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ABSTRACT 

This paper uses multivariate regression to create a mathematical model for iron skarn exploration in the Sarvian 

area, central Iran, using multivariate regression for Mineral Prospectivity Mapping (MPM). The main target of this 

manuscript is to apply multivariate regression analysis (as a MPM method) to mapping iron outcrops in the 

northeastern part of the study area in order to discover new iron deposits in other parts of the study area. Two types 

of multivariate regression models using two linear equations were employed to discover new mineral deposits. Aster 

satellite images (14 bands) were used as Unique Independent Variables (UIVs), and iron outcrops were mapped as 

dependent variables for MPM. According to the results of p-value, 𝑅2 and 𝑅𝑎𝑑𝑗
2 , the second regression model (which 

was a multiples of UIVs) fitted better than other models. The accuracy of the model was confirmed by iron outcrops 

map and geological observations. Based on field observation, iron mineralization occurs at the contact of limestone 

and intrusive rocks (skarn type). Iron minerals consist dominantly of magnetite, hematite and goethite. 
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1. INTRODUCTION 

Preparing the information on an object without touching is called remote sensing. The 

technology of acquiring data through a device which is located at a distance from the object and 

the analysis of the data for the purpose of interpreting the physical attributes of the object are two 

facts of remote sensing (Gupta, 2003).Recently, application of remotely-sensed data in natural 

resources mapping has been popular. In the other words, applications of remote sensing in 

geological investigations is the best approach for large scale studies (Melesse et al., 2007). In this 
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research, we present some of the most commonly used applications of the techniques in mineral 

resources mapping.  

Mineral exploration is a complicated process that involves a focus on delineation of target 

areas in the search for new mineral deposits (Xiong et al., 2017). The principal aim of mineral 

investigation in the region of interest is to diagnose futuristic zones and to find new mineral 

deposits. One way to achieve this aim is using satellite image processing in order to identify 

Mineral Prospectivity Mapping (MPM) (Carranza, 2008; Abedi et al., 2013; Golshadi et al., 2016 

and Feizi et al., 2012). 

Mineral prospectivity mapping using 2D geoscientific data, such as geological, geochemical, 

geophysical and remote sensing data, among others, has been widely used for mineral 

exploration and targeting for the last 30 years (Li et al., 2015, Abedi et al., 2012; Bonham-Carter 

and Agterberg, 1990; Carranza, 2009; Carranza and Sadeghi, 2010c; Ford and Blenkinsop, 2008; 

Lindsay et al., 2014; Lisitsin et al., 2013; Pan and Harris, 2000; Porwal et al., 2010). 

 The utilization of satellite images for mineral investigation has been extremely effective in 

indicating out the presence of minerals. Likewise, remote sensing provides a synoptic view, 

which is useful for identifying and delineation different landscapes, linear features, and structural 

elements (Feizi and Mansouri, 2013a).  

 

The regression analysis is a statistical process in order to estimating the relationships among 

variables. There are many techniques for analyzing several variables, when the focus is on the 

relationship between a dependent variable and one or more independent variables, which the 

latter case is called multivariate regression analysis. This regression analyses has been utilized as 

part of numerous logical fields, such as geoscience branches. 

Identification of stream sediment anomalies have been used by multiple regression analyses 

(e.g., Carranza, 2010a; Carranza, 2010b). Likewise, multivariate regression has been effectively 

utilized by Granian et al. (2015) to display subsurface mineralization from lithogeochemical 

information. Granian et al. (2015) used four types of multivariate regression models to depict 

significant surface geochemical anomalies indicating subsurface gold mineralization utilizing 

borehole data as dependent variables and surface lithogeochemical data as independent variables.  

Based on previous work such as Allbed et al., (2012), modelling and mapping of mineral 

potentials based on satellite image data and processing it based on remote sensing and regression 

analysis is a promising approach as it facilitates timely detection with a low-cost procedure and 

allows decision makers to decide what necessary action should be taken as the first step in 

Mineral Prospectivity Mapping (MPM) field.  
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The main objective of this research was to use multivariate regression analysis (as a MPM 

method) to use pixel values from Aster satellite images of the northeastern part of the study area 

to identify new iron deposits in other parts. Two types of multivariate regression models were 

used to find new mineral deposits, using pixel values of Aster satellite image bands (14 bands) as 

Unique Independent Variables (UIVs), and iron outcrop areas (digitized a 1:5000 geology map 

of the study area and field) data as dependent variables.  

This paper uses multivariate regression to develop a useful and precise mathematical model 

of iron potential zones the region of the interest. 

2. METHODOLOGY 

 

2.1. STUDY AREA 

The Sarvian area is in the Orumieh-Dokhtar magmatic arc in Central Iran (Fig. 1a). This 

magmatic arc is the most important metallogenic area inside the district and hosts large metal 

deposits such as lead, zinc, copper and iron (Feizi et al., 2016 and Feizi et al., 2017). 

The study area is dominated by Eocene intrusive rocks and carbonates of the Qom formation. 

Several types of metal and non-metal mineral ore deposits have, as of now, been reported in the 

study area. According to the 1:100,000 geological map of Kahak, the lithology of this area 

includes cream limestone with intercalations of marls (Qom formation), dark green, andesitic-

basaltic lava, volcanic breccia, hyaloclastic limestone, green megaporphyritic andesitic-basaltic 

lava, rhyodacitic domes, tonalite-quartzdiorite, microquartzdiorite-microquartzmonzo-diorite, 

granite-granodiorite, altered of light green, grey tuff, tuffaceous sandstone and shale with 

intercalation of nummulitic sandy limestone and andesitic lava, and orbitolina-bearing,  thick 

bedded  to massive grey limestone (Aptian–Albian) (Feizi et al., 2016) (Fig. 1b). 

Figure 1 is about here.  

These relationships are demonstrated by the calcic iron skarn ore (Sarvian mine) in the 

northeast of study area (Feizi et al., 2017) (Fig. 2). Skarn-type Fe mineralization and alteration 

are localized along the contact zone between intrusive rocks and carbonate sequences (Zuo et al., 

2014). 

Figure 2 is about here.  

2.2. MULTIVARIATE REGRESSION 

Regression analyses is a good statistical tool for analyzing relationships among dependent 

and independent variables (Granian et al., 2015). In regression analyses, for dependent variables 

(𝑌) and independent variables called (𝑥𝑖), the equation is: 

𝑌 = 𝑓(𝑥𝑖).           (1) 
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Y can be a linear or non-linear function. For linear regression Y is defined as follows: 

𝑌 = 𝑎0 + 𝑎1𝑥1 + 𝑎2𝑥2 + ⋯+ 𝑎𝑖𝑥𝑖 + 𝜀 ,     𝑖 = 1,2, … , 𝑛.  (2)        

 

For this function, the constant factor is 𝑎0 , the random error is 𝜀 , and the regression 

coefficients are 𝑎𝑖.  If there are 𝑛 samples in a data set, for each sample 𝑡 variables were 

measured. Thus, function (2) is as follows: 

 

𝑌𝑖 = 𝑎̂0 + 𝑎̂1𝑋𝑖1 + 𝑎̂2𝑋𝑖2 + ⋯+ 𝑎̂𝑡𝑋𝑖𝑡 + 𝜀𝑖𝑖 = 1,2, … , 𝑛.         (3) 

 

 

Equation (3) can be re-written as a matrix. The linear function matrix is: 

[𝑌] = [𝑋][𝐴] + [𝜀].        (4) 

 

[𝑌] =

[
 
 
 
 
𝑌1

𝑌2.
..

𝑌𝑛]
 
 
 
 

;  [𝐴] =

[
 
 
 
 
𝑎̂0

𝑎̂1.
..

𝑎̂𝑡]
 
 
 
 

; [𝑋] =

[
 
 
 
 
1  𝑋11𝑋12 …𝑋1𝑡

1  𝑋21𝑋22 …𝑋2𝑡.
..

1  𝑋𝑛1𝑋𝑛2 …𝑋𝑛𝑡]
 
 
 
 

;  [𝜀] =

[
 
 
 
 
𝜀1

𝜖2.
..

𝜖𝑛]
 
 
 
 

.       (5) 

 

The least squares technique is used for estimating [𝐴] as the coefficient matrix, as follows: 

  

[𝐴] = [∑  ]−1[𝐶] = ([𝑋]′[𝑋])−1[𝑋]′[𝑌].       (6) 

 

The inverse of variance-covariance samples matrix is [∑  ]−1and the covariance matrix 

among independent variable and samples is[𝐶]. Thus the regression coefficients model is 

calculated from equation 6.   

The following criteria were used for the regression analysis: 
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1. The variance and the mean of the random error should be a constant value and zero, 

respectively. 

2. The coefficient of determination value (𝑅2) should be examined. This value is calculated 

as follows (Granian et al., 2015): 

 

𝑅2 =
∑ (𝑌𝑖̂−𝑌̅)2𝑛

𝑖=1

∑ (𝑌𝑖−𝑌̅)2𝑛
𝑖=1

= 1 −
∑ (𝑌𝑖−𝑌𝑖̂)

2𝑛
𝑖=1

∑ (𝑌𝑖−𝑌̅)2𝑛
𝑖=1

 .       (7) 

 

The mean of the variable (𝑌̅), value of the 𝑖th sample (𝑌𝑖) and estimated value of the 𝑖th 

sample (𝑌𝑖̂) for dependent variables were used in equation 7. The calculated 𝑅2 value determined 

within [0, 1] range. The value of 𝑅2 is close to 1 for well fitted models.  

1. Given the fact that adding independent variables to the model will increase the 𝑅2 value, 

the adjusted determination coefficient (𝑅𝑎𝑑𝑗
2 ) is defined as follows (Granian et al., 2015): 

𝑅𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑
2 = 1 −

𝑛−1

𝑛−𝑡
(1 − 𝑅2).       (8) 

As it was mentioned, 𝑛 is number of samples (or data) and 𝑡 is the number of variables (or 

regression coefficients). If a set of explanatory variables are introduced into a regression one at a 

time, with the 𝑅𝑎𝑑𝑗
2 computed each time, the level at which 𝑅𝑎𝑑𝑗

2 reaches a maximum, and 

decreases afterward, would be a well fitted model. 

2. In regression analyses, the model should be fitted to the data. Accordingly, the p-value of 

the regression model in the analysis of variance (ANOVA) test should be acceptable 

(less than or equal to 0.05). Calculating the p-value of final coefficients for each model, 

may also help optimize and improve the model. This criterion could be applied after 

choosing the best model. 

3. DATA COLLECTION 

There are several iron ore bodies and one iron mine in the northeastern Sarvian study area. 

The regional geological conditions of the area, suggest that the Sarvian iron mine is a good 

model for exploring the surrounding area. In this paper, a geology map of the mine is used as a 

training area for satellite imagery. In the training area, this method can model the iron outcrops 

(a dependent variable) based on Aster satellite image bands (independent variables) (Fig. 3). 

Figure 3 is about here.  

3.1. REMOTE SENSING DATA (INDEPENDENT VARIABLES) 
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The ASTER sensor was launched in December 1999 on board the Earth Observation System 

(EOS) US Terra satellite. ASTER provides high-resolution images of the land surface, water, ice, 

and clouds using three separate sensor subsystems covering 14 multi-spectral bands from visible 

to thermal infrared (Table 1). Resolutions are 15m, 30m, and 90m in the Visible and Near 

Infrared (VNIR), Shortwave Infrared (SWIR), and Thermal Infrared (TIR), respectively. For 

more information see Feizi and Mansouri, (2013b) and Mansouri and Feizi, (2016). 

Several factors influence the signal measured at the sensor, for example, radiometric 

calibration, and atmospheric and topographical effects. In this way, Aster data were  analysed  

using  ENVI5.1  software  to  provide  information  such  as  wavelength,  dark subtract and  log 

residuals which are basic for multispectral analyses (Mansouri et al., 2015). 

In this study after corrections, the pixel size of SWIR and TIR bands based on VNIR3 band 

(Panchromatic band) was converted to 15 m. The layer stacking function was then used to build 

a new multiband file from georeferenced images of various pixel sizes, extents, and projections. 

Table 1 is about here.  

3.2. MAPPING OF IRON OUPCROPS (DEPENDENT VARIABLE) 

 There are several iron veins and outcrops around the iron ore skarn mine in the north-eastern 

part of the Sarvian area. Iron outcrops in the training area were mapped using a geological map 

at a scale of 1:1000 of the iron ore deposit. The map was then field checked. The shape file layer 

of iron outcrops was converted to a raster file with a pixel size of 15 m. 

4. RESULTS AND DISCUSSION 

Multiple, factorial, polynomial and response surface regressions have been utilized in many 

fields including the geosciences (e.g. Granian et al., 2015). In this study; Model 1 (Y1) was 

generated as a multiple linear regression model and Model 2 (Y2) was created from Y1 plus many 

UIVs. The formulas for the two models are presented in Table 2. Thus, two linear equations (Y1 

and Y2) were used to discover new mineral deposits, using pixel values from ASTER satellite 

data as independent variables and a map of iron outcrops as dependent variables. Of The two 

models proposed in this paper, model 2 has 106 coefficients (14 for UIVs, 1 as constant, 91 for 

multiples of UIVs) and model 1 has 15 coefficients (14 for UIVs, 1 as constant, 0 for multiples 

and exponents of UIVs) (Table 2). 

Table 2 is about here.  

Regression analyses were performed to assess the models in Table 2, and the critical criteria 

mentioned above, were examined. The values of the R2 , Radj
2  and p-value from the ANOVA test 

of 2 multivariate regression models are provided in Table 3. 

Table 3 is about here.  
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Table 4 presents the calculated coefficients of independent variables in regression models. 

Excluded independent variables are not mentioned in Table 4. Excluded variables were those that 

had no effect on iron mineralization and the mapped distribution of iron outcrops. 

Table 4 is about here.  

 

We used several criteria to review the differences between the two models. Firstly, the 

variance and the mean of the random error were acceptable for both models. Secondly, based on 

Table 4, the p-values of ANOVA test of the two models were equal to 0. For regression models, 

the acceptable p-value should be less than or equal to 0.05. Thus, this criterion confirmed the 

validity of the models without specifying the most appropriate model.  

The value of R2 is close to 1 for well fitted models. The R2 values of regression models are 

presented in Table 3. Model Y1 has a lower R2 than Y2. Thus, the Y2 model is better than the Y1 

model. 

Because adding independent variables to the model will increasing the R2 value, the Radj
2  

value should be checked. The Radj
2  values of regression models are presented in Table 3. As 

mentioned above, if a set of variables are introduced into a regression, with the Radj
2 computed 

each time, the level at which Radj
2 reaches a maximum, and decreases afterward, would be a well- 

fitted model. So, according to Table 3, Y2 is the fitted model versus other models. Thus, Y2 

regression model is the most appropriate model for Mineral Prospectivity Mapping. 

Thus according to the results of p-value (ANOVA test), R2  and Radj
2 , the second regression 

model (Y2) would be the fitted model versus other models. For generating a mineral prospectivity 

map the model Y2 was implemented in ArcGIS using the raster calculator tool. The normalized 

mineral prospectivity map of the study area is presented in Fig. 4. 

Figure 4 is about here.  

To assess the accuracy of the selected model, the created prospectivity map was checked 

against the iron outcrops map in the northeastern part of the study area (Fig. 5).  The locations of 

iron outcrops is in close agreement with predictions from the mineral prospectivity map. In 

addition three target areas with very high potential were checked for iron outcrops and the 

prospectivity map was confirmed by geological observations (Fig. 6). Based on field observation 

iron mineralization occurs at contacts between limestone and intrusive rocks (skarn type). Iron 

mineralizations consists dominantly of magnetite, hematite and goethite. Therefore, the accuracy 

of the mineral prospectivity map is confirmed in the Sarvian area. 

Figure 5 is about here.  
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Figure 6 is about here.  

 

5. CONCLUSION 

 

The conclusions of this manuscript are as follows. 

1) The regression analysis is an appropriate and direct method for MPM by satellite images 

data. In this paper, the output of processed satellite image using regression analysis indicates the 

iron potential zones accurately. 

2) The application of multivariate regression analysis (as a MPM method) was confirmed in 

the Sarvian area. This paper used multivariate regression to create a mathematical model (with 

reasonable accuracy) for iron mineral exploration in the region of interest.  

3) Two types of multivariate regression models, as two linear equations, were employed to 

discover new mineral deposits. According to the results of p-value, R2 and Radj
2 , the second 

regression model best fitted observations. 

4) The accuracy of the model was confirmed by iron outcrops mapping and geological 

observations. Based on field observation iron mineralization occurs in contacts between 

limestone and intrusive rocks (skarn type). Iron mineralization consists dominantly of magnetite, 

hematite and goethite. 

5) The results demonstrate that modelling and mapping satellite images data based on 

regression analysis and remote sensing data is an efficient approach, as it facilitates timely 

detection with a low-cost procedure and allows decision makers to decide what necessary action 

should be taken as the first step in Mineral Prospectivity Mapping (MPM) field. 

6) Regression analysis method is a subset of supervised classification due to the mentioned 

procedure. In this method, target spectrums of training area are used for modeling and MPM. 
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Table 1. Wavelength ranges and spatial resolutions of ASTER bands (Abrams, 2000). 

 

Module VNIR SWIR TIR 

Spectral bandwidth (µm) 

Band 1 0.52 - 0.60 Band 4 1.650 - 1.700 Band 10 8.125 - 8.475 

Band 2 0.63 - 0.69 Band 5 2.145 - 2.185 Band 11 8.475 - 8.825 

Band 3 N 0.78 - 0.86 Band 6 2.185 - 2.225 Band 12 8.925 - 9.275 

Band 3 B 0.78 - 0.86 

 (backward looking) 
Band 7 2.235 - 2.285 Band 13 10.25 - 10.95 

 
Band 8 2.295 - 2.395 Band 14 10.95 - 11.65 

  
Band 9 2.360 - 2.430 

 
Spatial resolution (m) 15 30 90 

 

 

Table2. Formula of regression models used for Aster satellite image bands 

 

Types of Regression 

Number of 

coefficients 

Formula 

First-Degree 15 𝑌1 = 𝑎0 + 𝑎1𝑥1 + 𝑎2𝑥2 + ⋯+ 𝑎14𝑥14 

First-Degree 106 

𝑌2 = 𝑌1 + 𝑎15𝑥1𝑥2 + 𝑎16𝑥1𝑥3 + ⋯+ 𝑎27𝑥1𝑥14 + 𝑎28𝑥2𝑥3 + 𝑎29𝑥2𝑥4 + ⋯

+ 𝑎39𝑥2𝑥14 + 𝑎40𝑥3𝑥4 + 𝑎41𝑥3𝑥5 + ⋯+ 𝑎50𝑥3𝑥14

+ 𝑎51𝑥4𝑥5 + ⋯+ 𝑎60𝑥4𝑥14 + 𝑎61𝑥5𝑥6 + ⋯+ 𝑎69𝑥5𝑥14

+ 𝑎70𝑥6𝑥7 + ⋯ + 𝑎77𝑥6𝑥14 + 𝑎78𝑥7𝑥8 + ⋯+ 𝑎84𝑥7𝑥14

+ 𝑎85𝑥8𝑥9 + ⋯+ 𝑎90𝑥8𝑥14 + 𝑎91𝑥9𝑥10 + ⋯+ 𝑎96𝑥9𝑥14

+ 𝑎97𝑥10𝑥11 + ⋯+ 𝑎100𝑥10𝑥14

+ 𝑎101𝑥11𝑥12+⋯+𝑎103𝑥11𝑥14 + 𝑎104𝑥12𝑥13 + 𝑎105𝑥12𝑥14

+ 𝑎106𝑥13𝑥14 

 

 

Table 3.  The values for  𝑅2 , 𝑅𝑎𝑑𝑗
2 and p-value of ANOVA test of 2 multivariate regression 

models 

Models 𝑹𝟐 𝑹𝒂𝒅𝒋
𝟐  p-value (ANOVA) 

𝒀𝟏 0.738 0.715 0 

𝒀𝟐 0.847 0.829 0 
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Table 4.  The calculated coefficients of regression models 1 and 2. 

Model 1 Model 2 

variables Coefficients (𝑎𝑖) variables Coefficients (𝑎𝑖) 

CST 0.275 CST 0.677 

𝒙𝟏 -0.01 𝑥1 -0.014 

𝒙𝟐 -0.12 𝑥2 -0.019 

𝒙𝟑 -0.019 𝑥3 -0.045 

𝒙𝟒 0.003 𝑥4 0.022 

𝒙𝟓 -0.006 𝑥5 -0.017 

𝒙𝟔 -0.005 𝑥6 -0.001 

𝒙𝟕 - 𝑥7 - 

𝒙𝟖 -0.004 𝑥𝟖 -0.02 

𝒙𝟗 -0.005 𝑥𝟗 -0.006 

𝒙𝟏𝟎 0.009 𝑥𝟏𝟎 -0.014 

𝒙𝟏𝟏 0.005 𝑥𝟏𝟏 0.024 

𝒙𝟏𝟐 0.016 𝑥𝟏𝟐 0.024 

𝒙𝟏𝟑 0.002 𝑥𝟏𝟑 0.018 

𝒙𝟏𝟒 0.022 𝑥𝟏𝟒 0.036 

- - 𝑥1𝑥4 -0.0009 

- - 𝑥1𝑥6 -0.0002 

- - 𝑥4𝑥9 -0.0009 

- - 𝑥7𝑥8 0.00082 
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Fig. 1. a) The location of the Sarvian area in the Orumieh–Dokhtar magmatic belt, Iran b) Geological 

map of the Sarvian area (scale 1:25000).  
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Fig. 2. Location of the Sarvian iron mine in the study area. 
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Fig. 3. a) Location of training area in the study area. b) Aster satellite image in the training area 

(RGB:4,6,8). c) Geological map (scale 1:1000) of training area. 
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Fig. 4. Mineral prospectivity map of the Sarvian area. 
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Fig. 5. Mineral prospectivity map of the Sarvian area which confirmed by iron outcrops. 
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Fig. 6. Mineral prospectivity map of the Sarvian area which confirmed by check field of three target 

areas. 
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