis. 

This relates to kriging being a stochastic interpolator as there is arguably no meaning in propagating 

uncertainty using MCUE on a non-stochastic interpolator. Indeed, running MCUE with, say, a spline 

interpolator will likely generate numerous ridiculous model realizations that cannot be deemed 

“plausible”. In a practical sense, Kriging allows (perturbed) plausible datasets to produce (mostly) 

plausible models. 

Changes to the paper: 

 propagated [provided that the variogram is correct] 

Page 3, line 25: 

G. Gaumon’s comment: 

Provided that the variogram model is correct. 

Author’s answer: 

Correct. 

Changes to the paper: 

 See above. 

Page 3, line 26: 

G. Gaumon’s comment: 

I disagree. 

Author’s answer: 

More work needs to be done to ascertain this claim. 

Changes to the paper: 

Note that MCUE applied to the co-Kriging interpolator used in GeoModeller is, in effect, equivalent to 

running a geostatistical simulation. 

  



Page 4, line 5: 

G. Gaumon’s comment: 

Not sure 

Author’s answer: 

True, this is an assumption that is stated explicitly later on. 

Changes to the paper: 

 …many independent random… 

Page 4, line 9-13: 

G. Gaumon’s comment: 

Not sure. The CLT states that the addition of N random variables converges to a normal distribution 

when N increases. I am not sure that N is so large in the case of orientation data. In any case, Monte 

Carlo methods can sample from any distribution, not necessarily Gaussian. 

Author’s answer: 

Numerous sources of uncertainty affect structural measurements among which 

• device basic measurement error (in lab and under perfect conditions) 

• user error 

• local variability 

• simplification radius (when several nearby measurements are grouped as one for practical 

reasons) 

• miss-calibration issues 

• rounding errors 

• (re)projection issues 

• magnetic perturbations emanating from the sun, infrastructures, rocks, vehicles, the 

measurement device itself, whatever the operator is carrying 

• GPS related issues (numerous small issues) 

If one abstracts each source of uncertainty to a uniformly distributed random variable (the worst case), 

a quick look at the Irwin-Hall distribution shows how fast the addition of these variables converges to 

normality: 4 added variables produce an already very convincing near normal shape. Regardless of this 

argument, MCUE does not a priori forbid the use of any kind of distribution. 

Changes to the paper: 

…1954) as [if] the variance of each source of uncertainty is always defined even if it is unknown. 

Uncertainty [would] will then be [better] best represented… 

  



Page 4, line 20: 

G. Gaumon’s comment: 

Without any hypothesis on the type of the likelihood function? Please add supporting reference(s). 

Author’s answer: 

If the likelihood function is Gaussian itself. 

Changes to the paper: 

 …framework [given that the likelihood function is normal itself.] 

Page 4, line 23: 

G. Gaumon’s comment: 

The footnote makes the notation quite crypic. 

Author’s answer: 

Arg. 

Changes to the paper: 

  

Page 4, line 24: 

G. Gaumon’s comment: 

Under some assumption, I guess. Not sure why this precision is important here anyway. 

Author’s answer: 

If the likelihood function is Gaussian itself. This is of importance because it greatly simplifies the 

procedure (RNG sampling for the vMF distribution is much easier than for other spherical 

distributions). 

Changes to the paper: 

 …itself [given that the likelihood function is vMF distributed.] 

  



Page 5, line 20: 

G. Gaumon’s comment: 

It would be nice to explain:  

- what you mean by Bayesian approach in this context (what prior distribution would be updated by 

what observation).  

- In what sense that is "optimal".  

As I understand, this is an introduction to the development below; then, this would help the reader to 

phrase it as an intro: "We now propose to....", and keep the comment on the optimality for the discussion. 

Author’s answer: 

The prior disturbance distribution (obtained from metrological analysis) is updated by the measured 

data over a CLT compatible likelihood function. 

Changes to the paper: 

…parameterization is [proposed] optimal (Sivia and Skilling 2006). [More specifically, a prior 

disturbance distribution is updated by measurements over a CLT compatible likelihood function to 

generate a predictive posterior disturbance distribution.] 

Page 5, line 21: 

G. Gaumon’s comment: 

Not sure whether this precision is needed. 

Author’s answer: 

It isn’t. 

Changes to the paper: 

 …distributions for MCUE models. 

Page 5, line 25: 

G. Gaumon’s comment: 

Do you mean all measured data or repeated measured data at the same location? Please explicitly state 

what $n$ means. 

Author’s answer: 

I mean repeated measurements at the same location. 

Changes to the paper: 

 …data [at a single location] are… 

  



Page 6, line 2: 

G. Gaumon’s comment: 

OK, but it is unclear to me why the prior average distribution should depend on the prior dispersion 

distribution. 

Author’s answer: 

This is a mistake; the relationship is either reversed (heteroscedasticity) or nonexistent 

(homoscedasticity). 

Changes to the paper: 

…expected to be [a deterministic function] estimated based on [via] rigorous… 

Equation 5 

 	

���|�, � =
���|�, ����|�

���|�
∝ ���|�, ����|�,	 

���|�, � ∝ ���|�, ����, �, 

 Equation 6 

 	

���|� =
���|����

���
∝ ���|����. 

���|� ∝ ���|����, 

Page 6, line 6: 

G. Gaumon’s comment: 

I am willing to admit that the pdf of the dispersion of another pdf could be an overkill, but is it reasonable 

to remove the dispersion in this likelihood term? 

Author’s answer: 

Prior dispersion is expected to be a deterministic function of the measured values themselves obtained 

from previous metrological studies (see above answer). In a sense the term is merely “hidden” for 

legibility because there is indeed  

Changes to the paper: 

 See comment above. 

  



Page 6, line 7: 

G. Gaumon’s comment: 

You could more simply explain this is corresponds to the uniform distribution. 

Author’s answer: 

Not exactly, a continuous uniform distribution must be bounded otherwise it will not integrate to unity. 

Jeffreys prior is not a proper distribution of any kind but rather a normalized constant that aims to 

simulate a complete lack of knowledge at the prior step. In this case Jeffreys prior is similar to ��
 =
�, with � ≡ cst, therefore, lim

%→'
() ��
%

*% + = ∞, making it an improper prior. 

Changes to the paper: 

 None. 

Page 6, line 16: 

G. Gaumon’s comment: 

Assumes independent samples. 

Author’s answer: 

Correct. 

Changes to the paper: 

…and, [under the assumption of independent by computing,] is given for all possible values of µ, is 

obtained with the joint density function for X. 

Page 6, line 24: 

G. Gaumon’s comment: 

What does N stand for? 

Author’s answer: 

�- stands for the posterior predictive distribution. 

Changes to the paper: 

…predictive distribution [�.] is… 

Page 6, line 26: 

G. Gaumon’s comment: 

Unclear to me. Prior knowledge, in general, is not very reliable. 

Author’s answer: 

Not all forms of prior knowledge are unreliable. However, we usually remove the “reliable” terms from 

the equations because they are either constants or deterministic functions. In this instance, / is supposed 

to be extracted from a deterministic error function itself obtained via metrological analysis. 

Changes to the paper: 

 …knowledge [obtained via metrological analysis].  



Page 8, line 8: 

G. Gaumon’s comment: 

observed or assumed ? 

Author’s answer: 

Provided that instrumentation is properly deployed, maintained and free of external noise gravimeters’ 

measurement error function is homoscedastic. However, this is rarely the case and a power law error 

functions are more common in practical cases. 

Changes to the paper: 

 …commonly observed assumed in gravity surveys… 

Page 8, line 13: 

G. Gaumon’s comment: 

This term encompasses the following ones in the enumeration. 

Author’s answer: 

Correct 

Changes to the paper: 

 …observed in physical modeling (Ogarko and Luding 2012), electrical… 

Page 10, line 3: 

G. Gaumon’s comment: 

Please explain what they represent debore commenting. 

Author’s answer: 

Done, the following changes address the next 3 comments. 

Changes to the paper: 

Blue clusters [are the direct result of pole vector sampling and] always describes the plane’s behavior 

accurately in terms of pole vectors.; they are the direct result of pole sampling. Green clusters [are the 

result of pole vector sampling (blue) converted back to dip vector and they describe the plane’s behavior 

accurately in terms of dip vectors. These clusters] have varying shapes and may not be modelled 

appropriately by any existing spherical distribution for all possible cases.; they are the result of pole 

sampling converted back to dips and they describe the plane’s behavior accurately in terms of dip 

vectors. Red clusters have constant point density and are isotropic; they are the [direct] result of dip 

[vector]sampling and fail to describe accurately the plane’s behavior. 

  



Page 10, line 5: 

G. Gaumon’s comment: 

Dip angles or dip vectors? 

Author’s answer: 

Dip vectors. 

Changes to the paper: 

 See comment Page 10, line 3. 

Page 10, line 6: 

G. Gaumon’s comment: 

Dip angle sampling, right? Please say a word about how this is done? 

Author’s answer: 

No, the dip vectors were always sampled from a spherical distribution either directly (red clusters) or 

indirectly (green clusters) using pole conversion (blue clusters). 

Changes to the paper: 

See comment Page 10, line 3. 

Page 10, line 18: 

G. Gaumon’s comment: 

Do you mean a dip angle? A vector in the sphere should be described by a spherical distribution. 

Author’s answer: 

Indeed, we are talking about a dip vector. 

Changes to the paper: 

 See comment Page 10, line 3. 

Page 10, line 23: 

G. Gaumon’s comment: 

Not the dip direction. 

Author’s answer: 

Correct. 

Changes to the paper: 

 …Fig. 6) [as standard dip angles are] the dip, dip-direction system is constrained… 

  



Page 10, line 28: 

G. Gaumon’s comment: 

dip/ dip direction angles? 

Author’s answer: 

A dip angle + a dip direction makes a dip vector. 

Changes to the paper: 

 …vectors [using the dip, dip-direction system] (green… 

Page 11, line 16: 

G. Gaumon’s comment: 

Unit ? 

Author’s answer: 

Meters 

Changes to the paper: 

 …25[m]. The… 

Page 11, line 19-20: 

G. Gaumon’s comment: 

Unclear what this means in practice. Please develop how this ties to Section 2. Some more information 

(here or in Appendix) would be really useful for practitioners. 

Author’s answer: 

We have estimated values for the dispersion of orientations on the basis of the variability of plane 

measurements observed by other authors in a variety of settings and for different types of devices. 

Ideally, an MCUE user would need in depth metrological data relevant to the particulars of the survey 

from which the structural data comes from. For our specifics, the literature is quite poor on this matter. 

However, several authors have picked up on these gaps and started working on it very recently. 

Changes to the paper: 

…data (Nelson et al. 1987; Stigsson 2016)[ That is values for the dispersion of the spherical disturbance 

distributions used for the foliations were estimated on the basis of the variability of plane measurements 

observed by other authors (Nelson et al. 1987; Stigsson 2016; Allmendiger et al. 2017; Cawood et al. 

2017; Novakova et al. 2017) in a variety of settings and for different types of devices.] while… 

  



Page 11, line 21: 

G. Gaumon’s comment: 

Please explain how this was done also. Lark et al use several interpretations by several geologists. How 

did you do this on the Mansfield model? 

Author’s answer: 

We assumed that the observed end variability of the interfaces’ locations in their models can be 

transposed to our case. This is of course an imperfect process and actual metrological studies would be 

needed to improve it. It is important to keep in mind that MCUE depends on sound metrological 

analyses. 

Changes to the paper: 

…while Perturbation parameters for interfaces were designed to meet [observed GPS uncertainty 

(Jennings et al. 2010) and] observed experimental interface variability in previous authors’ works 

(Courrioux et al. 2015; Lark et al. 2014; Lark et al. 2013). [More specifically it was assumed that the 

observed end variability of the interfaces’ locations in their models can be transposed to the presented 

cases. This is of course an approximation in the absence of specific metrological studies.] observed 

GPS uncertainty (Jennings et al. 2010)…  



Page 12, line 2-3 

G. Gaumon’s comment: 

I don't agree. 

Author’s answer: 

Claim is weakened. 

Changes to the paper: 

As described in sect. 3.1, CLT distributions [can be appropriate options] should be preferred as prior 

uncertainty distributions (and disturbance distributions) because they better [generally well] describe 

the behavior of uncertainty. 

Page 12, line 6-8: 

G. Gaumon’s comment: 

THis is not very explanatory. Unclear to me. More explanations would be welcome. 

Author’s answer: 

This happens when the variable of interest is given by 

• the log of the quotient of two uniform i.i.d. variables 

• the difference of two exponential i.i.d. variables 

Both of which lead to a symmetric, long tailed, exponential distribution: the Laplace distribution. This 

might sound unlikely for geological structural data inputs in 3D geological modeling. However, when 

one considers measured thicknesses on a geological log from a drillcore (which are used as data input 

in implicit codes) it becomes a serious possibility. 

Changes to the paper: 

…1923). [For example, to model the uncertainty on the thickness of a geological unit along a drillcore, 

one might observe that the uncertainty of the location of the top and bottom interface of the unit is best 

represented by an exponential distribution. In this instance, the Laplace distribution would be a suitable 

option to model the thickness’ uncertainty.] That is, the Laplace distribution “replaces” the normal 

distribution. Under [similar] the same circumstances… 

  



Page 13, line 3: 

G. Gaumon’s comment: 

I think dip vector sampling is not the same as dip/dip direction sampling. this should be clarified. 

Author’s answer: 

Here we are really talking about dip vector sampling. Sampling independently for dip angles and dip 

directions is not the topic of this paper. However, the conclusion drawn here would show that this kind 

of sampling is needlessly difficult because of the added heteroscedasticity that originates from using 

dip vectors (that dip angles and dip direction angles describe). 

Changes to the paper: 

 Vectors are now called vectors where due. 

Page 13, line 28: 

G. Gaumon’s comment: 

I still don't agree. Metrological considerations could yield other distributions, depending on the 

measurement hardware. 

Author’s answer: 

This is correct, our claims need to be weakened. 

Changes to the paper: 

 … to always be more optimal choices for [be valid and practical choices] for… 

Page 13, line 30: 

G. Gaumon’s comment: 

I am not sure I understand what is meant here, and how this point comes into play in the numerical 

experiments. 

Author’s answer: 

The use of predictive posterior distribution as disturbance distributions for MCUE means that dispersion 

is not underevaluated. That is possible because of the application of Bayes’ theorem. In theory, it is one 

can obtain the same result with a frequentist approach using compound distributions although it is much 

more difficult to express in a legible manner and clunky to use. 

Changes to the paper: 

[A Bayesian approach to disturbance distribution parameterization] is shown to avoid an 

underestimation of [input data] dispersion. 
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