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Abstract. I present a new family of analytical flow solutions to the incompressible Stokes equation in a spherical shell. The

velocity is tangential to both inner and outer boundaries, the viscosity is radial and of power-law type, and the solution has

been designed so that the expressions for velocity, pressure, and body force are simple polynomials and therefore simple to

implement in (geodynamics) codes. Various flow average values, e.g. the root mean square velocity, are analytically computed.

This forms the basis for a numerical benchmark for convection codes and I have implemented it in two finite element codes5

ASPECT and ELEFANT. I report on error convergence rates for velocity and pressure.
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1 Introduction

The mantle is a very complex region characterised by large variations in temperature, viscosity, composition (Schubert et al.,

2001; van Keken et al., 2002), phase changes, melting and anisotropic structures as revealed by seismic imaging (Lay and

Garnero, 2011). As a consequence, numerical modelling of mantle convection has grown in complexity (e.g. Tackley (2012);

van Heck et al. (2016); Dannberg and Heister (2016)) with the advent of ever more refined modelling techniques and powerful5

computers. Also it has been recognised that the mantle exerts a primary control on the evolution of tectonic plates and that

both should be simulated together if one is to build a fully dynamic Earth model (e.g. van Hinsbergen et al. (2011), Bull et al.

(2014), Bower et al. (2015), Crameri and Tackley (2016)).

Many codes have been developed in the last thirty years (Machetel et al., 1986; Glatzmaier, 1988; Bercovici et al., 1989;

Zhang and Christensen, 1993; Zhang and Yuen, 1995; Ratcliff et al., 1996; Iwase, 1996; Zhong et al., 2000; Tabata and Suzuki,10

2000; Richards et al., 2001; Kageyama and Sato, 2004; Yoshida and Kageyama, 2004; Choblet et al., 2007; Tackley, 2008;

Davies et al., 2013; Kronbichler et al., 2012; Burstedde et al., 2013), and spherical shell numerical benchmarks have been

carried out (Zhong et al., 2000; Stemmer et al., 2006; Zhong et al., 2008; Arrial et al., 2014). Semi-analytical Stokes flow

solutions derived via propagator matrix methods have also been proposed in the past (Busse, 1975; Busse and Riahi, 1982;

Hager and O’Connell, 1981; Richards and Hager, 1984) while Tosi and Martinec (2007) derived a semi-analytical solution15

in the case of two eccentrically nested spheres. However, semi-analytical solutions present a major drawback: the solution is

given as a function of spherical harmonic expansions which are based on infinite sums and which can prove to be cumbersome

to manipulate and/or implement.

While inter-code comparisons are useful for problems without an analytical solution (e.g. Arrial et al. (2014); Tosi et al.

(2015)), such benchmark studies rely on the comparisons between a handful of scalar values (e.g. root mean square velocity,20

Nusselt number) which account for the global character of the solution at steady state but they do not lend themselves to error

convergence measurements. Fully analytical solutions have also been recently proposed, attempting to represent a mid-ocean

ridge (Burstedde et al., 2013) or being more abstract in nature (Zhong, 1996; Popov et al., 2014; Blinova et al., 2016). Actually,

any analytical solution of the Stokes equation in three dimensions could be used in a spherical shell provided that the velocity

is appropriately applied on the inner and outer boundaries (e.g. Burstedde et al. (2013)) but such solutions usually do not25

satisfy the condition v ·n= 0 on the inner and outer boundaries, i.e. there is flow through the boundaries. Not only does the

presence of a material flow through the boundaries makes the flow not Earth-like, but it also precludes its use for particle-in-cell

advection benchmarking (particles would leave and enter the domain).

I here propose a new analytical solution for viscous incompressible Stokes flow in a spherical shell. It has been designed

with three constraints in mind: 1) the boundary conditions, buoyancy forces and viscosity fields should be simple to implement30

and exact; 2) the solution should also be smooth and simple enough to be usable; 3) it should satisfy tangential slip boundary

conditions on both surfaces. I present in section 2 the simplified Stokes equation in spherical coordinates under these flow

assumptions, and outline the procedure to arrive at the analytical solution for pressure and velocity in section 3, for both

constant and depth-dependent viscosity profiles. I compute in section 4 the exact analytical values for the root mean square
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velocity and various other averages and in section 5 the two numerical codes are introduced and results obtained with these are

shown. Finally, these results are discussed in section 6.

2 The Stokes equations in spherical coordinates

The domain is a spherical shell parametrised by its inner radiusR1 and outer radiusR2. For an incompressible fluid, the Stokes

flow equations are given by5

∇ ·v = 0 (1)

∇ ·σ+ ρg = 0 (2)

where v is the velocity vector, ρ the mass density, g the gravitational acceleration vector and where σ is the full stress tensor

which can be split

σ =−p1+ s (3)10

where p is the pressure, 1 the unit tensor and s the deviatoric stress tensor. Eq. (2) then becomes

−∇p+∇ · s+ ρg = 0. (4)

In spherical coordinates, equations (1) and (4) become:

1

r2
∂

∂r
(r2vr) +

1

r sinθ

∂

∂θ
(vθ sinθ) +

1

r sinθ

∂vφ
∂φ

= 0 (5)

−∂p
∂r

+
∂srr
∂r

+
1

r

∂sθr
∂θ

+
1

r sinθ

∂sφr
∂φ

+
2srr − sθθ − sφφ

r
+
sθr cotθ

r
+ ρgr = 0 (6)15

−1

r

∂p

∂θ
+
∂srθ
∂r

+
1

r

∂sθθ
∂θ

+
1

r sinθ

∂sφθ
∂φ

+
3sθr + (sθθ − sφφ)cotθ

r
+ ρgθ = 0 (7)

− 1

r sinθ

∂p

∂φ
+
∂srφ
∂r

+
1

r

∂sθφ
∂θ

+
1

r sinθ

∂sφφ
∂φ

+
3srφ + 2sφθ cotθ

r
+ ρgφ = 0 (8)

In this work, the following spherical coordinates conventions are used: r is the radial distance, θ ∈ [0,π] is the polar angle and

φ ∈ [0,2π] is the azimuthal angle. In the case of an incompressible fluid, the deviatoric stress is simply

s= 2µε̇ (9)20

where µ is the dynamic viscosity which can depend on space coordinates and ε̇ is the (deviatoric) strain rate tensor:

ε̇=
1

2

(
∇v+∇vT

)
. (10)
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In spherical coordinates, the components of the deviatoric stress tensor are given by:

srr = 2µ

(
∂vr
∂r

)
(11)

sθθ = 2µ

(
1

r

∂vθ
∂θ

+
vr
r

)
(12)

sφφ = 2µ

(
1

r sinθ

∂vφ
∂φ

+
vr
r

+
vθ
r

cotθ

)
(13)

srθ = sθr = µ

(
∂vθ
∂r
− vθ
r

+
1

r

∂vr
∂θ

)
(14)5

srφ = sφr = µ

(
1

r sinθ

∂vr
∂φ

+
∂vφ
∂r
− vφ

r

)
(15)

sθφ = sφθ = µ

(
1

r

∂vφ
∂θ
− cotθvφ

r
+

1

r sinθ

∂vθ
∂φ

)
. (16)

Equations 5-8, supplemented by Eqs. 11-16 form a closed set of PDE’s which can be solved given an appropriate set of

boundary conditions.

2.1 Assumptions on the flow10

In order to derive an analytical solution for the flow velocity and pressure in the domain, the following assumptions are made:

– All quantities vr,vθ,vφ,p,ρ and µ are independent of the azimuthal angle φ. As a consequence, all the terms containing

partial derivatives with respect to φ can be discarded. This is one of the most stringent limitations in this work since it

implies rotational symmetry with respect to the vertical axis.

– The polar and azimuthal components of the velocity are equal and of the form15

vθ(r,θ) = vφ(r,θ) = f(r)sinθ. (17)

– The radial component of the velocity is nul on the inside r =R1 and outside r =R2 of the domain, thereby insuring a

tangential flow on the boundaries, i.e.

vr(R1,θ) = vr(R2,θ) = 0. (18)

– The viscosity is a function of the radial distance only and takes the form:20

µ(r) = µ0r
m+1. (19)

where m is an integer (positive or negative). Note that m=−1 yields a constant viscosity.

– The gravity vector is set to g =−er and is therefore of unit norm, i.e. |g|= 1.
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2.1.1 The set of simplified partial differential equations

Under the above assumptions, it is easy to show that the Stokes equation in spherical coordinates are given by:

1

r2
∂

∂r
(r2vr) +

1

r sinθ

∂

∂θ
(vθ sinθ) = 0 (20)

−∂p
∂r

+ ρ(r,θ) +µ(r)

(
∆vr −

2vr
r2
− 2

r2
∂vθ
∂θ
− 2vθ cotθ

r2

)
+ 2µ′(r)

∂vr
∂r

= 0 (21)

−1

r

∂p

∂θ
+µ(r)

(
∆vθ +

2

r2
∂vr
∂θ
− vθ

r2 sin2 θ

)
+µ′(r)

(
∂vθ
∂r
− vθ
r

+
1

r

∂vr
∂θ

)
= 0 (22)5

µ(r)

(
∆vφ−

vφ

r2 sin2 θ

)
+µ′(r)

(
∂vφ
∂r
− vφ

r

)
= 0 (23)

where ∆ is the Laplacian operator:

∆ =
1

r2
∂

∂r

(
r2
∂

∂r

)
+

1

r2 sinθ

∂

∂θ

(
sinθ

∂

∂θ

)
+

1

r2 sin2 θ

∂2

∂φ2
. (24)

3 Derivation of the analytical solution of the Stokes equations

My goal is to determine the f(r) function in the context of all the assumptions made about the flow nature. The following 410

steps will then be taken:

1. use the continuity equation (20) to arrive at vr(r,θ) = g(r)cosθ;

2. use the θ component of Stokes equations (22) to arrive at p(r,θ) = h(r)cosθ;

3. use the φ component of Stokes equations (23) to arrive at f(r) and g(r), using boundary conditions on vr;

4. use the r component of Stokes equations (21) to arrive at the density ρ(r,θ).15

3.1 Using the continuity equation to arrive at vr

Inserting Eq. (17) into Eq. (20) yields

vr(r,θ) = g(r)cosθ (25)

g(r) = − 2

r2

∫
rf(r)dr (26)

where the integration constant has been set to zero for simplicity.20

I then proceed to compute the Laplacian of each velocity component using Eq. (24) and once again all partial derivatives

with respect to φ are neglected:
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∆vr =

[
g′′+

2g′

r
− 2

g

r2

]
cosθ (27)

∆vθ =

(
f ′′+

2f ′

r

)
sinθ+

f

r2 sinθ

(
cos2 θ− sin2 θ

)
(28)

∆vφ =

(
f ′′+

2f ′

r

)
sinθ+

f

r2 sinθ

(
cos2 θ− sin2 θ

)
. (29)

3.2 Using the θ component of Stokes equations to arrive at the pressure p

Inserting Eq. (17) and Eq. (25) into Eq. (22) yields5

∂p

∂θ
=−h(r)sinθ (30)

with

h(r) =−µ(2f ′+ rf ′′) +
2µ+ rµ′

r
(f + g)− rµ′f ′ (31)

so that

p(r,θ) = h(r)cosθ (32)10

where the integration constant has once again been omitted for simplicity.

3.3 Using the φ component of Stokes equations to arrive at f(r) and g(r)

Inserting Eq.(17) and Eq.(25) into Eq. (23) yields

µ
(
r2f ′′+ 2rf ′− 2f

)
+ rµ′ (rf ′− f) = 0 (33)

We now make use of Eq.(19) so that Eq.(33) becomes15

rm+1
[
r2f ′′+ (3 +m)rf ′− (3 +m)f

]
= 0 (34)

This equation has to hold for all r values so f(r) is the solution of the second order ODE:

r2f ′′+ (3 +m)rf ′− (3 +m)f = 0 (35)

I postulate that the solution is of the form f(r) = ra which yields

[a+ (m+ 3)](a− 1)f(r) = 0 (36)20

The only two acceptable values for a are the roots of this second order polynomial, i.e. a= 1 or a=−(m+ 3). The general

solution of the ODE is then:

f(r) = αr−(m+3) +βr (37)
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where α and β are two constants yet to be determined. Having obtained f(r), one can now compute g(r). However, as it will

become obvious, one must make a distinction between m=−1 and m 6=−1.

Note that the case m=−3 should be considered separately since Eq.(35) then becomes f ′′(r) = 0 and yields a solution

f(r) = βr.

3.3.1 Casem=−15

In this case the function f(r) is

f(r) =
α

r2
+βr (38)

and from Eq. (26) one obtains

g(r) =− 2

r2

(
α lnr+

β

3
r3 + γ

)
(39)

where γ 6= 0 is a constant. From Eq. (18) and Eq. (25) it follows that g(R1) = g(R2) = 0 which yields10

α = −γ R3
2−R3

1

R3
2 lnR1−R3

1 lnR2
(40)

β = −3γ
lnR2− lnR1

R3
1 lnR2−R3

2 lnR1
. (41)

3.3.2 Casem 6=−1

In this case the function g(r) takes the form

g(r) =− 2

r2

(
− α

m+ 1
r−(m+1) +

β

3
r3 + γ

)
(42)15

and the boundary conditions impose that

α = γ(m+ 1)
R−31 −R

−3
2

R
−(m+4)
1 −R−(m+4)

2

(43)

β = −3γ
Rm+1

1 −Rm+1
2

Rm+4
1 −Rm+4

2

(44)

Note that this imposes that m 6=−4.

3.4 Using the r component of Stokes equations to arrive at density ρ20

Eq. (21) contains the term ∂p/∂r = ∂h/∂r cosθ which needs to be addressed beforehand:

∂h

∂r
=−µ′(2f ′+ rf ′′)−µ(3f ′′+ rf ′′′) +

r2µ′′+ 2rµ′− 2µ

r2
(f + g) +

2µ+ rµ′

r
(f ′+ g′)−µ′f ′− rµ′′f ′− rµ′f ′′. (45)
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3.4.1 Casem=−1

In this case µ′ = 0 and µ′′ = 0 so that ∂h/∂r cosθ simplifies to

∂h

∂r
= −(3f ′′+ rf ′′′) +

2

r
(f ′+ g′)− 2

r2
(f + g) (46)

and Eq. (21) becomes

−∂h
∂r

+
ρ(r,θ)

cosθ
+

∆vr
cosθ

− 1

r2
(2g+ 4f) = 0. (47)5

I postulate that

ρ(r,θ) = F(r)cosθ (48)

and using Eq. (27), the radial function F is given by

F(r) = −rf ′′′− 3f ′′+ 2
f ′

r
− g′′+ 2

r2
(f + g). (49)

Inserting the radial functions f(r) and g(r) given into Eqs. (38) and (39) into Eq. (49) yields10

ρ(r,θ) =

(
α

r4
(8 lnr− 6) +

8β

3r
+ 8

γ

r4

)
cosθ. (50)

3.4.2 Casem 6=−1

Using Eq. (19) leads to write

1

rm
∂h

∂r
= −r2f ′′′− [2m+ 5]rf ′′−m(m+ 3)f ′+m(m+ 3)(f + g)/r+ (m+ 3)g′. (51)

Then Eq. (21) becomes15

−∂h
∂r

cosθ+ ρ(r,θ) +µ(r)

[
∆vr −

cosθ

r2
(2g+ 4f)

]
+µ′(r)g′(r)cosθ = 0 (52)

I here postulate that

ρ(r,θ) = rmF(r)cosθ (53)

and arrive at

F(r) =
1

rm
∂h

∂r
− r
[
g′′+

2(m+ 2)

r
g′− 4

r2
(g+ f)

]
(54)20

= −r2f ′′′− [2m+ 5]rf ′′−m(m+ 3)f ′+ [m(m+ 3) + 4]
f + g

r
− (m+ 1)g′− rg′′ (55)

= −r2f ′′′− [2m+ 5]rf ′′− [m(m+ 3)− 2]f ′+m(m+ 5)
f + g

r
(56)

where I have used

g′(r) = −2

r
(f + g) (57)

rg′′(r) = −2f ′+
6

r
(f + g). (58)25
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Inserting f(r) and g(r) expressions into the above equation yields F(r) so that in the end

ρ(r,θ) =

[
2αr−(m+4)m+ 3

m+ 1
(m− 1)− 2β

3
(m− 1)(m+ 3)−m(m+ 5)

2γ

r3

]
cosθ. (59)

3.5 The pressure field

The pressure is defined in Eq. (32) and h(r) can now be computed.

3.5.1 Casem=−15

h(r) =−µ0
4

r3

(
α lnr+

β

3
r3 + γ

)
=

2

r
µ0g(r). (60)

3.5.2 Casem 6=−1

h(r) =−µ(r)
2(m+ 3)

r3

(
− α

m+ 1
r−(m+1) +

β

3
r3 + γ

)
=
m+ 3

r
µ(r)g(r). (61)

4 Additional measurements

4.1 Root mean square velocity10

Many benchmark studies (e.g. Blankenbach et al. (1989); Tosi et al. (2015)) report on the root mean square velocity quantity,

defined as follows:

vrms =

√√√√ 1

V

∫
V

|v|2dV (62)

This is a convenient quantity as it captures (in an average sense) the nature of the velocity field in a single scalar value which

allows for an easy comparison, either with a known analytical value or across multiple codes.15

Since the velocity is known in all of the domain, it is a simple although tedious exercise to compute the rms velocity. I find:

vrms =

√
4π

3V
[B+ 4A] (63)

with

A =

R2∫
R1

f2r2dr (64)

B =

R2∫
R1

g2r2dr. (65)20

The values of A and B depend on the f and g function, so that we must once again make the distinction between m=−1 and

m 6=−1.
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4.1.1 Casem=−1

A =

[
−α

2

r
+αβr2 +

β2

5
r5
]R2

R1

(66)

B = 4(B1 +B2 +B3 +B4 +B5 +B6) (67)

B1 = α2
[
−(X2 + 2X + 2)e−X

]lnR2

lnR1
(68)

B2 =
2αβ

3

[
1

2
r2 lnr− 1

4
r2
]R2

R1

(69)5

B3 = 2αγ
[
−Xe−X − e−X

]lnR2

lnR1
(70)

B4 =
β2

45

[
r5
]R2

R1
(71)

B5 =
βγ

3

[
r2
]R2

R1
(72)

B6 = γ2
[
−1

r

]R2

R1

(73)

4.1.2 Casem 6=−110

A =

[
− α2

2m+ 3
r−(2m+3)− 2αβ

m− 1
r−(m−1) +

β2

5
r5
]R2

R1

(74)

B = 4(B1 +B2 +B3−B4−B5 +B6) (75)

B1 = − α2

(m+ 1)2(2m+ 3)

[
r−(2m+3)

]R2

R1

(76)

B2 =
β2

45

[
r5
]R2

R1
(77)

B3 = −γ2
[

1

r

]R2

R1

(78)15

B4 = − 2αβ

3(m+ 1)(m− 1)

[
r−(m−1)

]R2

R1

(79)

B5 = − 2αγ

(m+ 1)(m+ 2)

[
r−(m+2)

]R2

R1

(80)

B6 =
βγ

3
[r2]R2

R1
(81)

4.2 Radial averages

The radial average of a quantity χ(r,θ,φ) is defined as follows20

< χ >R=
1

4π

∫ ∫
χ(r,θ,φ)sinθdθdφ (82)

and due to symmetry it is trivial to show that < p >R= 0 and < vr >R= 0. Likewise, one easily arrives at

< vθ >R=< vφ >R=
1

4
f(r). (83)
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4.3 Volume averages

The volume average of a quantity χ(r,θ,φ) is defined as follows

< χ >V =
1

V

∫
V

χ(r,θ,φ)dV. (84)

Here again, < p >V = 0 and < vr >V = 0 while

< vθ >=< vφ >=
π2

V

R2∫
R1

f(r)r2dr =


π2

V

[
αr+ β

4 r
4
]R2

R1

(m=−1)

π2

V

[
− α
mr
−m + β

4 r
4
]R2

R1

(m 6=−1)
(85)5

One can also look at the volume averages of the cartesian coordinates components of the velocity:

< vx > =
1

V

∫
V

vx(r,θ,φ)dV (86)

=
1

V

∫
V

(sinθ cosφ vr + cosθ cosφ vθ − sinφ vφ)dV (87)

= 0 (88)

< vy > =
1

V

∫
V

vy(r,θ,φ)dV (89)10

=
1

V

∫
V

(sinθ sinφ vr + cosθ sinφ vθ + cosφ vφ)dV (90)

= 0 (91)

< vz > =
1

V

∫
V

vz(r,θ,φ)dV (92)

=
1

V

∫
V

(vr cosθ− vθ sinθ)dV (93)

=
1

V

∫
V

(g(r)cos2 θ− f(r)sin2 θ)r2 sinθdrdθdφ (94)15

=
4π

3V

[∫
g(r)r2dr− 2

∫
f(r)r2dr

]
= 0 (95)

Note that < vx > and < vy > are zero because of symmetry (
∫ 2π

0
cosφdφ=

∫ 2π

0
sinφdφ= 0) while we find < vz >= 0 (for

all values of m) after tedious calculations, using the definitions of α and β.

4.4 Surface averages20

The average of a quantity χ(r,θ,φ) on a surface of radius R is simply the radial average function evaluated at a given radial

distance R. Rather importantly, we have

< p >R=R2= 0 (96)
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i.e., the average pressure at the outside surface is zero.

4.5 Moment of inertia

Because of the expression of the density field, i.e. ρ(r,θ,φ) = F(r)cosθ, it is trivial to show that the moment of inertia of the

system with respect to the x−, y− and z−axis are identically zero.

4.6 Stress field5

Since the velocity and pressure fields are known, I can also compute an analytical expression for the stress field and the the

stress tensor is given by

σ =
µ(r)

r



−((m+ 7)g+ 4f)cosθ (rf ′− f − g)sinθ (rf ′− f)sinθ

(rf ′− f − g)sinθ −((m+ 1)g− 2f)cosθ 0

(rf ′− f)sinθ 0 −((m+ 1)g− 2f)cosθ


5 Implementation and results

As mentioned earlier, this flow solution was designed with a geodynamics application in mind. It has therefore been imple-10

mented in the state-of-the-art open source code ASPECT1 (Kronbichler et al., 2012; Heister et al., 2017) and in the ELEFANT2

code (Thieulot, 2014; Tosi et al., 2015; Lavecchia et al., 2017). Both codes solve the incompresible flow Stokes equations in

spherical shell domains but use Cartesian coordinates.

5.1 ASPECT

ASPECT is a Finite Element code intended to solve the equations that describe thermally driven convection with a focus on15

doing so in the context of convection in Earth’s mantle. The default element typeQ2Q1 (quadratic velocity, linear pressure) has

been used in this work, but since ASPECT is based on the deal.ii library (Bangerth et al., 2007, 2016), one can easily change

the element type from the ascii input file (’.prm’ file) and the Q1P0 (linear velocity, constant pressure) was also used (the same

element is used in the CITCOM code (Zhong et al., 2008)).

I here make use of the plugin architecture of the code which allows users/developers to easily add or switch between already20

implemented features. The flow velocity and pressure solutions, as well as the viscosity and body force expressions are all

encapsulated in a single piece of code alongside an ascii input file in which resolution, element type, boundary conditions and

other parameters are set. This benchmark is now part of the mainline since version 2.0.0-pre (see ASPECT manual).

1https://aspect.dealii.org/
2http://cedricthieulot.net/elefant.html
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Figure 1. Functions f(r) (a), g(r) (b), h(r) (c) and viscosity profile µ(r) (d) as a function of r ∈ [0.5 : 1] for various values of m.

5.2 ELEFANT

ELEFANT borrows largely from the FANTOM code (Thieulot, 2011), but it also brings a number of critical improvements

compared to its predecessor, such as spherical shell geometry and the use of a preconditioned conjugate gradient scheme for

both inner and outer iterations (Braess, 2007; Elman, 1996). It is a Finite Element code, based on Q1P0 elements which is

developed and maintained by the author. It has succesfully been benchmarked against a wide range of analytical problems and5

also against other codes (including ASPECT) in the case of visco-plastic thermal convection (Tosi et al., 2015).

5.3 Setup

In what follows, I set the inner and outer radii to R1 = 0.5 and R2 = 1 respectively. The functions f(r), g(r), h(r) and the

viscosity function are shown in Fig. (1).

The ASPECT computational grid consists of 12 blocks making up a hollow sphere (Zhong et al., 2000), each block being10

subdivided in (2n)3 elements, where n= 2,3, .... Since elements vary in size in the radial direction, I have chosen to report the

average element size in convergence plots, and it is computed as follows:

< h >=

(
V

Nel

)1/3

(97)
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where V is the volume of the domain and Nel is the total number of elements. The ELEFANT mesh is also based on the same

12 blocks, but each block can be subdivided into nel3 elements where nel is a positive integer wich is not bound to be a power

of 2.

The analytical velocity solution is prescribed on both internal (r =R1) and external (r =R2) boundaries. Given these

boundary conditions, the pressure is determined up to a constant. Both codes allow for a surface normalisation (the average5

pressure along the surface has a prescribed value - in this case zero), and a volume normalisation (the average pressure over the

whole volume has a prescribed zero value). Since I have shown here above that both are identically nul for the pressure field,

the choice of pressure normalisation does not matter. Also, the boundary conditions preclude the presence of a pure rotational

mode of numerical origin (Zhong et al., 2008). Both codes were run for values of m=−1 (constant viscosity) and m= 3

(viscosity varies by a factor 16 from the inside to the outside). The density, velocity and pressure fields for both cases are10

shown in Fig. (2)

Figure 3 shows the relative root mean square velocity error as a function of the (average) element size for both codes and both

m values. The error is found to quadratically decrease with resolution for both codes. Likewise, the L2-norm of the velocity

error is found to decrease with resolution, linearly for Q1P0 elements and quadratically for Q2Q1, as shown in Figs. (4).

Looking at the pressure error convergence, it is found to decrease quadratically with the resolution for both types of elements,15

as shown in Fig. (5). ELEFANT routinely outputs all three average quantities < u >, < v > and <w >. All three values were

found to be zero within machine precision (oscillating around 10−15).

6 Conclusions

I have derived in this paper a family of analytical solutions to incompressible Stokes flow in a spherical shell under a few

assumptions, such as tangential velocity on the boundaries and a radial viscous profile. The velocity, pressure, density and20

viscous fields which satisfy the flow equations at every point in space are then used to benchmark two multi-purpose geo-

dynamics codes. L2-norms of the velocity and pressure errors were reported and shown to decrease when the resolution is

increased. Furthermore, various analytical expressions for flow averages were derived and it was shown that the computed

solutions converged to these expected values.

A number of previous studies (Popov et al., 2014) use an exponential viscosity of the form µ(r) = µ0 exp(α · r) where25

α is a parameter controlling the amplitude of the viscosity variations in the system. This approach has been tried during the

preparation of the manuscript, but Eq. (35) then becomes

r2f ′′+ (2 +mr)rf ′− (2 +mr)f = 0 (98)

Although this equation can be solved, the form of the solution f(r) involves the exponential integral function Ei(r) =

−
∫∞
−r e

−t/t dt which a) would render the derivations of g(r) and all subsequent quantities very cumbersome, b) would make30

the solution only semi-analytical. This approach was then abandonned.

Looking at the pressure equation, or rather at Fig. (1c), we see that the pressure is zero for r =R1 and r =R2. One simple

interpretation is that the pressure in this work should be interpreted as an over pressure with regards to a background lithostatic

14



Figure 2. a,b,c) Analytical solution for m=−1 (constant viscosity); d,e,f) solution for m= 3

pressure. Likewise, the (complex) density profiles have to be interpreted as density variations with regards to a background

density profile corresponding to the above mentioned lithostatic pressure.

Finally, it must be mentioned that the driving density field and flow solution both consist azimuthally of spherical harmonic

degree 1 and order 0 combined with an azimuthally-constant viscosity. Presumably, the presented solutions are part of a family

of solutions that could also be derived for other spherical harmonics.5
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