
Response	to	Interactive	comment	of	Prof.	Dr.	Kaus	(referee)	on	
“Implementing	nonlinear	viscoplasticity	in	ASPECT:	benchmarking	and	
applications	to	3D	subduction	modeling”	by	Anne	Glerum	et	al.	
	
We	thank	Prof.	Dr.	Kaus	for	his	detailed	review	and	reproducing	one	of	the	
benchmarks,	which	allowed	us	to	greatly	improve	the	manuscript.	Below	we	
address	his	points,	and	changes	in	the	actual	manuscript	are	indicated	in	bold.		
	
	



General	remarks:	
1.	Plasticity	implementation	
The	manuscript	mainly	deals	with	several	benchmarks	that	demonstrate	that	the	
plasticity	implementation	gives	similar	results	as	that	of	other	geodynamic	codes.	
Yet,	the	implementation	of	plasticity	itself	is	not	described	in	very	much	detail,	
which	is	why	the	title	of	the	paper	is	somewhat	misleading	(maybe	drop	
“implementing”	from	the	title.		
We	have	dropped	“implementing”	from	the	title.	
	
The	plasticity	implementation	itself	is	also	rather	primitive	(using	only	Picard	
iterations,	for	example),	and	some	points	deserve	more	discussion:	If	you	use	a	
viscoplastic	rheology,	for	example,	you	need	an	initial	guess,	which	is	usually	done	
by	taking	a	viscous-only	step.	You	seem	to	use	a	user-specifiable	constant	viscosity	
for	this,	which	can	change	from	field	to	field.	This	can	work	(if	you	tune	parameters	
just	about	right),	but	in	my	experience,	viscoplastic	models	are	extremely	sensitive	
to	this	choice;	if	you	use	a	too	large	value	of	viscosity,	it	won’t	converge	to	a	
physically	sensitive	solution	because	the	initial	guess	for	pressure	(which	is	
approximately	equal	to	4*EII*eta	where	EII	is	the	strain	rate	and	eta	the	viscosity)	
may	be	massively	larger	than	what	is	
physically	meaningful.	A	background	strain	rate	of	1e-15	1/s	and	initial	viscosity	of	
1e24	Pas,	for	example,	would	result	in	a	dynamic	pressure	of	4	GPa.	Yet,	in	the	
setup	of	Figure	4,	the	lithostatic	pressure	at	the	base	of	the	model	should	be	on	the	
order	of	270	MPa,	and	for	a	frictional	material	(with	friction	angle	30	degree)	the	
maximum	pressure	should	be	no	more	than	about	twice	lithostatic	(see	Petrini	&	
Podlachikov,	2001,	among	others).	Thus,	the	dynamic	pressure	in	this	case	is	
significantly	larger	than	the	physically	admissible	pressure,	which	can	cause	
problems	with	convergence	of	the	viscoplastic	solution.	So	even	while	running	the	
same	model	setup	with	ASPECT,	different	users	could	end	up	with	
totally	different	results	simply	because	they	had	a	different	choice	of	initial	
viscosities.	Since	you	implement	this	in	a	community	code,	it	is	important	that	you	
take	care	that	users	with	less	background	in	computational	geodynamics	don’t	
produce	physically	meaningless	results	(I	realize	that	this	cannot	be	fully	excluded,	
but	you	can	at	least	try	to	minimize	the	chance	for	this	to	happen).	
One	way	to	do	this	different	is	to	incrementally	increase	the	boundary	velocity	(as	
described	in	Kaus	2010),	during	the	first	timestep.	In	practice,	I	found	this	is	non-
trivial	to	implement	for	more	complicated	model	setups;	moreover,	it	requires	a	
large	amount	of	initial	iterations.	A	technique	that	is	easier	and	more	general	(and	
which	I	have	used	since),	is	to compute	the	admissible	upper	and	lower	bounds	of	
pressure	(that	are	usually	a	function	of	the	lithostatic	pressure),	under	the	
assumption	of	a	homogeneous	setup	for	a	frictional	material	under	compression	&	
extension.	The	derivation	of	the	admissible	pressures	is	
given	in	(Petrini	&	Podladchikov	2000)	for	a	case	with	zero	cohesion	-	you	can	
easily	extend	that	to	a	case	with	cohesion.	During	the	first	iteration	step,	or	the	first	
timestep,	a	pressure	cutoff	is	applied	within	the	yield	function	routine,	which	will	
ultimately	limit	the	viscosities	that	the	plasticity	algorithm	gives	to	reasonable.	
During	subsequent	iterations	and	subsequent	timestep,	this	pressure	cutoff	is	no	
longer	applied.	An	advantage	of	this	method	is	that	it	takes	away	‘user-tuning’	of	
the	initial	viscosities.	It	is	implemented	in	both	MVEP2	



and	LaMEM	(both	available	as	open-source	on	bitbucket).	If	you	don’t	want	to	
implement	this	in	ASPECT,	I	would	at	least	appreciate	a	longer	
discussion	on	the	choice	of	reference	viscosities	and/or	background	strain	rate	and	
how	new	(or	less	experienced)	users	can	detect	non-sense	results.	
	
In	ASPECT,	during	the	first	iteration	step,	we	have	the	lithostatic	pressure	as	
initial	pressure	guess.		Looking	at	your	pressure	cutoff	in	the	yield	function	
routine,	this	lithostatic	pressure	will	lie	within	the	pressure	bounds	calculated.	
Then	prescribing	the	initial	strain	rate	based	on	the	velocity	boundary	
conditions	ensures	the	system	starts	in	a	reasonable	state	with	a	depth-
dependent	viscosity.	The	weak	seed	subsequently	ensures	localization	of	
deformation	and	growing	of	the	shear	bands	stemming	from	the	seeds	towards	
the	surface.	
	
If,	on	the	other	hand,	we	prescribe	an	initial	high	viscosity,	the	pressure	resulting	
from	the	first	nonlinear	iteration	might	indeed	be	higher	in	magnitude	than	the	
lithostatic	one.	For	example,	for	the	30	degrees	compression	case	with	an	initial	
viscosity	of	1e25	Pa	s,	the	biggest	pressure	obtained	after	the	first	iteration	is	
452	MPa,	which	is	still	below	the	upper	pressure	limit	which	for	this	case	would	
be	610	MPa.	Even	higher	pressures	would	be	‘corrected’	by	the	viscosity	cutoff,	
which	will	in	fact	set	viscosity	at	the	constant	value	µmax 	(but	not	in	the	seed).	
	
Figure	1	shows	the	shear	bands	resulting	from	1000	nonlinear	iterations	but	
starting	from	a	different	initial	viscosity	for	the	medium.	For	low	internal	friction	
angles	(in	this	case	10	degrees),	there	is	no	difference	in	the	final	shear	band	
angle.	However,	for	higher	internal	angles	of	friction	(30	degrees),	there	is	some	
variation	in	shear	band	angle	for	both	compression	and	extension,	even	though	
the	pressures	obtained	in	the	first	iteration	are	within	the	pressure	limits.	This	
variation	is	at	most	3	degrees	and	occurs	for	those	runs	only	that	are	less	well	
converged	anyway	(see	Fig.	6	of	the	manuscript).		
	
To	the	parameter	table	of	each	viscoplastic	benchmark	we	have	added	a	footnote	
on	how	an	estimate	of	the	initial	viscosity	or	strain	rate	can	be	made.	



	
Figure	1	Shear	band	angles	measured	for	different	values	of	initial	viscosity	of	the	
viscoplastic	medium	of	the	brick	benchmark.	Elemental	resolution	is	512x128.	Two	sets	of	
models	are	performed	in	extension:	one	for	an	internal	friction	angle	of	10	degrees	and	
one	of	30	degrees.	In	compression,	a	30-degree	friction	angle	is	used.	
	
	
2. Appendix A/B: Subduction benchmark: 
The benchmark setup you discuss has a 90 degree ‘notch’ and is the one which gave 
the worst results in the Schmeling benchmark. This may well be related to the 90 
degree initial subduction angle which is very far removed from the angle the slab 
wants to make. A much better setup is case 3 considered in that paper, for which we 
also have laboratory experiments and for which the various codes had better 
agreement. It would be very interesting to see the effect of the viscosity averaging 
methods for this setup as well (I expect the discrepancies between the models to be 
much less severe). Can you add that? 
To test the effect of the initial subduction angle, we have run a model based on case 3 
of Schmeling et al. (2008) with ASPECT 1.5: we kept everything the same, except for 
the geometry of the slab tip (see adapted Figure 20 of the revised manuscript). The 
simulations indeed show much less divergence in the slab tip depth evolutions (see 
Figure	2 below that we also added to the paper). For example, instead of more than 
95 My difference in minimum and maximum time for the slab tip to sink 300 km in 
case 1, the difference is only about 19 My. Trends in evolution with averaging 
method or mesh refinement level are still the same.  



	
Figure	2	Slab	tip	depth	over	time	for	case	3	of	Schmeling	et	al.	(2008)	for	four	different	
averaging	methods	of	the	contribution	of	the	compositional	fields	to	viscosity.	Colors	
indicate	the	averaging	method,	while	one	color	goes	from	light	to	dark	with	local	
resolution,	which	varies	from	256	×	64	elements	to	2,048×512	elements.	Minimum	
resolution	is	always	128×32	elements. 
 
3. 3D Viscoplastic models 
Model setups 1 and 2 show that ASPECT can handle more complicated setups. Yet, 
from a science point of view, the initial geometry of the two cases is so different that it 
is difficult to discern what the effect of the adjacent plate is. You cite the paper of 
Schellart and Moresi (2013) in stating that the adjacent plate does not affect the 
geometry of the subducting plates. Yet on page 23 you also state that your rheology 
differs from their model. To make your conclusions more robust, it would be good if 
you can add at least one additional simulation with an adjacent plate for say the 
simple model setup (model 1). This would support your conclusions that the 
differences between models 1 and 2 are mainly caused by rheology and not by the 
adjacent plate. Along similar lines, you mention that the plate viscosity of model 2 is 
an order of magnitude larger than that in model 1. From Fig. 19, it seems that the 
asthenosphere also has a lower viscosity, such that the overall slab-mantle viscosity 
contrast increases. I agree with you that a systematic study of these differences is 
probably beyond the current paper (even more since each 3D simulation takes several 
weeks). Yet, what would be interesting is to better understand whether the same 
effects are observed with 2D simulations as well, using exactly same setup but without 
adjacent plates. That should be computationally much faster and will at least give the 
reader some insights into how important 3D effects are for these kinds of subduction 
scenarios. It would be great 
 
 



We agree that the initial geometries of the two 3D cases are quite different. Therefore, 
we have run model 1 with a uniform adjacent plate (AP) and a transform zone (TZ) of 
the same uniform viscosity as the mantle until the slab tip is draping the bottom 
boundary of the domain. Both the AP and TZ are of the same thickness as the 
subducing plate. This model corresponds well with the findings of Schellart and 
Moresi (2013) in that the geometry of the subducting plate does not change in the 
presence of an adjacent plate, although in our case the subduction process is 
somewhat slowed down (TZ width is not given by Schellart and Moresi, 2013; 
another width could affect the subduction process differently.).  
 
As the reviewer stated, a systematic study of the differences between model 1 and the 
thermo-mechanically coupled viscoplastic model 2 is beyond this paper. We have run 
a 2D simulation of model 2 that shows similar slab-mantle viscosity contrasts as the 
3D model. Although subduction is faster for the 2D case than for the 3D case, this 
effect is also seen for model 1. 
 
For more extensive investigations into rheological effects on subduction processes, 
see for example Andrews and Billen (2009) and Garel et al. (2014). Also, we invite 
the interested reader to investigate viscosity contrasts and other rheological controls 
on the subduction evolution with the input files of model 1 with the adjacent plate and 
the 2D thermo-mechanically coupled model that we have added to the repository 
belonging to this paper. 
 
We have added the sentence to Section 4.3: 
A test with a uniform viscosity adjacent plate for our model 1 corroborates this.  
 
4. Required wall-clock time and Picard vs. Newton iterations 
I really appreciate the honesty of the authors by reporting actual wall-clock times of 
the simulations, which gives interested readers a feeling for the computational costs 
involved in running ASPECT simulations. To be honest, the results left me a bit 
shocked. If a 3D free subduction simulation takes up to 6 weeks on 260 processors, 
with a maximum equivalent resolution of 640x128x128 elements, it essentially implies 
that it is nearly impossible to perform systematic science with this code (think about 
the carbon footprint that this simulation has...). It is ofcourse difficult to make a one 
to one comparison to other codes (also since you did not report the number of 
timesteps in the tables - would be great if you can add this information). Yet, I’m 
routinely running 3D models with about the same maximum resolution (but without 
AMR) with LaMEM in a day or so on 64-128 cores. This thus at least suggests that 
there are massive differences between different codes and in terms of the science per 
CPU-hour such difference matter. To get a somewhat better estimate of how timings 
differ and what the importance of Newton iterations is in this, I redid the 2D slab 
detachment benchmark (section 3.4) with LaMEM using your largest resolution 
(256x256 elements) on 8 cores. As LaMEM is currently a 3D only 
code, the LaMEM simulation was done with 2 elements in the y-direction and 
employed 3 rather than 2 velocity components per node (such that the total degrees of 
freedom of the 256x256x2 simulations were with 590’848 slightly larger than the 
456’400 DOFs used in the ASPECT simulation). In the LaMEM simulation, I 
reconstruct the slab thickness from the interpolated phase proportions on the 
staggered grid. This is likely to be slightly less precise than the marker-line approach 
used in your manuscript. Nevertheless, results are quite comparable to the 



Schmalholz solution: --FIG-- 
Rather than taking 28 cores and 16 hours to compute the full simulation, the 295 
timesteps of the LaMEM simulation were computed on 8 cores and took about 62 
minutes. LaMEM thus seems to require (28*16*60)/(8*62)~55 times less CPU-time 
than ASPECT (assuming ASPECT employed a similar number of timesteps). 
Part of this discrepancy may be caused by LaMEM employing a Newton nonlinear 
solver, rather than a Picard iterations. To understand how much this accounts for, I 
reran the simulation with Picard-only iterations and show the convergence behavior 
of timestep 10: --FIG— 
This demonstrates that Newton iterations are (in this case and for this timestep) 
around a factor 2 faster (note that we start every timestep with picard iterations 
before switching to the Newton solver). Evidently, for a tighter tolerance criteria the 
discrepancy between the two method is larger whereas it is less for a more relaxed 
nonlinear solver tolerance. Overall, the full simulation with Picard-only took around 
153 minutes. So, whereas Newton can explain part of the discrepancy between the 
required wall-clock time for a full simulation, significant differences remain. 
The input files for this setup, together with plotting routines, analysis tools and 
logfiles of the two simulations described above, are uploaded to the LaMEM 
repository under /input_models/DetachmentBenchmark. 
It would be interesting to see how future optimizations of ASPECT (and of LaMEM) 
will reduce these timings and how this is in other geodynamic codes. The time-to-do-
science is an important factor as well in computational geodynamics, that is 
unfortunately rarely documented for realistic cases (an exception being Pourhiet et 
al. 2017 for a different plasticity setup). I thus appreciate reporting these numbers – it 
would be great if you can report on how the latest ASPECT release affected the 
timings. 
Thank you for taking the time to run the detachment benchmark and provide us with 
wall time comparisons. The model run originally reported on in the paper was indeed 
performed with an older version of ASPECT (svn revision 1812) and underlying 
libraries. Also, time stepping settings were such that 1448 timesteps were taken. We 
have rerun the model with the latest ASPECT release (version 1.5, 
https://github.com/geodynamics/aspect/tree/aspect-1.5) and developer deal.II version 
(commit 1c58789f74fc4c7fd8ec82705ea24aeac8cedf84,	https://github.com/dealii/dealii) 
and time stepping settings to match your 295 timesteps by 289 timesteps, leads to a 
wall time of 347 minutes on 28 cores. Using a cheaper Stokes solver (with a single V-
cycle preconditioner) further reduces the wall time to 235 min (see Figure	3 for 
necking evolutions). Different compositional field averaging methods reduce wall 
times even further (this effect was previously shown in Table 10 of the paper), but fail 
to reproduce the necking curve of Schmalholz (2008). So does averaging of the 
material properties over each element (for a discussion on this averaging, see Heister 
et al. 2017). A run on the supercomputer Cartesius (bullx B720 nodes with 2x12 Intel 
Xeon E5-2690 v3 CPUs, Connect-IB InifiniBand) shows that the broader bandwidth 
and more modern hardware in general result in a wall time that is about 2.75 times 
faster. On 8 cores a run then takes 172 minutes, which is similar to the LaMEM wall 
time of 153 minutes.  
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Figure	3	Necking	evolution	for	different	model	parameters.	Note	that	results	for	the	same	
number	of	timesteps	are	identical.	
	
We	now	report	the	necking	evolution	and	wall	time	for	the	cheap	Stokes	solver	
run	on	our	local	cluster	(235	min).	Note	that	we	have	not	performed	wall	time	
optimization	for	the	other	run	times	reported.	Also	we’ve	added	a	section	to	the	
overall	discussion	elaborating	on	the	different	parameters	affecting	and	possibly	
reducing	wall	time.		
 
To Section 2.1.2 we have added: 
A cheap Stokes solve option is available in which the preconditioner employs one 
V-cycle only. The number of such FGMRES iterations before switching to the more 
expensive preconditioner is set to 0 in this paper, unless stated otherwise. 
 
To the results of the indentor benchmark (Section 3.1.2) we added: 
When using 200 cheap Stokes iterations for the smooth punch, results are not 
changed, but wall time is about 1.6 times longer. Using harmonic averaging of 
the material properties as discussed in Heister et al. (2017) increases the velocity 
error for the smooth punch to ~1%, but reduces wall time about 4.7 times. 
Loosening the linear Stokes solver tolerance by 1 order of magnitude to 10−8 
reduces the wall time of the rough punch by a factor of 1.6, while keeping the 
velocity error < 1%. 
 
To the overall discussion we added: 
 
Nonlinear	rheologies	also	affect	the	linear	solver	by	introducing	large	
viscosity	gradients.	Different	strategies	to	reduce	the	increased	
computational	time	and	under/overshooting	of	the	numerical	
approximation	of	the	viscosity/pressure	gradient	are	available	in	ASPECT.	
For	one,	one	can	reduce	the	linear	tolerance	(while	making	sure	the	results	
do	not	change	significantly),	as	was	shown	in	Section	3.1.	Secondly,	a	cheap	
Stokes	solver	can	be	employed,	although	this	does	not	help	for	each	model	
set-up	(compare	Sections	3.1	and	3.4).	Thirdly,	averaging	the	contributions	
of	the	compositional	field	to	the	viscosity	and	other	material	properties	in	a	



specific	point	reduces	the	sharpness	of	viscosity	boundaries,	making	the	
problem	easier	to	solve,	but	with	the	choice	of	averaging	method	affecting	
the	model	evolution	(Section3.4	30	and	Appendix	tab:schmelingmodel).	
Lastly,	averaging	of	material	properties	such	as	viscosity	and	density	over	
each	element	reduces	pressure	oscillations	(Heister	et	al.,	2017),	but	can	also	
influence	the	model	evolution	as	was	shown	in	Section	3.4.	



Minor points: 
 
p2. l14. It’s LaMEM and the reference is wrong (should be Kaus et al., 2016) 
Our apologies, we have changed the capitalization and the bibtex category. 
 
p3. l23. Please clarify whether you employed tracers here or not 
We have removed this sentence as we did not employ tracers except for the tracking 
of the necking evolution of the detachment benchmark. 
 
p4. l6/7: Please clarify whether these are the PETSc SNES options. 
They are not, we used ASPECT with Trilinos and not PETSc.  
 
p5. l7: Do you also use a zero initial guess for pressure or a lithostatic value? 
The initial guess for pressure considers a lithostatic pressure profile based on the 
model settings for density and gravity along the center of the domain. This pressure is 
also used in the computation of the initial residual. 
 
p5. eq(9): As far as I am aware most geodynamic codes employ the same yield-
criteria in 2D as in 3D (so eq.8). That has the advantage that if you do pseudo-2D 
calculations with the 3D code (using say 1 element in the 3rd dimension) you retrieve 
the 2D formulation. In your case, for typical values of the friction 
angle (30 degree), the 3D formulation deviates a few percent from the 2D 
one. 
The 3D formulation is a text book Drucker--Prager formulation (e.g. Davis and 
Selvadurai 2002), a circumscribing cone of the hexagonal cone of the Mohr--
Coulomb yield surface. In 2D incompressible plane strain, the Mohr--Coulomb and 
Drucker--Prager yield surfaces are identical. In case a pseudo--2D model with the 
same formulation as 2D is required, the user can easily select the formulation in Eq. 
(8) manually in the material model plugin. 
 
p10. l2: Different than in Kaus (2010), you don’t apply strain weakening in your 
setup. You do mention that later, but a comment at this stage would clarify things 
already.  
We added the following sentence to Section 3.2.1: 
 
Strain softening of the cohesion and angle of internal friction of the medium is not 
incorporated. 
 
p10. l2 I would also appreciate a brief discussion on the choice of µinit 
on the model results. 
See also our reply to your general remark 1. To the manuscript we added the 
following in Section 3.2.2: 
 
Varying the initial viscosity of the viscoplastic medium from µmin to µmax for a 
uniform mesh of 512 × 128 elements leads to the same shear band angles for well-
behaved residual runs (see black lines in Fig. 6), while for higher internal angle of 
friction runs, a variation of maximally 3◦ is found. 
 
 
 



p12: You performed these simulations without AMR. What is the effect of using 
AMR on the shear band angles (if any)? 
We have performed several sets of runs both in compression and extension using 
AMR. Instead of doing 1000 nonlinear iterations on one mesh refinement level, we 
did 333 iterations on 3 different levels, with the finest level being of the same order as 
the fixed mesh refinement level. After 333 iterations, mesh refinement is performed 
based on the norm of the strain rate, viscosity or velocity. Differences in final shear 
band angles arise from the different areas that are refined for the different strategies 
and the user-set fractions of cells that should be refined. For uniform meshes, 
variation in angles with mesh size is already seen, and this variation can be carried on 
to finer meshes with AMR. The differences in shear band angle are shown in Figure	
4: differences can be up to 5 degrees, but the angles remain within the theoretical 
Arthur--Coulomb range. 
 
We’ve added a sentence to the results section of the brick benchmark (Section 3.2.2): 
 
To estimate the effect of adaptive mesh refinement on the shear band angles, we 
ran additional tests with 3 × 333 245 nonlinear iterations at increasing refinement 
levels, with refinement based on gradients in the velocity, viscosity or strain rate 
and different fractions of cells that are refined. These simulations indicate a 
maximal variation of 5◦ degrees compared to results for a uniform mesh of 512 × 
128 elements.  
 

	
Figure	4	Shear	band	angles	for	different	internal	angles	of	friction.	Round	symbols	
indicate	runs	with	a	uniform	mesh	resolution	of	512x128	elements,	while	triangular	
symbols	represent	runs	with	a	base	mesh	resolution	of	128x32	elements	and	two	levels	of	
adaptive	mesh	refinement,	amounting	to	the	same	local	mesh	resolution.	 
 



p17: Fig 13: Did you mix the labelling of the x and y-axes of the figure? 
Yes. This has been corrected.  
 
p17. l 4: The “first” three benchmarks (as the detachment benchmark is not plastic) 
Done. 
 
p24, l21: You mention a benchmark of ASPECT that employs a different viscoplastic 
formulation. Can you explain better what the difference is? Do they not use 
a similar yield stress formulation and plastic viscosity? 
In response to the first reviewer, we no longer mention this benchmark in the 
discussion. The viscoplastic rheology used by Tosi et al. (2015) consists of a 
harmonic average of a temperature- and depth-dependent linearized Arrhenius law 
and a nonlinear part that is the sum of a constant effective viscosity and a plastic 

viscosity calculated as 
σ y

!εij !εij
. 

 
p25, l4/5: The first one to show the effect of a nonzero dilation angle in the 
geodynamics community was, as far as I am aware, the paper of Gerya & 
Yuen (2007) - see their figure 7. 
We added a reference to their paper: 
 
For example, Gerya and Yuen (2007) included dilatant materials and Choi and 
Petersen (2015) argue that numerical models should incorporate an initially 
associated plastic flow rule that evolves into a non-associated flow rule with 
increased slip to assure persistent Coulomb shear band angles while avoiding 
unlimited dilatation.  
 
 
p25, l14/15: In my experience, adding elasticity significantly improves the 
convergence behavior of simulations with plastic failure (even though it does not 
solve all issues), and because of that it is worthwhile to incorporate. You are welcome 
to try MVEP2 or LaMEM to verify this. 
See the next point. 
 
 
p25, l16/17: Newton iterations are crucial for fast convergence - you can add 
LaMEM and TerraFERMA to the list here. Yet, a pure viscoplastic rheology remains 
difficult to impossible to converge (as explained by Spiegelman et al., 2016). 
We have added LaMEM and TerraFERMA to the list and rephrased the paragraph as 
follows: 
 
Incorporating more realistic nonlinear rheologies such as described in this paper 
creates the necessity for additional nonlinear iterations within a single time step. 
Also, we have seen that at higher mesh resolutions, more of such iterations are 
required 15 to converge the solution. This greatly increases model run time and 
therefore it is important to implement a more efficient nonlinear solving strategy than 
the Picard iterations currently used by ASPECT. The more sophisticated Newton 
solver (see for example Popov and Sobolev, 2008; May et al., 2015; Rudi et al., 2015; 
Kaus et al., 2016; Wilson et al. 2017) will help achieving faster convergence. 



Convergence behavior has also been suggested to improve from including elasticity 
(Kaus 2010), but especially dynamic pressure dependent plasticity remains difficult 
to converge for both Picard iterations and Newton solvers (Spiegelman et al. 2016).  
 
p26, sect. 6: Can you attach all scripts used to generate the benchmarks and figures 
to this paper, together with detailed instructions in the exact version of ASPECT 
you used to create the models? It seems likely that future code changes may 
give slighty different results; this way the interested reader has a reference 
point to reproduce your results. 
We have put all the input files, scripts to generate them and the necessary plugins to 
ASPECT1.5 in a GitHub reposity (https://github.com/anne-glerum/paper-aspect-
plasticity-subduction-data). This repository also includes the postprocessing and 
plotting scripts for the graphs. 
 
p27, l7: Why is the infinite norm computationally more expensive? Is that because 
you effectively end up with larger jumps in viscosity between adjacent 
elements, and you use iterative rather than direct solvers? 
Yes, the maximum norm prohibits any smoothing due to the gradual transition from 
one composition to the other, leading to larger viscosity jumps between quadrature 
points, which is harder on the solver. 
 
p39, Table8: In model 1, I am a bit puzzled about the relationship between the B-
parameter and the initial viscosity. These models are linearly viscous (apart from the 
crust), so why is µinit  not simply 1/(2*B) as suggested by eq. 6? 
The prefactor was calculated to mitigate a correction for uniaxiality for pure shear 

measurements of 1
2
3
n+1
2 B  that our material model can take into account. However, 

this correction was not applied and the intended constant viscosities are off by a factor 
of 1.5 from the initial viscosities. 
 



Additional	changes:	
	
The	wall	time	for	the	indentor	benchmark	was	quoted	for	the	smooth	indentor	
only,	which	was	much	smaller	than	for	the	rough	indentor.	We	now	report	the	
wall	time	for	both	with	ASPECT	1.5.	Also,	we	changed	the	measurements	of	the	
velocity	and	pressure	in	Fig.	3,	as	it	is	now	possible	to	extract	solution	variables	
at	specific	points	based	on	the	finite	element	solution	instead	of	through	
ParaView.	
	
The	Stokes	solver	tolerance	of	the	sandbox	experiment	was	actually	1e-6	instead	
of	the	initially	reported	1e-5.	
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