Page, Line	Comments from Referees	Author's response	Author's changes in the manuscript
Referee 1 –	"However, besides the thermo-	We agree with Referee 1 that heat flow is an	We added a new section to line 5 on page 15: " The classifications by Sass
C2 line 1	and petrophysical properties, the	important parameter and should be taken into	and Götz (2012) and Bär et al. (2011) were applied on the rock properties
	heat flow of the basin has to be	account during the assessment of the economic	for a first assessment. The application of the thermofacies concept (Sass
	taken into account to assess the	feasibility of a geothermal reservoir. This study	and Götz, 2012) is useful in an early exploration stage or in cases where
	economic feasibility. In the	was intended to create an initial data set of Upper	detailed reservoir information is not available but it does not replace
	conclusions I would like to see this	Devonian carbonate rock properties relevant to	further exploration. Likewise, the threshold values applied in Bär et al.
	point addressed – alternatively the	geothermal modelling. Statements about	(2011) were defined for a low enthalpy region in Germany and are used as
	authors might add an outlook	economic feasibility were not planned for this	indicators, which will likely need to be redefined for the Upper Devonian
	where they list the next steps to	early stage of the project, however, a short	aquifer systems with increasing experience of geothermal exploitation in
	localize the most promising area	section will be added to the chapter "discussion	this specific reservoir.
	with regard to depth and	and conclusions" summarizing the most	Rock property measurements provide matrix properties only (mesoscale).
	temperature including the	important parameters necessary to assess the	Furthermore, they need to be corrected for reservoir conditions and
	available information from	economic feasibility of this reservoir. Outlook:	transferred to reservoir scale (up- and downscaling). For a more reliable
	published data. Eventually, it is the	To complement the data set presented in this	geothermal assessment, further reservoir parameters (macroscale) like
	<i>economically recoverable heat</i>	study, measurement of further parameters (e. g.	reservoir temperature, flow rates, heat flow, potentiometric surfaces, IDS
	(ERH) which increases the	thermal diffusivity, specific heat capacity and	and H_2S content etc. are needed. Therefore it is necessary to evaluate well
	feasibility and this should be	ultrasonic wave velocity) on well core samples	data provided in the Accululap of GeoScout database. These databases
	clearly stated at the end of the	has been planned. Well data provided in the	comprise an enormous amount of well data from various companies from the last seven decades. However, there is no information given shout the
	paper.	Accumap of Geoscoul databases will be evaluated interpreted and probably mapped to	une last seven decades. However, there is no information given about the
		identify the most promising areas for geothermal	inaccurate (Weides and Majorowicz, 2014). Furthermore, heat flow values
		utilization in the reservoir. Due to the high	have been corrected for paleoclimatic surface temperature forcing
		amount of well data this will be only possible on	(Majorowicz et al. 2012)
		a regional scale. The construction of a regional	As the Leduc Formation is relatively homogenous within the Alberta
		geological 3D model using already existing data	Basin reservoir temperature is one of the crucial parameters An
		from previous studies (Majorowicz et al. 2012:	important point will be to identify 'hot spots' at an economical depth
		Nieuwenhuis et al. 2015), is planned for the most	Likewise, flow rates are very variable at a local scale (Lam and Jones.
		promising areas.	1985) and need to be analyzed to evaluate the economic geothermal
			potential.
			Furthermore, the aquifer systems need to be operated as transitional
			systems which need stimulation. This point needs to be considered during
			cost calculation. Most natural geothermal systems need stimulation for
			economic and technical reasons (Sass and Götz, 2012). According to the
			AccuMap database, reservoir stimulation was also a common process for
			increasing the productivity during oil and gas production. Previous studies
			(Hofmann et al., 2014) indicate that stimulation treatments can increase
			the economic feasibility for geothermal utilization in the WCSB for at
			least some reservoir formations.

-			
			A limiting factor for geothermal utilization in the study area is the complex hydrogeology. Both formations (Leduc and Nisku) contain highly concentrated water with average TDS values of approximately 200 g Γ^1 (Rostron et al., 1997; Michael et al., 2003). Within the SCCC, salinity increases with increasing distance from the Rocky Mountains ('squeegee flow', Buschkuehle and Machel, 2002; Machel and Buschkuehle, 2008). This parameter can be also very variable at a local scale. In the Hinton-Edson area, salinity ranges from less than 50 g Γ^1 up to 180 g Γ^1 (Lam and Jones, 1985). Likewise, the Nisku Reef Trend is well known for its (over pressured) sour gas pools (Bachu et al., 2008). Problems like scaling and corrosion during operation can lead to higher production costs or in the worst case scenario to the abandonment of the well. These problems are not solved in the geothermal industry yet but should be addressed in the current discussion about a geothermal pilot project in the WCSB. For this reasons a close cooperation with the oil industry is important. Using the experience in operating this reservoir, the existing equipment and infrastructure likely reduces exploration risks and costs for a geothermal project which could provide new business strategies. For the next phase of the project, further parameters (e.g. heat capacity, thermal diffusivity and ultrasonic wave velocity) will be measured on well core samples to complement the data set provided in this study. It is also considerable to extent the study area or include further formations to cover areas with higher heat flow or temperatures. Well data provided in the AccuMap or GeoScout databases will be evaluated, interpreted and probably mapped to identify the most promising areas for geothermal utilization in the reservoir. Due to the high amount of well data, this will be only possible on a regional scale. The construction of a regional geological 3D model, including already existing data from previous studies (Majorowicz et al., 2012; Nieuweh
Referee 1 –	"The dataset clearly shows that	Agreed. This point needs to be considered during	See changes above.
C2 line 7	the aquifer systems under discussion have to be operated as transitional system and thus need stimulation. Again, a point to be considered for economic operation. "	cost calculation and for economic operation. We will add this point in chapter 6 "Discussion and conclusions".	

Referee 1 – C2 line 12	"Please, check the reference list for consistency (also fonts)."	Thank you very much for the detailed proofreading. The reference list was checked and corrected accordingly.	The reference list was checked and corrected.
Referee 1 – C2 line 12	"Can you please add the coordinates of the outcrop and well locations in Table 1."	A list of coordinates of the outcrops and well locations was added to Appendix B.	A list of coordinates of the outcrops and well locations was added to Appendix B. "The exact coordinates of the wells and outcrops are added to Appendix B." was added to line 19 on page 6 in chapter Material and Methods.
Referee 2 – C2 line 8	"Some information on the samples prep. and orientation should be given (saturated or dry; whether or not the thermal conductivities are known to be the vertical (perpendicular thermal conductivity)?"	Thermal conductivity was measured according to the method of Popov et al. (1999) on dry samples as shown in Fig. 1. Therefore, thermal conductivity of the core samples represents the "horizontal" thermal conductivity. We will add Fig. 1 to the relevant chapter, Material and Methods, in the manuscript. Sample preparation: To minimize the transmission of optical heater radiation into reference standards and rock samples resulting from optical transparent surfaces (Popov et al., 2016), black paint was applied along a scan line on the sample surfaces as well as on the standards. Measurement of the plane surfaces of the core samples in order to estimate the thermal anisotropy was not allowed.	Fig. 1 was added to chapter 'Material and Methods' (=new Fig. 5). The section in line 10 on page 7 was changed to:" For determination of thermal conductivity and thermal diffusivity, a thermal conductivity scanner was used (Popov et al., 10 1999), allowing non-destructive as well as contactless measurements by using infrared sensors. To minimize the transmission of optical heater radiation to reference standards and rock samples resulting from optical transparent surfaces (Popov et al., 2016), black paint was applied along a scan line on the sample surfaces as well as on the standards. Both parameters were measured three to four times on each plug (see Fig. 5). The measurement accuracy is 3 % (Lippman and Rauen, 2009)." We also changed the section in line 27 on the same page to: "The study included further core analyses and measurements of thermal conductivity and permeability on core samples 5 cm to 70 cm long. Thermal conductivity was determined on the mantle surface at dry conditions in the same procedure described for the outcrop analogue samples (as shown in Fig. 5)."

D.f	"A (1 1 1	OI The late of a late Decil at 1 1007	$XX_{1} = 11, 1, 4, 5, 11, 1, 4, 5, 11, 1, 5, 11, 5, 11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1$
Referee 2 –	As to compare above thermal	Ok. The data set included in Beach et al. 1987	we added the following section to line 5 on page 3 (introduction): within
C2 line 11	conductivity, porosity new	comprises thermal conductivity values measured	the study area, thermal properties measured on core samples exist only for
	measurements with previously	on several hundred "water-saturated porous	the Hinton-Edson area. Beach et al. (1987) gives a good overview of
	published results, I would	samples" (Beach et al. 1987, p.3). These thermal	thermal conductivity of 13 different rock types of the Mesozoic, Cenozoic
	recommend reference to Beach et	conductivity values were measured with a	and Paleozoic sediments in this area of the Alberta Basin but not for
	al., Geothermics, Vol. 16, No. I,	divided-bar apparatus and are stated as the	specific formations or how the properties might change within a reservoir.
	pp. 1-16, 1987 with averages	vertical or perpendicular thermal conductivity.	
	based on hundreds of thermal	This data set was not mentioned in the	We changed line 22 on page 11 to: "Thermal conductivity of the reservoir
	conductivity and porosity for	manuscript because it does not contain any	samples varies between 2.4 W m-1 K-1 (bank-edge reef, well 2-19, Nisku)
	carbonates and other rock types	information about the origin (well location and	and 5.5 W m-1 K-1 (reef facies, well 7-33, Nisku). Table 3 provides an
	from mainly Hinton- Edson area."	depth) of the samples, a reference to the different	overview of average thermal conductivities (arithmetic mean and standard
		formations in the basin, nor a detailed rock	deviation) for each analyzed member and formation. There is no
		description. The data set provided in Beach et al.	difference between the Leduc Formation of the RMRT and the SCCC.
		(1987) gives a good overview of thermal	Within the Nisku Formation, the argillaceous limestones of the Lobstick
		conductivity of 13 rock types of the Mesozoic,	Member show the lowest thermal conductivity, while thermal conductivity
		Cenzcoic and Paleozoic sediments in the Hinton-	of the Zeta Lake Member is within the range of the Leduc Formation."
		Edson area. The thermal conductivity values of	
		each rock type represent mean values calculated	We added "Likewise, the" to 27 on the same page.
		from different depth levels with varying	We added "independent of depth" to line 32 on page 12.
		thickness. The data set gives no information	We added the following section to line 24 on page 14:"The measured
		about specific formations and how the properties	thermal conductivity values presented in this work are within the range of
		change within a formation. Therefore, this data	data sets included in previous studies. Some examples are given in Table
		set is more useful for large scale observations. In	4. Further data sets are also listed in Grasby et al. (2012). Measurements
		Jones et al. (1984) thermal conductivity in the	of thermal conductivity of whole drill cores have shown that thermal
		Hinton-Edson area (most likely the same data set	conductivity is independent of depth in the study area. Additionally,
		– 936 water saturated samples from 48 wells	thermal conductivity shows no correlation with porosity. Similar findings
		measured with a divided bar apparatus) is given	were made in Jones et al. (1984).
		for four geological formation groups. Jones et al.	With the exception of the Hinton-Edson area, no 'hard' data exists for
		(1984) states that although a lot of samples were	thermal conductivity in the study area. Beach et al. (1987) and Jones et al.
		analysed, that some came from very small depth	(1984) provide average thermal conductivity values for different
		intervals and most of the cores are from very	lithologies measured on several-hundred water-saturated core samples
		porous and permeable formations. Therefore, this	with a divided bar apparatus mainly taken from wells in the Hinton-Edson
		data set is not representative for all relevant parts	area. The data set provided in Beach et al. (1987) represents mean values
		in the reservoir.	for different rock types of Mesozoic, Cenzoic and Paleozoic sediments
		The thermal conductivity values presented in this	and is more useful for large scale observations. Thermal conductivity
		manuscript were measured on dry samples. not	given for dolomites is about 1 W m^{-1} K ⁻¹ lower than that presented in this
		on saturated samples. It is to emphasize that	work (note: not recalculated for water saturated conditions). In Jones et al.
		thermal conductivity values measured on dry	(1984), thermal conductivity is given for four geological formation
		samples as well as thermal conductivity values	groups. Thermal conductivity given for dolomitic limestones fits very well

measured on water-saturated samples do not reflect the real conditions in the reservoir and need to be corrected before modelling.	to the results for partially dolomitized limestones shown in Table 3. However, the core samples which were used for the thermal conductivity measurements in the Hinton-Edson area are mainly taken from very porous and permeable zones and, in some cases, from very small depth intervals (Jones et al., 1984). Therefore, they do not represent all relevant parts of the reservoir. The other thermal conductivity values presented in Table 4 are included to demonstrate the variability of this parameter for different facies and/or reservoirs. According to Popov et al. (2016), thermal rock properties are critical parameters for thermo-hydrodynamic models and for predicting the lifetime performance of geothermal systems. Therefore an accurate determination of thermal properties of each relevant formation is necessary."

Referee 2 –	"b) There are many statements	Ok As mentioned before at this early stage of	See changes above: R1 C2 line 1
C2 line 25	related to an assessment of the	the project, we focused on examining the Upper	
	geothermal energy potential of the	Devonian carbonates for geothermal purposes	
	carbonate aquifers and reefs in the	and to measure rock properties which are	
	study area. While porosity.	relevant to geothermal exploration and	
	permeanbility temperature	modelling. The classifications by Sass and Götz	
	conditions, thermal conductivity	(2012) and Bär et al. (2011) were used for the	
	<i>.diffusivity. are important to such</i>	initial evaluation of the measured rock	
	evaluation it is not possible to	properties. We do not claim that they replace	
	recommend geothermal energy	further investigation. As mentioned in the	
	potential without take on other	manuscript (p. 13, line 22) "rock property	
	parameters like the hydraulic	measurements produce conservative results and	
	head, piezometric surfaces,	represent matrix properties only" and additional	
	mineralization of aquifer fluids and	parameters need to be integrated in a geological	
	most important estimate of	model for a reliable reservoir prediction.	
	potential flow rates at well head.	Therefore, our statements are not contradictory to	
	In that sense cited by the authors	the comments by Referee 2. Due to the high	
	paper by Jones and Lam Can. J.	number of well data (several thousand wells) that	
	Earth Sci. 1985 went farther and	need to be evaluated for a reliable assessment of	
	gives such information (see their	the Upper Devonian aquifer systems in the study	
	figs.10-12 and their Appendix	area, the parameters required by Referee 2 are	
	figures). I recommend that their	not included in this manuscript. This will be	
	results be described, evaluated and	considered in the next phase of the project. To	
	briefly discussed in the scope of	make this clear, we will add a short section about	
	geothermal energy eval"	the most relevant parameters and give an outlook	
		of the next steps according to the hints of Referee	
		2.	
Referee 2 –	"It is not entirely justified to make	Agreed.	This section in line 11 on page 15 was deleted according to the hints of
C3 line 8	statements in the paper like this		R2. Likewise the sentence in the Abstract on page 2.
	one: "		

Referee 4 –	"At their paper The Autors do not	Thank you very much for this advice. As	See changes above: R1 C2 line 1.
C3 line 20	address the issue of potential brine	mentioned above, this manuscript focuses on	
	production as they do not address	rock properties. It was not intended for	
	parameters needed to estimate it in	statements about economic and technical risks	
	their paper."	during production. Regarding the recent efforts	
		in the Hinton-Edson area to create an initial	
		geothermal project, it is important to consider the	
		complex hydrogeology in these aquifer systems.	
		Both formations (Leduc and Nisku) contain	
		highly concentrated waters with average TDS	
		values of approximately 200 g/l (Rostron et al.,	
		1997; Michael et al., 2003). Likewise, the Nisku	
		Formation is well known for its sour gas pools	
		(Bachu et al., 2008). Problems like scaling and	
		corrosion during operation can lead to higher	
		production costs or, in the worst case scenario, to	
		the abandonment of the well. These problems	
		have not been solved in the geothermal industry	
		yet. The hydrochemistry of the aquifer systems	
		in the study area has been the subject of several	
		previous studies (e.g. Lam and Jones, 1985;	
		Rostron et al., 1997; Buschkuehle and Machel,	
		2002; Michael et al., 2003, Machel and	
		Buschkuehle, 2008) because it was also the main	
		interest of the oil industry. As Lam and Jones	
		(1985) have showed, these parameters can be	
		very variable on a local scale. In the Hinton-	
		Edson area the salinity ranges from less than 50	
		g/l up to 180 g/l.	

Referee 4 – C1 line 11	<i>"a missing topic in this interesting chapter is the "upscaling- donwscaling" of the properties (reservoir and geothermal)"</i>	We agree that upscaling and downscaling of the rock properties is essential for reservoir modelling. As far as we did not model in this study, we did not elaborate this point in this manuscript. For the upscaling of the rock properties from plug to reservoir scale, further data should be included, which is beyond the scope of this study. So we agree to give information about "upscaling-downscaling" according to the hint of Referee 4:	To make it clear we did not upscale the properties here. See changes R4 p.13 line 7.
		 upscaling in porous media: e.g. Renard et al. (1997), Farmer (2002) stratigraphy based upscaling permeability and porosity in carbonate platforms: e. g. Leonide et al. (2012), Borgomano et al. (2013), Brigaud et al. (2014) 	
		 upscaling of thermal conductivities: Rühaak et al. (2015). Reservoir properties of carbonate rocks and their upscaling are related to architecture and facies. Nevertheless, our results show that (pervasive) dolomitization has affected the reservoir parameters of the Western Canadian Sedimentary Basin in an equitable degree. 	
Referee 4 – C2 line 1	"Another implicit assumption is that rock properties statistics are not dependent of sample size (no "support effect")."	We do not claim that property statistics are independent from sample size. According to the hint of Referee 4 we will consider this point and add it to the section about upscaling and downscaling.	See changes R4 p.13 line 7.

Referee 4 – p. 3 line 21	"what are precisely these "properties" and at what scale are they considered? Be more precise here"	Homuth et al. (2015) analyzed density, porosity, permeability, thermal conductivity, thermal diffusivity and specific heat capacity on plugs from more than 350 samples taken from 19 outcrops in the Swabian and Franconian Alb as well as on core samples and cutting material from wells in the Molasse Basin in order to obtain a large enough data base for upscaling and correlation of the geothermal properties. The rock samples were classified with respect to the dominant reservoir facies types in order to identify facies dependant trends. To transfer the petrophysical properties to reservoir conditions, a Thermo-Triaxial-Cell was used to simulate pressure and temperature conditions of the reservoir. Furthermore, data from previous studies (bio- and lithostratigraphic model of the target formation) and well data were included.	We added the following sentence to page 3 line 21: "The samples were analyzed for thermal- and petrophysical properties like density, porosity, permeability, thermal conductivity, thermal diffusivity as well as specific heat capacity. Furthermore the samples were classified with respect to the dominant reservoir facies types in order to identify facies dependent trends." For more details about measurements methods the reader should read the paper about the Molasse Basin. This section is already very long and should just give a rough idea why we did this in the Alberta Basin.
Referee 4 – p.3 line 24	"if you mean "physical-chemical rock properties" it needs to be demonstrated that outcrop and subsurface rocks are analogues (given different burial, structural, and diagenetic history, including telogenesis); if you mean facies, stratigraphic architecture/diemensions, sedimentry bodies etcthe analogy is probably ok"	The term "analogue" in this manuscript refers to "facies, stratigraphic architecture, and sedimentary bodies". Our study results are in agreement with your comment, as described later on in chapter "discussion and conclusions" (p 14, line 25ff).	How the term "analogue" is meant in this context is described on page 3 in line 14.

Referee 4 –	"how do vou measure	The multi-scale method includes analysis on	No changes necessary.
p. 3 line 29	thermophysical properties at all	three different scales 1) macro scale (outcrop,	
	these scales?"	well data) 2) meso scale (rock samples/plugs)	
		and 3) micro scale (thin section, chemical	
		analysis etc.). Macro-scale studies include well	
		data (e.g. hydraulic tests, heat flow) as well as	
		outcrop investigation (facies, structures). It is to	
		emphasize, that not every parameter can be	
		"measured" on every scale. In this manuscript we	
		focused on the meso and micro scale (rock	
		samples and thin sections).	
Referee 4 –	"it is not because you are doing	We agree with Referee 4. To make it clear, we	See changes R4 p. 13 line 7.
p. 3 line 30	multi-scale assessment that the	will add a short section about upscaling and	
	properties or charactéristics are	downscaling in the manuscript.	
	automatically upscales and		
	downscaled! It depends also of the		
	intrinsic heterogeneity of the		
	system at all scales"		

Defense 4	(, , , , , , , , , , , , , , , , , , ,	This share: firsting and shall a second design of the	This section in line 9 and access the second to size mean in from the
Referee 4 –	"what are the key parameters for	I his classification especially considers economic	I his section in line 8 on page 8 was changed to give more information:
p.8 line 9	this classification? Are they	and technological factors for geothermal	"For an initial evaluation of the geothermal potential (listed in Table 2),
	universal or are they dependent of	utilization of the Federal state of Hesse in	the rock properties of the outcrop and core samples (Fig. 8 to 10) were
	local conditions, basin, etc"	Germany. To assess the rock and reservoir	classified into five levels of potential, as previously done in a 3D
		properties in the 3D structural model of the	structural model of the German federal state of Hesse (Bär et al., 2011;
		Federal State of Hesse, a multiple criteria	Arndt et al., 2011; Bär and Sass, 2014). Within the 3D structural model,
		approach was used to incorporate their relevance	volumetric stratigraphic grids (SGrids) were created for each particular
		for geothermal systems (Bär et al., 2011, Bär and	unit. After parameterizing the grids based on an extensive database of
		Sass, 2014). Based on an extensive data base of	petro- and thermophysical rock properties for each unit combined with
		rock properties and reservoir data, the threshold	data from more than 4150 wells (e. g. results of pump tests and in-situ
		values (very low to very high) were defined to	temperature measurements), a multi criteria approach was used to
		specify the geothermal potential. Since there	incorporate the relevance of the rock and reservoir properties for
		exist no such data base for the Alberta Basin (and	geothermal systems (Arndt et al, 2011).
		also no experience with geothermal power/heat	Threshold values ranging from 'very low' to 'very high' were defined for
		generation), this classification was applied to the	every parameter to specify the geothermal potential. These are based on
		rock properties presented in this manuscript for a	experience in geothermal exploitation in Germany and particularly
		first evaluation.	consider technical and economic factors. For example, the minimum
			temperature for district heating is defined as 60 °C and 100 °C defines the
			minimum temperature where electricity production is technically possible.
			At temperatures above $120 ^{\circ}\text{C}$ (in combination with production rates
			shove 50 $m^{3/h}$ electricity production becomes economically intresting
			The classification of notential is explained in detail in Arndt et al. (2011)
			Reservoir properties are not considered here
			Reservon properties are not considered note.
Referee 4 –	"Petrography Outcrops" changed	Accepted.	Line 20 on page 9 was changed to: Outcrop Petrography
n. 9 line 20	to "Outcrop petroaranhy"	· · · · · · · · · · · · · · · · · · ·	
p. 5 mie 20			

Referee 4 –	"dry samples? It may change when	Sentence will be changed to: " The sample set	The sentence in line 31 on page 11 was changed to: "The sample set
p. 11 line 31	samples are saturated with	shows no correlation between thermal	shows no correlation between thermal conductivity and porosity Fig. 7c)."
	water?"	conductivity and porosity." According to Popov	
		et al. (2016) thermal conductivity of rocks	
		depends on the mineral composition, interstitial	
		porosity and fluids filling pores and fractures as	
		well as mineral grain size and orientation,	
		anisotropy of the rock matrix and the nature of	
		grain contacts. Thermal conductivity of water is	
		~ 0.6 W m ⁻¹ K ⁻¹ , while thermal conductivity of	
		air is approx. 0,025 W m ⁻¹ K ⁻¹ . Therefore, bulk	
		thermal conductivity generally increases with	
		increasing water content depending on the	
		porosity of the rock sample. Likewise, bulk	
		thermal conductivity of a rock sample generally	
		decreases with increasing porosity. Our data set	
		indicates no correlation between thermal	
		conductivity and porosity. It is most likely, that	
		in this case mineral composition, grain	
		size/geometry and grain contacts have a stronger	
		influence on thermal conductivity than the	
		porosity of the samples (plug scale).	

Referee 4 – p. 12 line 2	"that is in contradiction with the statement in the introduction."	The "thermo facies concept" was explained in chapter 1 "Introduction" by the example of the Southern German Molasse Basin. This concept was successfully applied in the Southern German Molasse Basin to assess the geothermal potential of the Malm-Aquifer (Homuth et al., 2015). For this reason, we considered it appropriate to apply this methodology to the Upper Devonian carbonates in Alberta. Our results show the limits of this method. Although we could identify several similarities between the outcrops and the reservoir core samples, the outcrops are no valid proxies for the buried reservoirs in the Alberta Basin. This implies that, besides many similarities (rock types, thicknesses, depth and deformation, hydrogeological properties) the term 'analogue' needs to be specified.	See changes above R1 C2 line 1.
Referee 4 – p. 12 line 5	" in outcrop conditions, not necessarlily in subsurface conditions"	Yes that is correct, but here we meant it in a different context. According to several transfer models (Allen and Allen, 1990; Pape et al., 1999, etc.) porosity and permeability generally decrease with increasing depth. Permeability of the outcrop samples is already significantly lower than permeability of the well core samples, even though the results are not corrected for reservoir conditions yet. We will specify this.	See changes below: C4 p13 line 7.

|--|

Referee 4 – p.12 line 14	"what type of pore space? intergranular, intercrystalline? microporous, vugs, ????"	On p. 12 line 14 it is written "The highly permeable, extensively dolomitized reef zones represent promising reservoirs for hydrothermal utilization with predominantly convective heat and laminar fluid flow." It is therefore unclear as to what extent this question refers to this sentence.	No changes possible.
Referee 4 – p.12 line 14	"why? this is an important conclusion but there is no real demonstration of the heat transport and flow behaviour"	As mentioned in the sentence before, this conclusion was made according to the classification of the thermofacies concept (Sass and Götz, 2012). The application of the thermofacies concept is useful in an early exploration stage or in cases where detailed reservoir information is not available. This concept allows a first characterization (whether it is a petrothermal, transitional or hydrothermal reservoir), but does not replace further investigation. Due to the high number of well data (several thousand wells) that need to be evaluated for a more detailed assessment, this point is not further elaborated in the manuscript and will be part of the next phase of the project. This conclusion takes also previous studies into account regarding diagenesis (Machel and Buschkuehle, 2008), fluid flow and hydraulically connected areas (Michael et al., 2003; Rostron et al., 1997; Bachu et al., 2008) as well as the well data from the oil industry (production data).	No changes. This is explained in the text.

Referee 4 – p. 12 line 19	<i>"it is not "reservoir scale", it is "plug scale" measurements within reservoir units"</i>	Accepted.	Line 19 on page 12 was changed to: "Regarding the rock property measurements (core sample scale) of the Leduc Formation (Fig. 9 and 10) at reservoir scale they indicate rather a homogenous matrix (with permeability deviating by three orders of magnitude and porosity varying between 5 to 10 %), in rocks comprised predominantly of stromatoporoid- and coral-rich grainstones/wackestones to floatstones/rudstones. Regarding the rock properties at meter scale, permeability and porosity"
Referee 4 – p. 12 line 19	"ambiguous"	Accepted.	See changes above.
Referee 4 – p.12 line 20	<i>"5 % of porosity variation for 3 orders of K permeability: does it suggest micro- fracture"</i>	We identified hairline fractures e.g. in well 5-22 (Leduc Formation, central basin), which has also been observed in the Strachan pool close to the Rocky Mountains (Marquez and Mountjoy, 1996). These fractures form networks throughout the rock matrix and might explain higher permeability values.	No changes. It is described in chapter 5.1 and Discussion and Conclusions.
Referee 4 – p. 12 line 28	<i>"what do you mean by "apparent" K?"</i>	See answer below.	See changes below.

Referee 4 –	" "intrinsic" K ?"	After Languth and Voigt (2004) the permeability	This section in Material and Methods (p. 7, 1. 5) was changed to: "Matrix
p.12 line 31		describes the hydraulic parameters of an aquifer.	permeability of the outcrop samples was determined with a column
		When different fluids (oil, gas, water) occur in a	permeameter using different air pressure levels from 1 to 3 bar. This
		reservoir, the specific, absolute or intrinsic	method is based on Darcy's law enhanced by factors for compressibility
		permeability becomes important. The intrinsic	and viscosity of gases (Jaritz, 1999). It allows calculation of the intrinsic
		permeability describes the aquifer matrix only	permeability (Ki) from apparent permeability (Ka) by using the
		and does not consider fluid specifications.	Klinkenberg method (Klinkenberg, 1941). Thereby, intrinsic permeability
		Permeability was measured with a column	describes the aquifer matrix only and does not consider fluid properties
		permeameter and a mini permeameter, which is a	(Languth and Voigt, 2004). The intrinsic permeability corresponds to the
		variation of the column permeameter (Hornung	effective gas permeability of air under infinitely high pressure. As it is not
		and Aigner, 2004). Both devices are gas driven,	possible to determine permeability under infinitely high pressure, the
		which allows quick, contaminant-free and non-	column permeameter measures the apparent gas permeability of air with at
		destructive measurements (Filomena et al.,	least five pressure stages (Jaritz, 1999). Afterwards, the apparent
		2014). The column permeameter measures the	permeability is plotted in the Klinenberg plot to calculate the intrinsic
		intrinsic permeability after Klinkenberg (1941).	permeability. Measurement accuracy varies from 5 % for highly
		Thereby the intrinsic permeability corresponds to	permeable rocks (K \ge 10-14 m ²) to 400 % for impermeable rocks (K \le 10-
		the effective gas permeability of air under	16 m ²) (Filomena et al., 2014)."
		infinitely high pressure. The calculation is based	
		on Darcy's law, supplemented by the addition of	
		compressibility and viscosity of gases. As it's not	
		possible to determine the permeability under	
		infinitely high pressure (Jaritz, 1999), the column	
		permeameter measures the apparent gas	
		permeability of air with at least five pressure	
		stages from 1000 to 5000 mbar. Afterwards the	
		intrinsic permeability is calculated from the	
		apparent permeability using the Klinkenberg	
		method (1941).	
Referee 4 –	"a missing tonic in this interesting	Accepted See Answer above	See changes below
n 12 line 7	chanter is the "unscaling_		bee enanges below.
h.12 III.6 1	dopused ing" of the properties		
	donwscaling of the properties		
	(reservoir and geothermal)."		

Referee 4 –	"there are no measurements or	Accepted. Porosity and permeability is highly	There must be a misunderstanding here: We did not upscale any
p.13 line 7	estimation of properties at greater	variable within the reservoir. In our manuscript	properties here. We correlated existent data with our measurements. At
	scale than the plugs; so all the	we focused on the core sample scale. We will	reservoir scale meant: From base to top of the Reservoir and the
	extrapolation made from plug	consider this point.	distribution within the basin. There is a huge data set of porosity and
	measurements to larger scale are		permeability available and combined with core analysis from literature,
	implicitely based on averaging and		they indicate that the formation is relatively homogenous within the basin
	assuming some level of		(= the range of porosity and permeability at plug scale, nearly everywhere
	"stationnarity" within stratigraphic		the same grade of dolomitization).
	units or sedimentary units. Another		Is is to mention that the AccuMap data base predominantly provides data
	implicit assumption is that rock		for high porous reservoir sections. Unfortunately, there is no data
	properties statistics are not		available for the analyzed wells of the Lobstick, Dismal Creek and
	dependent of sample size (no		Bigoray Member. Therefore it would not be very representative to start the
	"support effect"). Certainly not the		upscaling with the data set presented in this study. More data is needed
	case for permeability in carbonate		and probably own porosity and permeability measurements for formations
	reservoirs! All these assumptions		where no data exists.
	should be discussed prior to the		
	conclusive statement on the		As the outcrops we found in the Front Ranges show distinct differences
	geothermal potential and		compared to the reservoir core samples, we have decided that the analogue
	extrapolation of core plug data."		samples are not useful for geothermal modeling. Therefore we did not
			consider any scale effects.
			The outcrop analogue plugs have predominantly a size of 40 mm in
			diameter, but also 25 mm or 64 mm. We could not indicate any significant
			size dependent errors in the measurement results at this sample size or
			within this data set. I think the diagenetic overprint is to high and to
			variable to identify such errors and affects the results the most. This will
			be also a critical point for the histograms and variograms presented in
			your work. I agree that bigger samples are always better to reflect the
			outcrops/reservoir properties and that small samples cannot represent
			bigger fracture zones or karstification. It is clear that plugs measurements
			most likely underestimate the outcrop/reservoir permeability.

	<i>"</i> · · · · · · · · · · · · · · · · · · ·		XX7. 1. 1. 1
Referee 4 –	you might add histograms of	Thank you very much for this kind advice. We	we decided not to defocus the aim of this paper. As explained above,
p.13 line 7	diffrent properties for the various	will consider this point during revision of the	porosity and permeability data is not available for all analyzed wells.
	stratigraphic units and facies, to	manuscript. Histograms of the different rock	Upscaling with this data set would not be very representative. More data
	help the discussion on upscaling"	properties might be helpful regarding the	provided in the AccuMap data base needs to be evaluated, which is
		upscaling discussion, but they do not replace the	beyond of the scope of this study.
		plots presented in this manuscript. Figure 7	
		shows the correlation of the rock properties and	Therefore we added just a brief summary about the next steps and the
		Figures 8 to 10 give a first impression how the	processing of the data concerning upscaling:
		properties vary within the reservoir, whereby we	The here presented data set was analyzed under lab conditions (20 °C) and
		focused on the latter.	represents matrix properties only (representative at cm-scale, macroscale).
			It is to emphasize that rock property measurements can differ with
			samples size. Measurements at plug scale do not represent larger features
			as large vugs and molds (bigger than sample size), karstification or
			fracture zones and most likely underestimate porosity or permeability of
			the outcrop/reservoir. Especially in carbonate reservoirs porosity and
			permeability can be very variable.
			In order to utilize the rock properties in a geological model, they need to
			be corrected for reservoir conditions and subsequently transferred to
			reservoir scale (macroscale). For example thermal conductivity: With
			given information about reservoir fluid properties and porosity, thermal
			conductivity can be recalculated for water-saturated conditions (Clauser
			and Huenges, 1995; Popov et al., 2003). Temperature dependency models
			are used to transfer thermal properties to reservoir conditions as described
			in Vosteen and Schellschmidt, (2003) and Sommerton, (1992). In general,
			thermal conductivity increases with increasing water content, porosity and
			pressure, but decreases with increasing temperature (Clauser and Huenges,
			1995). For example, thermal conductivity of matrix dominated limestones
			of the Jurassic Malm Formation in Southern Germany ranges between
			$1.35 - 2.62 \text{ W m}^{-1} \text{ K}^{-1}$ at 20 °C and dry conditions, $1.60 - 2.79 \text{ W m}^{-1} \text{ K}^{-1}$
			at 20 °C and saturated conditions and $1.41 - 2.25$ W m ⁻¹ K ⁻¹ at reservoir
			conditions (150°C). Geothermal reservoirs have a smaller margin to be
			economically profitable than oil reservoirs. Therefore Rühaak et al. (2015)
			tested different upscaling procedures for thermal conductivity to testify
			their accuracy. Thereby the intention is to keep as much of the small scale
			information as possible. The results indicate that harmonic and geometric
			mean upscaled values reflect most accurately local values.
			A reliable porosity/permeability prediction is crucial for reservoir
			characterization and modeling (Borogomano et al., 2008) and mostly has
			to be carried out with a limited number of core measurements. Upscaling

			techniques for porosity, permeability and hydraulic conductivity have been subject of several studies and are described in Clauser (1992), Renard and de Marsily (1997) and Farmer (2002). Previous studies in the WCSB analyzed a high amount of well data and used the calculation of arithmetic and geometric mean values to upscale their parameters from plug to reservoir scale (Weides et al., 2013, Ardakani and Schmitt, 2016). Borgomano et al. (2013) analyzed the porosity-permeability relationship of plug samples combined with detailed facies analysis to identify the predictability of these parameters. Additionally, the creation of vertical and horizontal histograms and variograms can help to identify the heterogeneity, anisotropy and lateral distribution of the properties and whether the upscaling from plug to reservoir scale is linear or not.
Referee 4 – p.28	<i>"I would add some histograms, for different geologicl units and facies , etcthat would help to discuss the upscaling issue in the conclusion"</i>	Same answer as above.	See changes above.
Jacek Majorowicz – C2 line 7	"1.The reference should be Weides and Majorowicz (2014) as given below in the References."	I apologize for this mistake. It has been corrected accordingly.	It was corrected on page 2, line 32, page 3, line 2 and 4, page 4, line 7, page 18, line 16

Jacek	"2, Heat flow in the cited map in	Thank you very much for this correction. The	line 1 on page 3 has been changed to: "The area around the town site of
Majorowicz	Weides and Majorowicz (2014,	associated section in chapter "1 Introduction" in	Hinton in the western region of the Alberta Basin (Fig. 1) is of particular
– C2 line 9	their Fig. 3) for the studied area of	page 3 line 1 has been changed to: "The area	interest because well data analysis indicates flow rates of more than 400
	the Alberta basin is not reaching	around the town site of Hinton in the western	m ³ h-1 and temperatures up to 150 °C at depths of approximately 5 km
	80 mW m-2 It is less than 70mW	region of the Alberta Basin (Fig. 1) is of	(Lam and Jones, 1985).";
	m2. The heat flow in the WCSB	particular interest because well data analysis	
	generally ranges from 30 to 100	indicates flow rates of more than 400 m ³ h ⁻¹ and	page 2, line 30 has been changed to: "This appears feasible because,
	mW/m2, being 60.4 mW/m2 on	temperatures up to 150 °C at depths of	although this province is characterized as a 'low enthalpy region' (Grasby
	average according to Weides and	approximately 5 km (Lam and Jones, 1985)."	et al., 2012; Lam and Jones, 1985 and 1986) with a moderate average
	Majorowicz (2014). The heat flow	General information about the geothermal	geothermal gradient of 33.2 °C km-1 and an average heat flow of 60.4 W
	values has been corrected for	gradient and heat flow in the WCSB was added	m-2 in the WCSB, recent studies using data from several tens of thousands
	paleoclimatic surface temperature	to page 2, line 30: "This appears feasible	of oil and gas wells suggest that at least some of the Upper Devonian
	forcing (Majorowicz et., al.	because, although this province is characterized	carbonate aquifers are suitable for geothermal utilization (Weides and
	2012). "	as a 'low enthalpy region' (Grasby et al., 2012;	Majorowicz, 2014)."
		Lam and Jones, 1985 and 1986) with a moderate	
		average geothermal gradient of 33.2 °C km ⁻¹ and	
		an average heat flow of 60.4 W m^{-2} in the	
		WCSB, recent studies using data from several	
		tens of thousands of oil and gas wells suggest	
		that at least some of the Upper Devonian	
		carbonate aquifers are suitable for geothermal	
		utilization (Weides and Majorowicz, 2014)".	

Jacek Majorowicz – C2 line 15	: "The attached average geothermal gradient map (Fig.1) shows that there are much 'hotter' areas in the WCSB in Alberta and these are to the north and east of deep part of the foreland basin in the Hinton area."	This is correct. The two carbonate complexes were selected because 1) A lot of communities in Alberta are located in this area (this applies especially for the Rimbey-Meadowbrook Reef Trend), 2) There is increasing public interest in geothermal energy utilization in the Hinton- Edson area (Southesk-Cairn Carbonate Complex), 3) the general growing interest in repurposing abandoned oil and gas wells to find new possibilities to reduce the demand of fossil fuels and to reduce CO ₂ -emissions, 4) there are similarities in rock type, depth and structure of the Devonian aquifer systems with the Jurassic Malm-aquifer in the Southern German Molasse Basin, which offers the possibility of knowledge transfer between Alberta and Germany.	We added the following sentences to page 4 for a better understanding: Page 4 line 20: "Therefore the carbonate platforms are in focus of interest due to the general increasing public interest in repurposing abandoned oil and gas wells." Page 4 line 27:" Within the WCSB, the geothermal gradient and heat flow varies from 20 °C km ⁻¹ to over 55 °C km ⁻¹ and 30 mW m ⁻² to 100 mW m ⁻² , respectively (Majorowicz et al., 2012; Weides and MAjorowicz, 2014). Areas with higher heat flow values are identified in the northern part of the basin. Compared to the study area, these zones are sparsely populated and thus not chosen for this pilot study.
Jacek Majorowicz – C2 line 20	"However, such deep wells are expensive and economics of drilling two 5km wells into the deepest sedimentary horizons will end up with extremely high mineralized waters and rather poor porosity/permeability (Lam and Jones, 1985)."	This pilot study was intended to be an initial inquiry into the the Upper Devonian carbonates with respect to geothermal utilization and to create an initial data set of rock properties relevant to geothermal exploration and modelling. To assess the economic feasibility of this reservoir more data is needed, e.g. the corrected heat flow and temperature data (Majorowicz et al., 2012; Nieuwenhuis et al., 2015), salinity, flow rates, potentiometric surfaces, and hydraulic heads to name just a few. The high TDS content in the formation waters of the Leduc and Nisku formations (Rostron et al., 1997; Bachu et al., 2008) is a critical parameter for geothermal production. Therefore, well data provided in the AccuMap or GeoScout databases need to be evaluated and interpreted carefully, which is beyond of the scope of this study. A	See changes above: R1 C2 line 1.

short section will be added to the chapter	
"discussion and conclusions" to provide an	
overview of further steps. We don't agree with	
the statement that porosity and permeability are	
generally poor at these depth levels. According	
to Amthor et al. (1994), there is an overall	
decrease of porosity/permeability with depth in	
the Leduc Formation in the WCSB, but it has	
also been shown that especially the dolomitized	
reef sections retain their porosity/permeability	
compared to limestones at the same depth level	
or compared to well cores which are located in	
the shallower parts of the basin. An example is	
presented in this manuscript: Well 2-36-54-	
23W5 (>4 km depth), located in the western part	
of the Southesk-Cairn Carbonate Complex,	
shows the highest porosity and permeability of	
all wells in this dataset. Porosity and	
permeability can be highly variable within	
aquifers at a local scale. However, it must be	
taken into account that high porosity and	
permeability values do not naturally guarantee	
high flow rates. Therefore, a careful evaluation	
of the well data and other existing information on	
the reservoir must be carried out to localize the	
most promising areas.	

Referee 3 – C2 line 15	3) Introduction: To suggest that there is a political climate that favours business over environment, and its [sic] doubtful if Alberta will want to transition to a cleaner energy system is simply outrageous – politics does not belong in a science paper. Besides, Albertans have recently elected a government that has one of the most aggressive environmental programs in North America, including implementing the largest carbon tax in Canada. Such statements that speak to the politics of a place the authors do not live in, and to speculate about future decisions Albertan's will make, have absolutely no place in a science paper."	Climate change is science and policy. Geothermal energy research deals with it. The political background was triggering this research. It is a question of taste if a political statement will belong to a science paper or not. That may stay with R3.	Line 21 to 24 on page 15 was deleted.
Referee 3 – C2 line 29	" 5) Page 3, line 9: what is Malm?"	Malm" is mentioned 5 times in the MS: 3times referred to as "Upper Jurassic Malm-Aquifer [] in Southern Germany", the other times as "German Malm Formation" and "Malm and Devonian" (p 3, ln 9). – Despite the given explanations and the hint in the immediately following line – (it's a) "regionally extensive carbonate aquifer system(s)" (p 3, ln 10f) – we will make some changes to make it absolutely clear to everybody who will not read to that line: "Malm and Devonian" "Malm Formation and Devonian Period"	Malm and Devonian was changed to Malm Formation and Devonian Period in line 9 on page 3
Referee 3 – C3 line 10	"9)Page4,ln2: Delete 'literally' and also,use theCanadian spelling of "Centre" not 'Center' as that is the formal spelling of the Core Centre."	Agreed.	Literally was deleted in line 2 on page 4, Core Research Center was changed to Core Research Centre in line 3 on page 4 and in line 18 on page 6

Referee 3 – C3 line 11	" 10) Page 4, ln 3 ", results of drill stem test"	Agreed.	"results of " was added to line 3 on page 4
Referee 3 – C3 line 19	" 13) Page 4, ln 21: the formal name is 'Rocky Mountains'"	Accepted.	Rockies was changed to Rocky Mountains in line 21 on page 4
Referee 3 – C3 line 23	" 16) Page 9, ln 11: need ref for timing of larimide"	Accepted.	 We changed line 9 on page 9 to: "These fractures probably resulted from overpressuring of the well-sealed reservoir during deep burial, driven by thermal cracking of crude oil to gas and possibly aided by tectonic compression, both happening simultaneously during the Late Cretaceous - Early Tertiary and coinciding with the peak phase of the Laramide orogeny (appr. 80 -55 Ma., English and Johnston, 2004)." We changed line 19 on page 5 to: "This region of the WCSB has undergone four orogenies since the Devonian period (1. Antler (Devonian-Carboniferous), 2. Sonoma (Late Permian), 3. Columbian (Jurassic-Early Cretaceous) and 4. Laramide (Mid-Late Cretaceous-Tertiary); Machel, 2010), which ultimately resulted in the wedge-shaped, triangular geometry in cross section of the foreland basin and its sedimentary filling (Fig. 2), now generally referred to as the Alberta Basin.
<u>Further</u> corrections:			
	Table 1: The depth levels of well 2-36 and 16-18 in Table 1 were reversed. The analysed depth interval of well 16-18 is now "2741.00 m to 2779.77 m" and the analysed depth intervals of well 2-36 are "4068.77 m to 4095.00 m" and "4145.00 m to 4165.39 m" as shown in Fig. 9.	The depth intervals were corrected.	

Table 2 – Perdrix Formation: The number of measured plugs for the density measurements is $N = 17$.	The table was corrected.	
Page 6 line 22: It is IHS instead of HIS – also in the references. I apologize for the unfortunate auto correction.	HIS was changed to IHS on page 6 line 22 and in line 13 on page 17.	
Page 8, line 14: The investigated Leduc Formation mainly represents stromatoporoid and coral-rich reefs and reef margin lithologies with dissolution enlarged vugs and molds.	Changed to: "The investigated Leduc Formation mainly represents intensively dolomitized stromatoporoid and coral-rich reefs and reef margin lithologies with dissolution enlarged vugs and molds.	
Page 4 line 8	To make the aim of this paper clear: Accurate thermal properties are critical parameters for reliable geothermal assessment (Popov et al., 2016). The aim of this work was to create an initial data set of rock properties (relevant to geothermal modeling) specific to the Upper Devonian aquifer systems which have become of particular interest for geothermal utilization and also for identifying variations of rock properties within the reservoir.	
Page 2 line 2	We changed 10 ⁻¹⁴ to 10 ⁻¹⁵ to avoid over estimation	
Page 3 line 14	We added (Fig. 3) for a better understanding.	
Page 4 line 17	We changed Nisku reef trend to Nisku Reef Trend	
Page 4 line 18	We changed Both to The	

Page 6 line 4	We added $(D1 - D4, Fig. 3)$ for better understanding.	
Page 6 line 16	We changed termophysical to "thermo-" and added "outcrop".	
Page 7 line 4	We added the following explanation: "For direct comparison with the provided data in the AccuMap data base only particle density is presented here".	
Page 13 line 21	We replaced > with "up to", otherwise readers could think that permeability is commonly higher than 10^{-12} m ² in the reservoir."	
Page 13 line 26	The sentence was deleted, because we added a new section addressing the next steps.	
Page 15 line 19	We added the following sentence to Acknowledgements: "We would like to thank Jean Borgomano, Jacek Majorowicz and three anonymous reviewers for their constructive comments."	
Tables; Figures, Appendix B, References	The sections tables, figures have been modified. Appendix B has been added. References has been actualized.	