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Abstract. This paper describes the extension of the concepts of connectedness and conservation of connectedness that underlie 5 

the generalised Archie`s law for n phases to the interpretation of the saturation exponent. It is shown that the saturation 6 

exponent as defined originally by Archie arises naturally from the generalised Archie’s law. In the generalised Archie`s law 7 

the saturation exponent of any given phase can be thought of as formally the same as the phase (i.e., cementation) exponent, 8 

but with respect to a reference subset of phases in a larger n-phase medium. Furthermore, the connectedness of each of the 9 

phases occupying a reference subset of an n-phase medium can be related to the connectedness of the subset itself by 10 

in

i ref iG G S . This leads naturally to the idea of the term in

iS  for each phase i being a fractional connectedness, where the 11 

fractional connectednesses of any given reference subset sum to unity in the same way that the connectednesses sum to unity 12 

for the whole medium. One of the implications of this theory is that the saturation exponent of any phase can be now be 13 

interpreted as the rate of change of the fractional connectedness with saturation and connectivity within the reference subset. 14 

1 Introduction 15 

Currently, there is no well-accepted physical interpretation of the saturation exponent other than qualitatively as some measure 16 

of the efficiency with which electrical flow takes place within the water occupying a partially saturated rock. Some might say 17 

that the meaning is not important as long as one can reliably obtain the water saturation of reservoir rocks with sufficient 18 

accuracy to calculate reserves. According to the 2016 BP Statistical Review of World Energy (BP, 2016), the world had proved 19 

oil reserves at the end of 2015 of 1.6976 trillion (million million; Tbbl.) barrels, slightly down on the value at the end of 2014 20 

(1.7 Tbbl.) and significantly above the respective values at the end of 1995 (1.1262 Tbbl.) and 2005 (1.3744 Tbbl.). The same 21 

source lists proven natural gas reserves of 186.9 trillion cubic metres (Tcm) at the end of 2015, slightly lower than at the end 22 

of 2014 (187.0 Tcm) and significantly and progressively higher than the values at the end of 1995 (119.9 Tcm) and 2005 23 

(157.3 Tcm). This represents combined oil and gas reserves of approximately 78.4 trillion US dollars combined at end 24 

December 2015 prices (using WTI crude and Henry Hub).  25 

Even a tiny uncertainty of, say, 0.01 in a saturation exponent of 2 (i.e., 0.5% or 2±0.01) would result in an error in the 26 

reserves of about ±254.36 billion US dollars; the equivalent of 82 Queen Elizabeth class aircraft carriers or one mission to 27 

Mars. This calculation has been carried out by calculating the percentage change in hydrocarbon saturation resulting from an 28 

error of 20.01 in the value of the saturation exponent. Since the calculated change in hydrocarbon saturation also depends on 29 

other parameters in Archie’s equations, typical representative values for these parameters have been used; RT = 500 .m, Rw 30 

= 1 .m,  = 0.1 and m = 2. When these values are used with n=20.01 a change of 0.3245% was calculated for the 31 

hydrocarbon saturation, allowing the change in global reserves to be calculated. However, the degree to which we can carry 32 

out the real calculations does not match this precision. Uncertainties in input parameters, over how representative seismic and 33 

petrophysical parameters are and difficulties with heterogeneity and anisotropy, to name but a few, result in the real 34 

calculations having uncertainties in the order of 20-40%. 35 

Within the hydrocarbon industry it is extremely common to assume that the saturation exponent is about 2 for most rocks. 36 

However, it is worthwhile thinking about the 254 billion dollar global shortfall in revenue if it really is equal to 2.01 instead. 37 
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These frightening large financial values make it extremely important that the physical interpretation of the saturation exponent 38 

in the classical Archie’s law is well understood. This paper attempts to provide a new theoretical and physical interpretation. 39 

The classical Archie`s laws (Archie, 1942) link the electrical resistivity of a rock to its porosity, to the resistivity of the water 40 

saturating its pores, and to the fractional saturation of the pore space with the water. They have been used for many years to 41 

calculate the hydrocarbon saturation of the reservoir rock and hence hydrocarbon reserves. The classical Archie’s laws contain 42 

two exponents, m and n, which Archie called the cementation exponent and the saturation exponent, respectively. The 43 

conductivity of the hydrocarbon saturated rock is highly sensitive to changes in either exponent.  44 

Like the cementation exponent, and despite its importance to reserves calculations, the physical meaning of the saturation 45 

exponent is difficult to understand from a physical point of view, which leads to petrophysicists not giving it the respect it 46 

deserves. It is common, for example, to hear that, in the absence of laboratory measurements, the saturation exponent has been 47 

taken to be equal to 2, which it has just been noted is bound to lead to gross errors. While it is true that there seems to be a 48 

strong preference for values of saturation exponent near 2±0.5 for most water-wet rocks, oil-wet rocks show much higher 49 

values (4-5) (Montaron, 2009; Sweeney and Jennings, 1960), and there is evidence that the saturation exponent changes with 50 

saturation, with the type of rock microstructure and with saturation history, leading to hysteresis in the plot of resistivity index 51 

as a function of water saturation.  52 

When a saturation exponent is derived from laboratory measurements, it is commonly done by fitting a straight line to 53 

resistivity data where the y-axis is the logarithm of the Resistivity Index and the x-axis is the logarithm of the water saturation. 54 

The Resistivity Index is the ratio of the measured rock resistivity at a given water saturation Sw divided by the resistivity of the 55 

same rock when the pore space is completely saturated with water (i.e., Sw=1). The problem is that the saturation exponent 56 

varies with water saturation, becoming significantly smaller at low saturations, leading to an uncertainty in which value to use. 57 

This observation also gives us the first hint that it is the connectedness of the water phase that is controlling the saturation 58 

exponent just as it did for the phase exponent in the generalised Archie’s law. 59 

It is clear that the physical understanding of the saturation exponent needs to be improved. The purpose of this paper is to 60 

investigate the elusive physical meaning of the saturation exponent, where it is shown that the saturation exponents are 61 

intimately linked to the phase exponents in the generalised Archie’s model. 62 

2 Traditional interpretations 63 

Considering the classical form of Archie`s laws; the first Archie law relates the formation factor F, which is the ratio of the 64 

resistivity of a fully saturated rock o (Ro) to the resistivity of the fluid occupying its poresf  (Rw), to the rock porosity  and 65 

a parameter he called the cementation exponent m, where the symbols in parentheses are those traditionally used in the 66 

hydrocarbon industry. Archie’s first law can be expressed as 
m

fo
F   using resistivities (Archie, 1942), or as 67 

m

fo
G   using conductivities. In the latter case G is called the conductivity formation factor or the connectedness 68 

(Glover, 2009).  It can easily be seen that the effective resistivity and effective conductivity of the fully saturated rock can be 69 

expressed as 
m

fo

   and 
m

fo

   using resistivities or conductivities, respectively. It should be noted that this work 70 

does not consider the form of Archie’s law which includes the so-called ‘tortuosity factor’ a, which was developed by Winsauer 71 

et al. (1952). The role of this parameter is discussed fully in Glover (2016). 72 

Archie’s second law considers that the rock is not fully saturated with a conductive fluid, but is partially saturated with a 73 

fractional water saturation Sw. It relates the resistivity index I, which is the ratio of the resistivity of a partially saturated rock 74 

eff to the resistivity of the fully saturated rocko, to the water saturation Sw and a parameter he called the saturation exponent 75 
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n. Archie’s second law can be expressed as 
n

eff o wI S    using resistivities, or 1 n

eff o wI S     using 76 

conductivities. 77 

The two laws may be combined to give  
m n

eff f wS     using resistivities, and 
m n

eff f wS     if conductivities are 78 

used. In reserves calculations, the resistivity of the partially saturated rock, the resistivity of the pore water, the porosity of the 79 

rock and the two exponents are “known” from logging or laboratory measurements. This enables the water saturation Sw and 80 

hence the hydrocarbon saturation  1h wS S   and, consequently, the reserves to be calculated. 81 

Archie’s laws require that both the rock matrix and all but one of the fluid phases that occupy the pores to have infinite 82 

resistivity. Hence, it is a model for the distribution of one conducting phase (the pore water) within a rock sample consisting 83 

of a non-conducting matrix and other fluids which also have zero or negligible conductivity. Problems arise when there are 84 

other conducting phases in the rock, such as clay minerals. These problems have generated a huge amount of research in the 85 

past (e.g., Waxman and Smits, 1968; Clavier et al., 1984), which are reviewed in Glover (2015). The classical Archie`s laws 86 

were based upon experimental determinations. However, there has been progressive theoretical work (Sen et al., 1981; 87 

Mendelson and Cohen, 1982) showing that for at least some values of cementation exponent Archie’s law has a theoretical 88 

pedigree while hinting that the law may be truly theoretical for all physical values of cementation exponent. A study has 89 

recently shown that the Winsauer et al. (1952) modification to Archie’s law is only needed to compensate for systematic errors 90 

in the measurement of its input parameters and has no theoretical basis (Glover, 2016). Meanwhile independent modifications 91 

to the original Archie’s law have allowed it to be used when both the pore fill and the matrix have significant electrical 92 

conductivities (Glover et al., 2000a; Glover, 2009), such as the case when a rock melt occupies spaces between a solid matrix 93 

in the lower crust (Glover et al., 2000b). This has culminated in a generalised Archie`s law which is valid for any number of 94 

conductive phases in the three-dimensional medium which was published in 2010 (Glover, 2010). 95 

3 The generalised Archie’s law 96 

The generalised Archie’s law (Glover, 2010) extends the classical Archie’s law to a porous medium containing n phases. It is 97 

based on the same concept of connectedness that was introduced in the author’s previous interpretation of the cementation 98 

exponent (Glover, 2009). It should be noted that from this point in this paper that the symbol  refers not just to the porosity 99 

of the rock, but to the volume fraction of a particular phase, whether it be the matrix, the water, hydrocarbon or whatever other 100 

phase may be present. It will either be used for a specific phase such as water (e.g., f) or for a set of phases (e.g., i). The 101 

unsubscripted symbol continues to refer to conventional porosity, where 
m

i

i
  , and m is the phase fraction of the 102 

rock matrix (conventionally equal to 1-).Occasionally, the unsubscripted symbol will also be used when the general properties 103 

of phase fractions are being discussed, such as in the following two equations. 104 

In the 2009 paper the connectedness was defined as 105 

1 mo

w

G
F





    ,       (1)  106 

where F is the formation factor. The connectedness of a given phase is a physical measure of the availability of pathways for 107 

conduction through that phase. The connectedness is the ratio of the measured conductivity to the maximum conductivity 108 

possible with that phase (i.e., when that phase occupies the whole sample). This implies that the connectedness of a sample 109 

composed of a single phase is unity. Connectedness is not the same as connectivity. The connectivity is defined as the measure 110 

of how the pore space is arranged in its most general sense as that distribution in space which makes the contribution of the 111 

specific conductivity of the material express itself as a different conductance (see Glover, 2010). The connectivity is given by 112 
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1 m and depends upon the porosity and the classical Archie’s cementation exponent m. It should be noted that the 113 

connectedness is also given by  114 

G ,       (2) 115 

and then it becomes clear that the connectedness depends both upon the amount of pore space (given by the porosity) and the 116 

arrangement of that pore space (given by the connectivity). 117 

The generalized Archie’s law was derived by Glover (2010) and is given by 118 

im

i i

i

    with 

1

1i

i




 ,     (3) 119 

where there are n phases, each with a conductivity i, a phase volume fraction i and an exponent mi. The porosity and 120 

cementation exponent in the classical Archie’s law are the same as the pore space phase volume fraction and pore space phase 121 

exponent in the generalized Archie’s law, respectively. However, the pore space and the matrix may be subdivided into any 122 

number of other phases as required. Indeed, the generalized Archie’s law will not contain a term that represents the pore space 123 

unless the pore space is only occupied by a single phase. 124 

In the generalized law the phase exponents can take any value from zero to infinity. Values less than unity represent a 125 

phase with an extremely high degree of connectedness, such as that for the solid matrix of a rock. Connectedness decreases as 126 

the phase exponent increases. Phase exponents that tend towards 1 are associated with a highly connected phase which is 127 

analogous to the low cementation exponents occurring in the traditional Archie’s law for networks of high aspect ratio cracks. 128 

Phase exponents about 2 represent the degree of connectedness that one might find when the phase is partially connected in a 129 

similar way to which the pore network in a sandstone is connected, and which is, again, analogous to that scenario in the 130 

traditional Archie’s law. By extension, higher values of phase exponents represent lower phase connectedness, such as that in 131 

the traditional Archie’s law for the pores in a vuggy limestone.  132 

It is clear that the classical and generalized laws share the property that the exponents modify the volume fraction of the 133 

relevant phase with respect to the total volume of the rock. However the exponents in the generalized law differ from the 134 

classical exponent because some of them have values which are not measureable because their phases are composed of 135 

materials with negligible conductivity. Despite this, each phase has a well-defined exponent providing (i) it has a non-zero 136 

volume fraction, and (ii) the other phases are well-defined.  137 

It should be noted that higher phase exponents tend to be related to lower phase fractions, although this relationship is not 138 

implicit in the generalized Archie’s law as it is currently formulated. 139 

The generalized Archie’s law as formulated by Glover (2010) hinges upon the proposal that the sum of the connectednesses 140 

of the phases in a three-dimensional n-phase medium is given by 141 

1im

i i

i i

G    .       (4) 142 

It is important to consider Equation 1 and Equation 4 together to develop a fuller understanding of the model. There is an 143 

infinite number of solutions to Equation 4 even in the most restrictive 2 phase system. However, there is only a small subset 144 

of solutions if both Equation 1 and Equation 4 are to be fulfilled together, as the model requires. The problem of having enough 145 

degrees of freedom is not problematic for 3 phases or more, and is trivial for one phase. Consequently, if there is to be a 146 

problem with the Glover (2010) model, it should be clearest for a two phase system. 147 

Considering a two phase system. Equation 1 gives 𝜙1 = 1 −  𝜙2 while Equation 4 can be written as 𝜙1
𝑚1 + 𝜙2

𝑚2 = 1. 148 

Substituting we obtain either (1 − 𝜙2)𝑚1 +  𝜙2
𝑚2 = 1 or (1 −  𝜙1)𝑚2 +  𝜙1

𝑚1 = 1. These equations are formally the same. 149 

They each have trivial solutions when each of the volume fractions tends to unity, the other volume fraction consequently 150 

tending to zero. Another solution occurs when m1 = m2 = 1, which is the simple parallel conduction model. Only one other 151 
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solution exists for the general case where the volume fractions are variable, and that requires m1 > 1 when m2 < 1 or vice versa. 152 

Consequently the non-trivial solution for a 2-phase medium falls into one of the following classes:  153 

(i) m1 = m2 = 1, the phases, whatever their volume fractions, are arranged in parallel and both have a unity exponent.  154 

(ii) m1 > 1 and m2 < 1. This implies that Phase 1 has a path across the 3D medium that is less connected than a parallel 155 

arrangement of that phase. Since we have a two phase medium Phase 2 must have a path across the medium which 156 

is more connected than a parallel arrangement, hence forcing m2 < 1. 157 

(iii) m1 < 1 and m2 > 1. Since the system is symmetric. This scenario is formally the same as (ii) above, but with the 158 

phase numbers switched around. 159 

Consequently, for a two-phase medium, defining the porosity and connectedness (or exponent) of one of the phases 160 

immediately fully defines the other phase. For higher numbers of phases, there are more solutions, but if the porosity and 161 

connectedness (or exponent) of n-1 of the phases is known, the nth phase is also fully defined in the same way. The logical 162 

extension of this idea is that both the sum of the volume fractions of the n-phases is unity and the sum of the connectednesses 163 

of the n-phases is also unity, or that both volume fraction and connectedness are conserved in a three-dimensional n-phase 164 

mixture.  165 

Another, more intuitive way of looking at this is as follows. It has already been shown that the connectedness of a system 166 

that contains only one phase is unity as a result of Equation 1, i.e., if there is one phase = 1 and hence G = 1. Let us imagine 167 

that a second phase is introduced. Intuitively, it seems reasonable that as the phase fraction of the new phase increases, its 168 

connectedness will increase, and that when this happens both the volume fraction and connectedness of the first phase will 169 

decrease. The same would be true if any number of new phases were introduced – all the phases would compete for a fixed 170 

amount of connectedness, its increase for one phase being balanced by a decrease in at least one of the other phases. In other 171 

words there is a fixed maximum amount of connectedness possible in a three-dimensional sample, expressed by Glover (2010) 172 

as Equation 4. 173 

Figure 1 is an illustrative example of the idea of a fixed amount of connectedness, using a 2D slice for simplicity and 174 

clarity. Hence, Figure 1 shows a two dimensional slice through a 3D 4-phase water-wet medium composed of detrital quartz 175 

grains, a string of clay, and a porosity that is partially filled with water, at near irreducible saturation and oil. The figure should 176 

be read in two columns. The left hand column shows an arbitrary arrangement of the four phases that together completely 177 

make up the medium (Fig. 1a). In this case I have chosen to represent the detrital quartz as sub-angular detrital grains with a 178 

grain size distribution, the clay as a stringer, the near-irreducible water as covering the quartz grain surfaces and the oil as 179 

occupying the centre parts of the pores as these geometries can be found in typical water-wet shaly sandstone reservoirs. It 180 

should be noted, however, that the equations make no such distinction and what follows is true for any geometrical set of 4-181 

phases composing the 3D medium completely. Reading downwards, Figure (c), (e), (g) and (i) show each of the quartz, clay, 182 

water and oil phases alone and respectively. One can imagine that each phase has a certain phase fraction and a certain 183 

connectedness. Some of the phases look disconnected in the figure, but it should be remembered that there will be a greater 184 

connectedness in reality because there will be connection in the third dimension that are not shown in the figure. If we imagine 185 

hydraulic flow or electrical flow from the bottom to the top of the medium, the quartz seems to have a relatively high phase 186 

fraction and a moderate connectedness, the clay to have a moderate phase fraction and a high connectedness, the water to have 187 

a low phase fraction but a relatively high connectedness due to the multiple pathways formed by the thin ‘ribbons’ of water, 188 

and the oil has a moderate phase fraction, but a relatively low connectedness as the patches of oil are relatively isolated. The 189 

right hand part of the figure represents the same medium but with the small addition of a quartz grain, labelled ‘Q’, and its 190 

accompanying thin film of surface water. The addition of this makes a miniscule increase in the phase fractions of the detrital 191 

quartz and water phase fractions, and, literally, an equally small decrease in the phase fractions of the clay and oil. Reading 192 

the distributions for the quartz, clay, water and oil phases alone (Figure (d), (f), (h) and (j)) shows that the addition has made 193 

a significant increase in the connectedness of the quartz as well as some increase in that of the water, which was well connected 194 
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anyway. The low connectedness of the oil will have changed little, but the addition has blocked the main pathway through the 195 

clay, leaving only a minor secondary pathway, and consequently resulting in a significant decrease in the clay connectedness. 196 

Consequently Figure 1 shows the principle behind the idea of the conservation of connectedness given in Equation (4), but not 197 

a proof, the latter of which is considered in Glover (2010). 198 

In summary, both the sum of the volume fractions and the sum of the connectednesses of the phases composing a 3D 199 

medium is equal to unity. The corollary is that connectedness is conserved; if the connectedness of one phase diminishes, there 200 

must be an increase in the connectedness of one or more of the other phases to balance it. 201 

It is interesting to consider the role of percolation effects within the generalized model (see Glover (2010) for a full 202 

treatment). In percolation theory, the bulk value of a given transport property is only perturbed by the presence of a given 203 

phase with a well-defined phase conductivity after a certain phase volume fraction has been attained. This critical volume 204 

fraction is called the percolation threshold. This works well for a two-phase system when one phase is nonconductive, with a 205 

percolation threshold occurring near the 0.3316 to 0.342 (Montaron, 2009). For such a system, one non-conducting and one 206 

conducting phase, the effective conductivity of the medium depends only on the conductivity of the conducting phase, its 207 

volume fraction and how connected it is. It is intuitive, therefore, that there may exist a phase volume fraction below which 208 

the conducting phase is not connected and for which the resulting effective conductivity will be zero. The concept of a 209 

percolation factor becomes unclear if the matrix phase has a non-zero conductivity or one or more additional, either solid or 210 

fluid conducting phases are added. Under these circumstances a percolation threshold may not exist. Glover (2010) went 211 

further than this claiming that Equation (4) in this work (which is Equation (26) in Glover (2010)) contains enough information 212 

to make the explicit inclusion of percolation effects unnecessary. 213 

4 Origin of the saturation exponent 214 

Within the framework of the classical Archie’s laws it is possible to envisage the cementation exponent as controlling how the 215 

porosity is connected within the rock sample volume, and to envisage the saturation exponent as controlling how the water is 216 

connected within that porosity. The cementation exponent is defined relative to the total volume of the rock, while the 217 

saturation exponent is defined relative to the pore space, which is a subset of the whole rock. This is an important concept for 218 

what follows.  219 

The water is one of two phases within the porosity, while that porosity is one of two phases within the rock. Hence, there 220 

exists a three phase system to which the generalised Archie’s law can be applied. In fact, the generalised Archie’s law can be 221 

used to show that the saturation exponents arise naturally and have a physical meaning: they are defined in the same way as 222 

the phase exponents but are expressed relative to the pore space instead of the whole rock. 223 

By writing the generalized law (Equation 4) for three defined phases; let’s say matrix, water and hydrocarbon gas, and 224 

assuming that neither the matrix nor the gas is conductive, i.e.,  m = 0 and h = 0, but allowing the pore space to be partially 225 

saturated with water such that h  0, it is possible to obtain 
fm

eff f f   . This is a re-expression of Equation (4), which is 226 

the sum of three terms, one for each phase, two of which are zero because the conductivity of the material which makes up 227 

each of those is zero (i.e., the matrix and hydrocarbon). The exponent mf is the phase exponent of the fluid phase, which is the 228 

only phase contributing to the effective conductivity of the three phase medium. Since h  0, the pore space is partially 229 

saturated with hydrocarbon and partially saturated with water. It is also possible to write
f wS  , and hence obtain  230 

f fm m

eff f wS   .       (5) 231 

Comparison with the classical Archie`s laws, which can be written as 
m n

eff f wS   (Tiab and Donaldson, 2004) shows 232 

structural similarity. However, the exponent mf in Equation 5 is expressed relative to the whole rock because it is the phase 233 
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exponent for the fluid that appears in Equation 4. By contrast, although the cementation exponent m in the classical first 234 

Archie`s law is expressed relative to the whole rock, the saturation exponent n is related to the pore space which is a subset of 235 

the whole rock. The distinction between whether the exponent is expressed relative to the whole rock or relative to a subset of 236 

the rock, such as the pore space, can be made easily by imagining whether the saturation exponent is independent of any 237 

changes one might make to the rock matrix. In this case it is possible to see that the saturation exponent is independent of the 238 

rock matrix, and is only sensitive to changes occurring within the pore space. Consequently, it is expressed relative to the pore 239 

space rather than the whole rock. 240 

Accordingly, both equations provide a valid measure of the effective rock conductivity, so they may be equated as 241 

n

w

m

feff

m

w

m

f
SS ff   , hence obtaining 

)( nm

w

mm ff S


 . It can be recognized that the classical Archie saturation 242 

exponent refers to saturation with water and is hence renamed as nf, giving 243 

)( fff nm

w

mm S


 .      (6) 244 

It is important to realize that the exponent nf is a ‘saturation’ exponent that refers to the arrangement of the water phase 245 

within the pore space. In other words it is expressed with respect to the pore space, not the whole rock, and is found 246 

experimentally by varying the saturation of the water in the pore space, the latter of which is assumed to always remain 247 

unchanged. 248 

Now it is possible to write Equation (6) in terms of connectednesses. The left hand side of Equation (6) is simply the 249 

connectedness of the pore space, as defined by Equation (1). It is the phase volume fraction of the pore space, i.e., the classical 250 

porosity, raised to the power of the phase exponent that contains the information about how that pore space is distributed, 251 

which is the classical cementation exponent m. Consequently we can write 
m

pore
G  , and Equation (6) becomes 252 

)( fff nm

w

m

pore
SG


 .      (7) 253 

The right hand side of the equation may be rewritten as   ff n

w

m

w
SS which allows Equation (7) to be written as 254 

  ff m

w

n

wpore
SSG  .      (8) 255 

The term in brackets is simply the phase fraction of the water with respect to the whole rock, i.e., 
wf

S  and the exponent 256 

mf is simply the phase exponent of the fluid phase with respect to the whole rock. Consequently, Equation (1) can be applied 257 

for the fluid phase leading to  258 

  ff m

w

m

ff
SG   ,      (9) 259 

which, when substituted into Equation (8) and rearranged gives 260 

fn

wporef
SGG  .      (10) 261 

This equation is for one fluid phase, i.e., water, occupying the pore space. Since the system is symmetric Equation (10) can be 262 

generalized for any of the fluid phases occupying the pore space 263 

jn

jporej
SGG  ,      (11) 264 

where Gj is the connectedness of fluid j, Sj is its saturation, and the exponent nj is a ‘saturation’ exponent that refers to the 265 

arrangement of the water phase within the pore space. In other words nj is expressed with respect to the pore space, not the 266 

whole rock. 267 

However, there is nothing geometrically special about the entity we call the pore space or any distinction between solid 268 

and fluid phases that compose the whole rock. Consequently, Equation (11) is only a partial generalization, and it is possible 269 

to extend the result in Equation (10) to any phase of i phases composing a three-dimensional medium each of which partially 270 

or fully occupies a saturation Si of a subset of the medium whose connectedness is given as Gref, according to 271 
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in

irefi
SGG  .       (12) 272 

The pore connectedness is relabelled as the reference connectedness because the equation is valid not only for multiple phases 273 

that fill the porosity, but multiple phases composing any other phase. 274 

Equation 12 gives the connectedness of the ith phase in an n-phase 3D medium as depending on both its fractional saturation 275 

Si within a larger volume which has a connectedness Gref and that reference connectedness. The distribution of that saturation 276 

is taken into account by the exponent ni, which will have a general functional form.  277 

If one considers the whole 3D n-phase medium (i.e., one where 1i

i

  ), Equation 1 states that the connectedness of 278 

each phase is the volume fraction of that phase raised to the value of its phase exponent, and Equation 4 states that the sum of 279 

those connectednesses is unity. 280 

If a subset of a whole n-phase medium (i.e., one where 1i

i

  ) is considered, and labelled the reference subset, the 281 

reference subset will have a connectedness 
refm

ref refG  relative to the whole rock, and the connectedness of any phase which 282 

partially occupies the reference subset (e.g., water within the pore space, clay within the rock matrix etc.) is equal to the 283 

connectedness of the reference phase multiplied by the volume fraction of the phase within the reference subset (i.e., the 284 

saturation relative to the reference subset) raised to the value of its saturation exponent. 285 

The definition above is somewhat complex due to the requirement to be both completely general and precise, and that there 286 

are two reference frames here. The first is the whole 3D n-phase medium. The second is the 3D reference subset which may 287 

contain between 2 and n-1 phases. Conversion between the two reference frames can be carried out using the relationship 288 

ref ii i
m nm n

i ref 


 ,      (13) 289 

It can also be shown that (Glover, 2010) 290 

1in

i

i

S  ,       (14) 291 

where the sum is carried out over all the phases within the reference subset.  292 

It should be noted that Equation 14 is formally the same as Equation 4 except that Equation 14 is valid for the reference 293 

subset of phases, while Equation 4 is valid for the whole n-phase medium. Hence it is possible to use 
i i refS   to write 294 

both Equation 4 and Equation 14 as  295 

1

im

i

refi





 
 

 
 

 .      (15) 296 

 For a whole n-phase medium ref  = 1 and Equation 15 becomes equal to Equation 4.  297 

 For a subset of the n-phase medium ref  < 1 and Equation 15 becomes equal to Equation 14.  298 

The distinction between the phase exponent and saturation exponent becomes trivial; they each control how connected the 299 

phase is relative to the reference volume fraction. In other words, the transformation 300 

 

1 ref  leading to 
i iS   and 

i im n .     (16) 301 

Figure 2 illustrates the concept of a subset of an n-phase medium using a 2D slice from a 3D medium. Figure 2(a) shows a 302 

simple 2 phase situation where Phase 1 is brown and Phase 2 is yellow. Both phase are connected across the medium from top 303 

to bottom, and were they not in the 2D slice, they would likely be connected through the third dimension. Phase 1 (brown) can 304 

be considered as the solid matrix of a rock, and Phase 2 (yellow) is considered to be the pore spaces in the rock for the purposes 305 
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of this illustration, but the distinction is arbitrary. The rock matrix has a phase fraction 1 and a connectedness 1

11

m
G  and 306 

the pore space has a phase fraction 2 and a connectedness 2

22

m
G  (Eq. (1)). Both of these are expressed with respect to the 307 

whole medium that is bounded in the figure by the dashed box. Consequently, 1 + 2 = 1 and G1 + G 2 = 1 (Eqs. (3) and (4)).  308 

The pore space may be occupied by any number of miscible or immiscible fluids. Let us assume there are 2 immiscible 309 

fluids completely occupying the pores, which are water and oil, and which we will assign the names Phase 3 and Phase 4. 310 

Figure 2(b) shows this situation. Once again the phase fraction and connectedness of each of the three phases that compose the 311 

medium can be defined as phase fractions 1, 3 and 4 and 1

11

m
G  , 3

33

m
G  and 4

44

m
G  for the solid matrix, water and 312 

oil, respectively. Since these parameters are being considered with respect to the whole medium it is possible to write 313 

1
4,3,1


i

i
  and 1

4,3,1


i

i
G . 314 

However, it is possible to use a different reference medium for calculations. For example the classical Archie’s second law 315 

is expressed in terms of saturations, which uses the pore space as a reference space in order to express the amount of water 316 

and hydrocarbons, not with respect to the total volume of the rock, but as a fraction of the pore space. Let us, therefore also 317 

take the pore space as a convenient reference sub-space of the whole medium. This situation is shown in Figure 2(c) where the 318 

dotted line delineated the extent of the reference space. In this space (i) what was the whole medium, represented by unity in 319 

the transform given in Eq. (16) becomes the volume fraction of the reference space 1 ref  (i.e., the pore space in this 320 

example, (ii) the volumes of the different phases are more efficiently described using saturations Si with respect to the reference 321 

space (i.e., the pore space) than using phase volume fractions which are defined relative to the whole medium 
i iS   , and 322 

(iii) the whole medium connectednesses im

ii
G  are replaced by the entity in

i
S , which uses the saturation exponent in place 323 

of the phase exponent 
i im n . It will be seen that the entity in

i
S has its own properties in the next section and will be labelled 324 

the fractional connectedness. Topologically, the occupation of the fluids within the pore space (Figure 2(c)) is identical to the 325 

occupation of the whole medium by the matrix and pore space (Figure 2(a)), which leads to the symmetry in the mathematical 326 

equations.  327 

The transformation given in Eq. (16) is perhaps not immediately clear when expressed in these most general terms. Let us 328 

take an illustrative example. Imagine a three-dimensional 5-phase medium where the phases are (i) detrital quartz (dq), (ii) 329 

calcite cement (cc), (iii) distributed clay (dc), (iv) saline water (sw), and (v) hydrocarbon gas (hg), where the subscripts that 330 

will be used for each phase are given in parentheses. First let us consider the whole medium (i.e., ref = 1). Each of the phase 331 

volume fractions are given by dq, cc,dc,sw,andhg, respectively. Each of their connectednesses is equal to their phase 332 

volume fraction raised to the power of their phase exponents (according to Equation (1)), where the phase exponents contain 333 

the information about how each of the five phases is distributed in the medium. The connectednesses are 334 

,,,,, hgswdcccdq m

hghg

m

swsw

m

dcdc

m

cccc

m

dqdq
GGGGG   respectively. Equation (15) can be used, setting ref = 1, to give  335 

1 hgswdcccdq m

hg

m

sw

m

dc

m

cc

m

dq
 .      (17) 336 

This is the same result as applying Equation (4) directly. It is expressed in terms of the parameters (i) ref = 1 (i.e., the whole 337 

medium), (ii) individual phase fractions (i), and (iii) individual phase exponents (mi); the latter two of which are expressed 338 

relative to the whole medium. These are the conditions and parameters expressed by the left hand components of the 339 

transformation given by Equation (16). 340 

Now consider the subset of the whole medium which comprises just its solid parts. The reference fraction ref  is the sum 341 

of the solid phase fractions (i.e., dcccdq m

dc

m

cc

m

dq
  ), which is less than unity. Rewriting Equation (15) for the reference subset 342 

gives 343 
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1


















































dc

dcccdq

dc

cc

dcccdq

cc

dq

dcccdq

dq
n

m

dc

m

cc

m

dq

m

dc

n

m

dc

m

cc

m

dq

m

cc

n

m

dc

m

cc

m

dq

m

dq












,   (18) 344 

which can be written in terms of ‘saturations’ (i.e., fractional volumes of the reference subset) as 345 

1 dcccdq n

dc

n

cc

n

dq
SSS ,      (19) 346 

because  dcccdqdq m

dc

m

cc

m

dq

m

dqdq
S    etc. 347 

There are two important aspects about Equation (19) to note. First, there are no terms for the saline water and hydrocarbon 348 

gas in the equation because these phases are not present in the reference subset. Second, that the phase exponents that were 349 

used when considering the whole medium have been replaced by saturation exponents because we are now considering the 350 

distribution of each of the phases within the reference subset rather than within the whole medium. Third, both Equation (17) 351 

and Equation (19) are simultaneously true and may be equated. 352 

Equation (19) is clearly the same as Equation (14). Under the transformation that considers a subset of the whole medium 353 

(in this case the solid fractions only) where 1 ref the individual phase fractions rlating to the whole medium are replaced 354 

by saturations relative to the subset (i.e.,
i iS  ) and the original phase exponents, which were related to the whole medium 355 

are now ‘saturation’ exponents that are related only to the reference subset (i.e.,
i im n ).  356 

Both the phase (cementation) exponent and the saturation exponent control how the phase is connected. The phase exponent 357 

does this with reference to the whole rock, while the saturation exponent does it with reference to a subset of the whole rock. 358 

The underlying physical meaning of the saturation exponent is the same as that of the phase (cementation) exponent, it is only 359 

the reference frame that changes. The implication is that the general Archie’s law replaces both of the classical Archie’s laws. 360 

For an application to a sandstone gas reservoir, one would use a 3 phase generalized Archie law. 361 

Equation 12 is easily transformed to provide a calculable value for the saturation exponent by taking the logarithm of both 362 

sides of Equation (12) and rearranging the result before substituting Equation (1) for the relevant connectednesses and using 363 

the relationship 
i i refS   to obtain 364 

   
 

   
   

log log log log

log log log

i ref i i ref ref

i

i i ref

G G m m
n

S

 

 

 
 


.    (20) 365 

This equation may be illustrated using a three phase medium. Imagine a reservoir rock with a 20% porosity. The pore space 366 

contains only oil and water with a water saturation of 0.25. We want to calculate the saturation exponent of the water if the 367 

phase exponents of the matrix and the oil are 0.2 and 1.68, respectively. It is simple to calculate the volume fractions of matrix 368 

oil and water to be 0.8, 0.15 and 0.05, respectively. The connectednesses of matrix and oil can be calculated using Equation 369 

(1) to be 0.956 and 0.0413, respectively. Using Equation (4) we obtain the connectednesses of the pores and water to be 0.0436 370 

and 0.00236, respectively. In this case the reference subset is the pore space so Gref = Gpore = 0.0436. Equation (20) can now 371 

be used with Gwater = 0.00236, Gref = 0.0436 and Sw = 0.25 to give nw = 2.105. The saturation exponent of the oil can also be 372 

calculated as no = 0.1931. There is no value for the matrix as the matrix is not included in the pore space reference subset. 373 

There is a reiterative symmetry in this transformation where both the whole medium phase fractions and the reference 374 

subset saturations are both volume fractions with respect to the whole medium and the reference subset, respectively. Similarly, 375 

the phase exponents and the saturation exponents are also defined with respect to the whole medium and the reference subset, 376 

respectively. This would, therefore, allow the calculation of a reference subset of a subset of a whole medium if required, and 377 

so on. There is of course the possibility that the whole n-phase medium is itself a subset of a larger medium with more phases. 378 

In this case Equation 15 still holds, but with ref  > 1. The implication is that the definition of the original whole medium is 379 

arbitrary and can be defined to make the solution of the problem more tractable. 380 
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5 Physical interpretation of the saturation exponent 381 

This section provides a physical interpretation for the saturation exponent in a perfect analogy to that derived for the 382 

cementation exponent by Glover (2009).  383 

The connectedness G is the inverse of the Archie’s formation factor and is central to the generalized Archie’s law. The 384 

inverse of the Archie’s resistivity (saturation) index 1 n

wI S  is also rather important. It relates the connectednesses of each 385 

phase with respect to the whole rock to the connectedness of the reference subset in Equation 12, and when summed over all 386 

the phases that occupy the reference subset it produces unity as in Equation 14. In this paper the inverse of the Archie’s 387 

resistivity (saturation) index has been given the symbol Hi and defined as 388 

in

i iH S .       (21) 389 

Just as the saturation of any given phase Si is the ratio of the volume fraction of the phase to that of the all the phases making 390 

up any reference set of phases, Hi is the ratio of the connectedness of the phase to that of the all the phases making up any 391 

reference set of phases. The parameter Hi is in fact a fractional connectedness. 392 

We follow the approach of Glover (2009) in the analysis of the physical interpretation of the cementation exponent. In this 393 

work Glover (2009) showed that the cementation exponent was the differential of the connectedness with respect to both 394 

porosity and pore connectivity. Following the same methodology, differentiating the fractional connectedness with respect to 395 

the phase saturation Si gives 396 

1





in

ii
i Sn

S

H
.       (22) 397 

By analogy we recognize that 
1in

i
S represents the connectivity of Phase i with respect to the reference subset and define 398 

this connectivity as  399 

1
 in

ii
S ,       (23) 400 

to give 401 

ii

i n
S

H





.       (24) 402 

A further differentiation, this time with respect to the connectivity 
i

  allows us to obtain  403 



















S

H
n i

i


 .      (25) 404 

Consequently, the saturation exponent is the rate of change of fractional connectedness with respect to both phase saturation 405 

and phase connectivity in a similar way that Glover (2009) found that the physical interpretation of the cementation exponent 406 

was the rate of change of connectedness with respect to phase fraction (porosity) and its connectivity. This shows once again 407 

the symmetry between phase fractions and saturations and between phase exponents and saturation exponents. 408 

The fractional connectedness is also the product of the saturation and the connectivity with respect to the reference subset 409 

i i iH S .       (26) 410 

Hence, the saturation exponents obey the same laws as the phase (cementation) exponents, but whereas the phase exponents 411 

are defined relative to the whole rock, the saturation exponents are defined relative to some subset of the rock. Table 1 shows 412 

the relationships of the generalised Archie’s law expressed relative to the whole rock and with respect to a reference subset of 413 

the whole rock.  414 

For petrophysicists the reference subset has been the porosity and there has only been one conducting phase that partially 415 

saturates that porosity – the pore water. Now we are not restricted to that model. The reference subset could be, for example, 416 

the solid matrix in which a number of separate mineral phases can be defined, one of which might be, say, a target ore or a 417 

clay phase. Let us take a 4-phase medium as an example. Imagine a 4 phase medium composed of 65% quartz matrix with a 418 
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phase volume exponent of 0.3, 15% clay. Consequently, the medium’s porosity is =0.2. The porosity is occupied with gas 419 

and saline water with saturations Sg=0.625 and Sw = 0.375, respectively and the classical cementation exponent m = 1.8 and 420 

the classical saturation exponent is n = 2.05. Imagine needing to calculate the resistivity of the rock if the resistivity of the clay 421 

and the water are known, clay = 50 .m and water = 5 .m, say. Equation (1) can be used to calculate Gquartz = 0.8788 and 422 

Gpore = 0.0552. Using Equation (4) provides Gclay= 0.0660 with no need to consider the various saturations of the fluids 423 

occupying the pores. The phase exponent of the clay can be found to be mclay=1.43. The contribution of the clay to resistivity 424 

can be calculated using Equation (3), rewritten as clayclay

m

clayclaycontclay
Gclay  


, as clay = 757 .m, noting that this value 425 

takes full account of its volume fraction and its geometrical distribution. Now we must consider the relative distributions of 426 

water and gas in the medium. Calculations can be carried out in terms of connectednesses G or fractional connectednesses H. 427 

In this case we use the connectednesses G. Equation (11) or (12) can be used to calculate Gwater=0.00739, and Equation (4) 428 

applied to give Ggas= 0.0478. Once again Equation (1) may be applied, but this time in the rearranged form 
iii

Gm loglog429 

in order to calculate the respective phase exponents mwater = 1.895 and mgas = 1.462. Now, the contribution of the saline water 430 

to the overall resistivity can be calculated using Equation (3), rewritten as 
waterwater

m

waterwatercontcwater
Gwater  


, as water = 431 

677 .m, noting that this value takes full account of its volume fraction and its geometrical distribution. The resistivity of the 432 

rock can now be calculated by simply summing the contributions to conductivity as implied by Equation (3) to give eff = 357 433 

.m. In this particular example, the conductivity of the medium is controlled by the clay and water fractions in approximately 434 

equal measure. It should also be noted that there are a number of different pathways for obtaining the same result using the 435 

equations contained in this paper.  436 

6 Conclusions 437 

The main conceptual steps in this paper are summarised as: 438 

 The classical Archie saturation exponent arises naturally from the generalised Archie’s law.  439 

 The saturation exponent of any given phase can be thought of as formally the same as the phase (i.e., cementation) 440 

exponent, but with respect to a reference subset of phases in a larger n-phase medium. 441 

 The connectedness of each of the phases occupying a reference subset of an n-phase medium can be related to the 442 

connectedness of the subset itself by in

i ref iG G S . 443 

 The sum of the connectednesses of a 3D n-phase medium is given by 1im

i

i

   , mirroring the relationship for phase 444 

volumes 1
i

i
 . 445 

 Connectedness is conserved in a 3D n-phase medium. If one phase increases in connectedness the connectedness of one 446 

or more of the other phases must decrease to compensate for it, just as phase volumes are conserved with the decrease in 447 

one leading to the increase of another phase. 448 

 The sum of the fractional connectednesses (saturations) of an n-phase medium is given by 1in

i

i

S   . 449 

 Fractional connectedness is conserved in a 3D n-phase medium.  450 

 The saturation exponent may be calculated using the relationship
   
   

log log

log log

i i ref ref

i

i ref

m m
n

 

 





 . 451 

 The connectivity of any phase with respect to the reference subset is given by 
1in

i iS 
 . 452 
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 The connectedness of a phase with respect to a reference subset (also called the fractional connectedness) is given by 453 

i i iH S  and depends upon the fractional volume of the phase divided by that of the reference subset (i.e., its saturation) 454 

and the arrangement of the phase within the reference subset (i.e., its connectivity with respect to the reference subset). 455 

 The rate of change of fractional connectedness with saturation i
i i

i

dH
n

dS
  depends upon the connectivity with respect 456 

to the reference subseti and the saturation exponent ni. 457 

 Hence, the saturation exponent is interpreted as being the rate of change of the fractional connectedness with saturation 458 

and connectivity within the reference subset, 

2

i
i

i i

d H
n

d dS
 . 459 

 460 

While this paper represents a theoretical treatment of the saturation exponent and attempts to develop a theoretical 461 

interpretation that should offer insight into the physical meaning of the saturation exponent, it does not contain a physical 462 

proof of these equations. That can only come from targeted experimental work on multi-phase media which are difficult to 463 

carry out and represent one of our research goals.464 
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Table 1. Comparison of all the parameters in the classical and generalised Archie’s laws. 465 

Parameter Generalised Archie’s law Classical Archie’s law 

 
With respect to the whole 

medium 

With respect to a reference 

subset of the whole medium 
First law Second Law 

Phase 

volume 

fraction 

i  

i ref iS   

iS  

i i refS    



f pore wV V S 

S  

w f poreS V V 

Exponent 

i
i

dGd
m

d d 

 
  

 
 

   
 

log log

log

i f

i

i

m
 






 

i
i

dHd
n

d dS

 
  

 
 

   
   

log log

log log

i i ref ref

i

i ref

m m
n

 

 





 

m 

 

   
 

log log

log

eff f
m

 






 

n 

 

   

 
100log log

log

eff

w

n
S

 


 

Connected-

ness 

im

i iG 

 
i i iG    

1i iG F  

i ref iG G H  

in

i iH S

 
i i iH S  

1i iH I  

i i refH G G  

undefined undefined 

Connect-

ivity 
1im

i  
  

1in

iS 
  

1m  
  undefined 

Rate of 

change of 

connected-

ness 

i
i i

i

dG
m

d



  i

i i

i

dH
n

dS
  undefined undefined 

Sum of 

phases 
1

1i

i





 

1i

i

S   

1

1i

i





 

1i

i

S   

1pore matrix    1w o gS S S    

Sum of 

connected-

nesses 

1im

i i

i i

G   
 

1in

i i

i i

S H  
 

undefined undefined 
1

im

i

refi





 
 

 
 

  

The transformation

 

1 ref  leads to 
i iS   and 

i im n

 Effective 

conduct-

ivity 

im

eff i i

i

    i im m

eff i ref i

i

S    
m

eff f    
m n

eff f wS    



15 

 

Data availability 

This work is entirely theoretical and contains no data. 
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Figure 1.  Distribution of a 4-phase 

clay-rich water-wet sandstone 

saturated with water and oil (quartz, 

orange; clay, brown; water, blue and 

oil, gray) represented by a 2D slice 505 

through a 3D medium. The left hand 

column differs from the right hand 

column by the addition of a single 

grain of quartz with its associated 

surface water, labelled Q. 510 

Consequently the figure should be 

read vertically comparing the two 

columns. (a) and (b) complete 

medium, (c) and (d), quartz 

distribution; (e) and (f), clay 515 

distribution; (g) and (h), water 

distribution; and (i) and (j), oil 

distribution. 
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 520 

 

Figure 2.  Sets and subsets of a 3-phase medium using a 

2D slice to represent the whole 3D medium. (a) 2 phases – 

Phase 1, brown representing solid matrix; Phase 2, yellow, 

represents pore space, with unspecified fill. Phase fractions 525 

and connectednesses can be defined for each phase with 

respect to the whole medium (dotted box). (b) 3 phases 

created by filling (replacing) the porosity with 2 phases – 

Phase 1, brown representing solid matrix as before; Phase 

2, blue representing water; Phase 3, green representing oil. 530 

Phase fractions and connectednesses can be defined for 

each of the three phases with respect to the whole medium 

(dotted box). (c) If only the pore space is considered by 

considering Phase 1 to be unchanging, what remains is a 2-

phase subset of the 3-phase situation. Phase fractions and 535 

connectednesses can be defined for the two fluid phases 

with respect to the subset which is the porosity (inside the 

dotted interface). 


