
Dear Irene Bianchi, 
 
Thank you for your suggestions as to how to improve the manuscript. We have given each 
comment due consideration, and our responses are listed below, along with our changes to 
the manuscript as a result of your feedback. In addition, we have made alterations to the text 
to improve the readability of the manuscript. Any page and line numbers refer to the marked-
up ‘track changes’ pdf file. 
 
The editor’s suggestions pertain to a previous comment made by an anonymous reviewer, 
which we will quote where appropriate, along with our revised responses. In bold text, we 
highlight a few key excerpts from the updated manuscript that we feel most directly address 
the editorial and reviewer comments. 
 
Editorial comment: “1) some more introduction in why it is important to give constraints on 
anisotropy in the study area,” 
 
Reviewer comment: “…there are a few earlier studies performed along the NAFZ (central 
and western NAFZ) with direct observation of crustal anisotropy. No specific discussion in 
the light of earlier works revealing upper crustal anisotropic structure mainly based on shear 
wave splitting structure (e.g. Peng and Ben-Zion, 2004-2005; Hurd and Bohnhoff, 2012) or 
entire crust from RFs analyses (Vinnink et al., 2015; Licciardi et al. 2018).” 
 
We have updated and expanded the introduction to address this point. Specifically, we outline 
the importance of providing the constraints on anisotropy along the North Anatolian Fault on 
page 4,  beginning on line 1: 
 
“Observations of azimuthal anisotropy in the upper crust can provide insights into the 
state of tectonic stress within a region, and potentially the orientation of pervasive 
mineral fabric and the structural influence of major faults (e.g. Hurd and Bohnhoff 
(2012), Polat et al. (2012)). Such information provided by azimuthal anisotropy is 
particularly important in areas such as the North Anatolian Fault, where in-situ stress 
observations are rare, and extensive deformation occurs off of mapped faults (Bouchon 
and Karabulut, 2008; Altuncu Poyraz et al., 2015).” 
 
 We also include both new introduction (page 4) and an extended discussion (page 19 - 20) of 
the several studies suggested by the reviewer (Peng and Ben-Zion, Hurd and Bohnhoff, 
Licciardi et al. and Vinnik et al.). Our introduction and discussion now includes a 
presentation of the results provided by these relevant studies: 
 
“…Peng and Ben-Zion (2004) and Peng and Ben-Zion (2005) also display a seismic fast 
direction in the upper crust that clusters between 45◦ and 90◦ from north, often aligning 
parallel to the strike of the North Anatolian Fault. ” 
 
“…Hurd and Bohnhoff (2012) at the station CAY, located within our study region to the 
east of Lake Sapanca (Fig. 1), also showed directions between 30◦ and 90◦, with the 
majority falling between 40◦ and 50◦. Further east, the fast polarisation directions 
measured by Hurd and Bohnhoff (2012) are more commonly aligned NW – SE.” 
 
 Editorial comment: “2) how the detection and characterization of anisotropy might help 
addressing some major unresolved issue about this area, also related to seismic hazard” 



 
We have expanded the introduction to describe the major unresolved issues relating to 
anisotropy for our study region. On page 4, lines 7 – 10, we specifically outline the 
mechanisms which may be expected to cause seismic anisotropy in the area (stress vs. 
structure control). We also introduce to findings of previous studies such as Peng and Ben-
Zion (2004), Hurd and Bohnhoff (2012), which suggest an unresolved discrepancy between 
the observed fast directions and the direction of maximum compressive stress for the Izmit-
Adapazari region (page 4, lines 8 – 16): 
 
“Earthquake focal mechanisms suggest that the direction of maximum compressive 
stress in the Izmit-Adapazari region is oriented NW – SE, between 120◦ – 160◦ from 
north (Bohnhoff et al., 2006). If the regional anisotropy is primarily stress-controlled, 
we would expect the seismic fast direction to be aligned in the direction of maximum 
compressive stress, due to the preferential closure of fractures in this direction 
(Crampin and Lovell, 1991). However, Peng and Ben-Zion (2004) used local seismicity 
to show that the fast polarisation direction at stations close to the ruptured Düzce fault 
(Fig. 1) are generally parallel to and vary with the fault strike, suggesting an anisotropy 
mechanism determined by deformation fabric.” 
 
 We have made clear the link between seismic anisotropy and deformation fabrics that form 
within the upper crust, which directly relates to the regional tectonics and seismic hazard 
(page 4).  
 
We have expanded our discussion section to include the relation of our findings to the 
previous studies of Peng and Ben-Zion, Hurd and Bohnhoff and Licciardi et al., and the new 
information provided by our observations (pages 19 - 20).  
 
“A dominant fast direction between 50◦ – 90◦ (NE – SW) from north (Fig. 9) indicates 
that the anisotropy in the region is likely structure-controlled. This observation was also 
noted in anisotropic receiver functions by Licciardi et al. (2018), who found that the fast 
shear wave polarisation directions along the central portion of the North Anatolian 
Fault align with the strike of mapped faults at stations located close to those faults, 
implying structure-controlled anisotropy.” 
 
Editorial comment: “3) is the anisotropy stress- or structure-controlled? Can you give some 
inferences?” 
 
Reviewer comment: The question on what part(s) of the area may indicate structure-induced, 
and what part(s) stress-induced anisotropy is still ambiguous… At least early shear wave 
splitting and RFs data suggests the opposite what the current work says. 
 
We feel that our results strongly suggest a structure-controlled anisotropy in the vicinity of 
the North Anatolian Fault. We have included this conclusion in our discussion section (page 
19). In this expanded section, we also compare our findings to those of previous shear wave 
splitting studies (Peng and Ben-Zion (2004, 2005), Licciardi et al. 2018) and note that, in our 
observation and those of previous studies, stations close to the fault strand appear to show 
structure-controlled anisotropy, whereas stations more distant to the fault more commonly 
display a fast direction parallel to the direction of maximum compressive stress (page 4, lines 
10 – 19). We believe that the reason for the variance in the measurements of anisotropy made 
in this region, and the discrepancy between structure and stress-control, are likely to be the 



result of whether the measurements are taken within close proximity of the fault (page 19, 
line 15). 
 
“Fig. 9 shows a nearly 90◦ fast direction at 2 – 3 s period (∼ 0 – 3 km depth) that aligns 
approximately with the strike of the North Anatolian Fault through the region. This 
observation clearly implies structure-controlled anisotropy that is dominated by 
faulting in the very upper crust, similar to the observations of Licciardi et al. (2018) for 
the top 15 km of the central section of the North Anatolian Fault.” 
 
For replying to these questions you might refer to some papers like Hurd and Bonhoff 2012; 
Licciardi et al; 2018, Polat et al, 2012. 
 
We have given these studies more thorough treatment in both our expanded introduction 
(page 4) and discussion (page 19) sections. 
 
Moreover, you might consider to include one more picture in which your results are directly 
compared to previous results. 
 
We gave due consideration to the inclusion of a new figure or table with this information. 
However, the results of the previous studies show a high variability depending upon the 
location of the station used. In most cases there is not a robust ‘average’ observation that can 
be easily displayed in a figure for direct comparison, and often a numerical result is not 
directly stated by the authors. In general, the construction of such a figure would consist of 
estimating the previous results visually from the figures, which does not provide a robust 
result for comparison. Nonetheless, we reference and discuss all the relevant studies for this 
area of the North Anatolian Fault Zone both in the introduction and discussion of our 
manuscript (page 4, lines 7, 11, 15, page 18, line 23, page 19 line 31).  
 
We believe that this is the fairest and clearest representation of this information, and that the 
comparison between our results and the previous studies is made sufficiently clear to the 
reader.  
 
Thank you for taking the time to consider the manuscript. 
 
Yours sincerely, 
George Taylor 
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Abstract. We use observations of surface waves in the ambient noise field recorded at a dense seismic array to image the

North Anatolian Fault Zone (NAFZ) in the region of the 1999 magnitude 7.6 Izmit earthquake in western Turkey. The NAFZ

is a major strike slip fault system extending ∼ 1200 km across northern Turkey and poses a high level of seismic hazard,

particularly to the city of Istanbul. Assuming isotropy, we
::
We

:
obtain maps of phase velocity variation using surface wave

tomography applied to Rayleigh and Love waves and construct high resolution images of S-wave velocity in the upper 10 km5

of a 70 km by 30 km region around Lake Sapanca. We observe low S-wave velocities (< 2.5 km s−1) associated with the

Adapazari and Pamukova sedimentary basins, as well as the northern branch of the NAFZ. In the Armutlu Block, between

the two major branches of the NAFZ, we detect
:::::
image higher velocities (> 3.2 km s−1) associated with a shallow crystalline

basement. We measure azimuthal anisotropy in our phase velocity observations, with the fast direction seeming to align with

the direction
::
the

::::::
strike

::
of

:::
the

::::
fault

:::
at

::::::
periods

::::::
shorter

:::::
than

:
4
::
s.
:::
At

::::::
longer

:::::::
periods,

:::
up

::
to

::
10

::
s,
::::

the
:::
fast

::::::::
direction

:::::
aligns

:::::
with10

::
the

::::::::
direction

:
of maximum extension for the region (∼ 45◦). The signatures of both the northern and southern branches of

the NAFZ are clearly associated with strong gradients in seismic velocity that also denote the boundaries of major tectonic

units. Our results suggest
::::::
support

:::
the

:::::::::
conclusion

:
that the development of the NAFZ has exploited this pre-existing contrast in

physical properties.

Copyright statement.15

1 Introduction

The formation of fault zones appears to be a balance between the accommodation of the tectonic strain field, and the exploitation

of pre-existing weak zones such as tectonic suture zones or lithological boundaries (e.g. Bercovici and Ricard (2014), Dayem

et al. (2009), Gerbi et al. (2016), Tapponier et al. (1982)). Studying how structural changes affect strain localisation in the upper

crust is critical to understanding the earthquake cycle (Bürgmann and Dresen, 2008). Imaging the seismic velocity structure of20

fault zones provides information essential to understanding the long-term behaviour of faults and the earthquakes that occur on

them.
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Here we interpret images from ambient noise surface wave tomography of the upper 10 km of the North Anatolian Fault

Zone (NAFZ), Turkey, in the rupture zone of the 1999 Izmit earthquake. This allows us to study the near surface structure of a

recently ruptured fault. The NAFZ is a ∼ 1200 km long strike slip fault that forms the boundary between the Anatolian block

and the Eurasian continent. Progressively localized since the middle Miocene (∼ 3 Ma), the NAFZ propagated westward from

the Karliova Triple Junction
::
in

::::::
eastern

:::::::
Turkey, across northern Anatolia, and reached the Izmit-Adapazari region ∼ 200 ka,5

although a more broad zone of shear deformation was present since the middle Miocene (Sengör et al., 2005). The motion

of Anatolia is driven by a gradient of lithospheric gravitational potential energy that extends across the Anatolian Peninsula

(England et al., 2016) and is sustained by the collision between the Arabian and Eurasian plate in the East, and the roll-back of

the Hellenic trench to the southwest (Flerit et al., 2004; Reilinger et al., 1997). Since 1939 a westward propagating sequence

of large earthquakes (Mw > 7.0) has occurred along the NAFZ (Stein et al., 1997). The 1999 Izmit (Mw 7.6) and Düzce (Mw10

7.2) earthquakes are the most recent in this sequence (Barka et al., 2002), and the NAFZ continues to pose significant seismic

hazard to the region.

In the Izmit-Adapazari region, the NAFZ is split into northern and southern branches (Fig. 1). The northern branch has seen

more seismic activity historically, but micro-seismicity in this region does not appear to be strongly localised to the major fault

strands (Altuncu Poyraz et al., 2015). The northern branch of the fault appears to exploit the so-called Intra-Pontide Suture15

between the Eurasian continent and sedimentary accretionary complexes formed during the closure of the Tethys Ocean (Okay,

2008). There are three major geological units delineated by the fault zone (Fig. 1). To the north of the northern branch of NAFZ

is the Istanbul Zone, a cratonic fragment of the Eurasian continent. The Istanbul Zone includes the Adapazari Basin, a ∼ 2 km

thick pull-apart sedimentary basin formed by right-lateral motion acting on a change in strike of the northern branch of the

NAFZ (Sengör et al., 2005).20

Located between the two fault branches are the Armutlu Block and the Almacik Mountains. The Armutlu Block is a section

of the Almacik mountains that has migrated further westward with motion along the NAFZ. Both are areas of high topography,

formed as an accretionary complex of upper cretaceous sediments overlying a metamorphic basement (Yılmaz et al., 1995).

The dominant feature of the Armutlu Block is an abundance of metamorphosed sediments and marbles of unknown age and

provenance (Okay and Tüysüz, 1999). The Pamukova sedimentary basin is located in the southern part of the Armutlu Block25

.
::::
(Fig.

:::
1). Striations and down dip motion on faults observed along the southern branch of the NAFZ in the Pamukova basin

(Doğan et al., 2014) indicate that extension in the NE - SW direction due to the right lateral motion is more dominant than

shortening in the NW - SE. The resulting transtensional strain is believed to have caused the opening of the Pamukova basin

(Doğan et al., 2014). The total thickness of the sediments in the Pamukova basin is generally unknown, but it is thought to be

thinner than in the Adapazari basin (Sengör et al., 2005).30

To the south of the NAFZ lies the Sakarya Terrane, an accretionary complex of sedimentary rocks from the Jurassic - lower

Cretaceous, overlying a metamorphic basement of mainly Paleozoic rocks (Yılmaz et al., 1995). The Sakarya Terrane also

contains a number of ophiolitic melanges, including serpentinites close to the southern branch of the NAFZ that were probably

produced by imbrication and thrust-stacking during the closure of the Neo-Tethys Ocean (Sengör and Yılmaz, 1981).
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Figure 1. A.: Overview of the Izmit-Adapazari region and the DANA network. Stations of the DANA network are shown as red triangles;

station names are of the form Dx01 to Dx11, where x is A through F from west to east and 01 is at the southern end of each line. Thick

black lines identify mapped faults in the region (Emre et al., 2016). The thick red line indicates the extent of the rupture of the 1999 Izmit

earthquake
:::
and

::
D

:
ü

::
zce

:::::::::
earthquakes (Barka et al., 2002). The epicenter and focal mechanism for the Izmit earthquake provided by the GCMT

catalogue (Dziewonski et al., 1981; Ekström et al., 2012) is shown. Topography data were acquired by the Shuttle Radar Topography Mission

(USGS, 2006). The bottom right shows the approximate fast propagation direction described in section 3.6 for 1.5 - 4.0 s Rayleigh waves

(85◦, black line), 4.0 - 10.0 s Rayleigh waves (70◦, red line). The 43◦ blue line is the fast S-wave polarisation direction for the upper mantle

beneath the North Anatolian Fault as measured by SKS splitting from Biryol et al. (2010). B.: Geological map of the Izmit-Adapazari region,

simpified from Akbayram et al. (2016). The location of the southern and northern branches of the North Anatolian Fault Zone are indicated.

The black dashed line shows the location of the Intra-Pontide Suture within the Armutlu Block inferred by Akbayram et al. (2016). AB and

PB show the location of the Adapazari and Pamukova Basin, respectively.

To study the structure of the NAFZ in the Izmit-Adapazari region the University of Leeds, Kandilli Observatory and Earth-

quake Research Institute (KOERI) and Sakarya University deployed a temporary array of seismometers across the rupture

zone of the 1999 Izmit earthquake
::::::
between

::::
May

:::::
2012

:::
and

:::::::
October

:::::
2013 (Kahraman et al., 2015). The array included 62 three-

component seismometers in a 70 km x 35 km rectangular grid (Fig. 1), and an approximate station spacing of 7 km, known

as the Dense Array for Northern Anatolia (DANA, 2012). Also included were three stations of the KOERI national network5

located within the main grid of the DANA array: GULT, SAUV and SPNC. DANA crossed
:::
was

::::::::
deployed

::::
over

:
both strands of

the NAFZ in this region, with stations deployed
:::
sited

:
on all three of the major crustal units described above (Fig. 1).

Short period surface waves from ambient noise have been used to study the upper crust in the vicinity of active fault zones in

the past (e.g. Lin et al. (2013), Zigone et al. (2015)). In such studies low seismic velocities have been attributed to earthquake

damage zones and pull-apart sedimentary basins. Here our analysis of the DANA data provides an image of the top 10 km of10

the NAFZ in the Izmit-Adapazari region with a lateral resolution dictated by the∼ 7 km station spacing, to better constrain the

relationship between the fault and its regional geological context.
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:::
We

:::
also

::::::::
interpret

:::
first

:::::
order

:::::::::::
observations

::
of

::::::::
azimuthal

:::::::::
anisotropy

::::::
within

:::
our

:::::
phase

:::::::
velocity

:::::::::::::
measurements.

:::::::::::
Observations

::
of

::::::::
azimuthal

:::::::::
anisotropy

::
in

:::
the

:::::
upper

::::
crust

:::
can

:::::::
provide

:::::::
insights

:::
into

:::
the

::::
state

:::
of

::::::
tectonic

:::::
stress

::::::
within

:
a
::::::
region,

::::
and

:::::::::
potentially

:::
the

:::::::::
orientation

::
of

::::::::
pervasive

::::::
mineral

:::::
fabric

:::
and

:::
the

::::::::
structural

::::::::
influence

::
of

:::::
major

:::::
faults

::::
(e.g.

::::::::::::::::::::::
Hurd and Bohnhoff (2012),

:::::::::::::::
Polat et al. (2012)

:
).
:::::
Such

:::::::::
information

::::::::
provided

::
by

:::::::::
azimuthal

::::::::
anisotropy

::
is

::::::::::
particularly

::::::::
important

::
in

::::
areas

::::
such

::
as

:::
the

:::::
North

::::::::
Anatolian

:::::
Fault,

::::::
where

:::::
in-situ

:::::
stress

::::::::::
observations

:::
are

::::
rare,

:::
and

::::::::
extensive

::::::::::
deformation

::::::
occurs

:::
off

::
of

::::::
mapped

:::::
faults

:::::::::::::::::::::::::::::::::::::::::::::::::
(Bouchon and Karabulut, 2008; Altuncu Poyraz et al., 2015)5

:
.
:::::::::
Earthquake

:::::
focal

:::::::::::
mechanisms

::::::
suggest

::::
that

:::
the

::::::::
direction

::
of

:::::::::
maximum

:::::::::::
compressive

:::::
stress

::
in

:::
the

::::::::::::::
Izmit-Adapazari

::::::
region

::
is

:::::::
oriented

:::
NW

::
–

:::
SE,

:::::::
between

::::
120◦

::
–

::::
160◦

::::
from

:::::
north

::::::::::::::::::
(Bohnhoff et al., 2006)

:
.
::
If

:::
the

::::::
regional

:::::::::
anisotropy

::
is

::::::::
primarily

::::::::::::::
stress-controlled,

::
we

::::::
would

:::::
expect

:::
the

:::::::
seismic

:::
fast

::::::::
direction

:
to
:::
be

::::::
aligned

::
in

:::
the

::::::::
direction

::
of

::::::::
maximum

:::::::::::
compressive

:::::
stress,

:::
due

::
to

:::
the

::::::::::
preferential

::::::
closure

::
of

:::::::
fractures

::
in
::::
this

:::::::
direction

:::::::::::::::::::::::
(Crampin and Lovell, 1991)

:
.
::::::::
However,

::::::::::::::::::::::
Peng and Ben-Zion (2004)

::::
used

::::
local

:::::::::
seismicity

::
to

::::
show

::::
that

:::
the

:::
fast

::::::::::
polarisation

::::::::
direction

::
at

::::::
stations

:::::
close

::
to

:::
the

:::::::
ruptured

::
D
:
ü
:::
zce

::::
fault

:::::
(Fig.

::
1)

:::
are

::::::::
generally

::::::
parallel

::
to

::::
and

::::
vary10

::::
with

::
the

::::
fault

::::::
strike,

:::::::::
suggesting

::
an

:::::::::
anisotropy

:::::::::
mechanism

::::::::::
determined

::
by

::::::::::
deformation

::::::
fabric.

::::
They

:::::::::
suggested

:::
that

:::
the

:::::::::
anisotropy

:
is
::::::::
confined

::
to

:::
the

:::
top

:
3
::
–

:
4
:::
km

:::
of
:::

the
:::::
crust.

:

:::::
Using

::::
local

:::::::::
seismicity

:::::::::
recordings

:::::
from

::::
other

:::::::
stations

::
in

:::
the

::::::::::::::
Izmit-Adapazari

::::::
region,

:::::
more

::::::
distant

::::
from

::::
the

:::::::
ruptured

:::::
fault,

::::::::::::::::::::::
Hurd and Bohnhoff (2012)

:::::
found

:
a
::::
more

::::::::
complex

::::::
pattern,

::::
with

:::
the

::::
fast

:::::::::
polarisation

:::::::::
directions

:::
for

:
at
:::::
least

::::
three

::
of

::::
their

:::::::
stations

::::::::
consistent

::::
with

:::
the

::::::::
maximum

:::::::::::
compressive

::::
stress

::::::::
direction

:::::::::::::
(approximately

:::
NW

::
–

::::
SE).

::::
They

:::::::::
concluded

:::
that

:::::::::
anisotropy

::
is

::::::
limited15

::
to

:::::
depths

::::
less

::::
than

::
8
::::
km.

::::::
Further

::::
east,

:::
on

:::
the

::::::
central

:::::::
section

::
of

:::
the

::::::
North

::::::::
Anatolian

:::::
Fault

:::::::
system,

::::::::::::::::
Biryol et al. (2010)

::::
used

:::::::::
teleseismic

::::
data

::
to

::::
find

:
a
::::::::

coherent
:::::::::
anisotropy

::::::::
signature

::::::::
attributed

:::
to

::::::
mineral

::::::
fabric

::::::
within

:::
the

::::::
mantle

::::::::::
lithosphere,

::
in

::::::
which

::
the

::::
fast

::::::::::
polarisation

::::::::
direction

:::::
aligns

::::
with

:::
the

::::::::
principal

::::::::
extension

::::::::
direction

:::::::::::::
(approximately

:::
NE

::
–

:::::
SW).

:::::
These

::::::
results

:::::::
indicate

:::
that

:::::
stress

:::::::::
orientation

:::::::
controls

:::::
shear

:::::
wave

:::::::::
anisotropy

::
in

::::::
places,

:::
but

:::::::
mineral

:::::
fabric

:::::::::
dominates

::
in
::::::
others.

:::
By

:::::::::
providing

::::::
further

::::::
analysis

:::
of

:::
the

:::::::
regional

:::::::::
anisotropy

:::::::
through

::::::
surface

:::::
wave

:::::
phase

:::::::::
velocities,

:::
we

::::::
expect

::
to
:::::::

provide
:::::
more

:::::::::::
observations

:::
that

::::
can20

::::::::
contribute

::
to

:::::
better

::::::::::::
understanding

::
of

:::
the

::::::
various

:::::::::::
mechanisms

:::
that

:::::
cause

:::::::
seismic

:::::::::
anisotropy

::
in

:::
the

:::::
upper

:::::
crust.

2 Data and Methods

2.1 Calculation of the cross-correlation functions

To image the upper 10 km of the NAFZ we used ambient noise data recorded at DANA to construct cross-correlation func-

tions and retrieve empirical estimates of the elastic Green’s function of the Earth for all inter-station paths of the network25

(Lobkis and Weaver, 2001; Wapenaar, 2004)
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Lobkis and Weaver, 2001; Campillo and Paul, 2003; Shapiro and Campillo, 2004; Wapenaar, 2004)

. The instruments used for the DANA network were all three-component broadband sensors, the majority of which were Guralp

CMG-6TD’s
:::::::::
CMG-6TDs

:
(30 s maximum period). Some stations were equipped with CMG-3T’s or CMG-3ESP’s

::::::::
CMG-3Ts

::
or

:::::::::::
CMG-3ESPs (120 s maximum period). From these cross-correlation functions we extract surface wave dispersion curves in

order to perform seismic tomography and invert for S-wave velocity structure (Shapiro et al., 2005). The data were first reduced30

to a 25 Hz sampling rate and corrected for the instrument response. An initial band-pass filter was applied between 0.02 and 10

Hz, and the frequency spectrum of each noise window was whitened between 0.05 and 2 Hz (Bensen et al., 2007). We tested

several pre-processing methods for producing the cross-correlation functions for this study. These included trialling the use of
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4-hour and 1-hour long noise windows. In order to remove any data windows containing signals from large earthquakes, each

window was split into three segments. If the amplitude of one of these segments has a significantly higher standard deviation

(> 1.8 times) than the other two, the data window is discarded (Poli et al., 2012). For amplitude normalisation (Bensen et al.,

2007), we tested 1-bit normalisation against clipping any data with an amplitude > 3.5 times the standard deviation of each

data window. Supplementary Figs. S1 and S2 show the results of these tests. We found little difference between the processing5

schemes in terms of signal-to-noise ratio of the final cross-correlation functions. However, the approach of amplitude clipping

for 4-hour long noise windows was found to produce correlation functions with slightly higher frequency domain coherence

than the other schemes. As such, we proceed with
:::::::
selected this pre-processing method.

Following this pre-processing, each data window is cross correlated with the corresponding window at every other station in

the network, and these cross correlations are then stacked over the entire duration of the array deployment (16 months of data).10

We calculated the correlations for all 9 possible combinations of the vertical, north and east components of ground motion, and

then rotated the final stacked correlations into the relevant great circle path (station to station) to retrieve the vertical, radial

and transverse correlation components (Fig. 2). The correlation functions in Fig. 2 are stacked in bins of 0.5 km interstation

distance, and band-pass filtered between 0.05 and 2.0 Hz. The amplitudes are normalised within each bin.

2.2 Extraction of surface wave phase velocities15

The record sections exhibit multiple features and arrivals. There are two explanations for the large-amplitude features around t

= 0. Firstly, they may represent the signature of the overlapping converging and diverging surface waves to form focal spots in

the wave field (Hillers et al., 2016). A second possible explanation is teleseismic body wave energy that arrives at the stations at

a near-vertical incidence angle. When these arrivals are cross-correlated, the very small differential travel times of the energy re-

sult in a spike
:::
large

::::::::::
amplitudes near the zero lag correlation time (Hillers et al., 2013)

:::::::::::::::::::::::::::::::::
(Landès et al., 2010; Hillers et al., 2013)20

. The large amplitudes are particularly prominent on the ZZ component. This phenomenon has been observed in a previous

ambient noise study in Turkey: Warren et al. (2013) observe large zero-time amplitudes in their correlation functions up to a

distance of 80 km. Additionally, large amplitude waveforms near t = 0 are often observed in ambient noise correlation studies

(e.g. Poli et al. (2012), Villaseñor et al. (2007), Zheng et al. (2011)),
::::
and

:::
are

:::::::
typically

:::
left

:::::::::::
uninterpreted. While these waveforms

can be used for imaging (e.g. Hillers et al. (2016), Taylor et al. (2016)), we focus here on the propagating surface waves that25

dominate the record sections. Correlations between the vertical and radial components (ZZ, ZR, RR and RZ) are predominantly

produced by
:::::::::::
predominantly

:::::::
contain Rayleigh waves propagating between DANA stations, whilst the transverse (TT) correla-

tions contain Love waves. Fig. 2 shows some evidence for cross talk between vertical and transverse components (ZT and TZ)

in the form of low amplitude coherent waves, perhaps indicating the effects of anisotropy or the scattering of waves off 3D

earth structure. Linear arrivals that are most prominent at arrival times of± 10 s may represent body wave reflections contained30

within the ambient noise, but may also be an artefact produced by the GPS time synchronisation of the seismic instruments

(Lehujeur et al., 2018).

To obtain
:::::
create phase velocity dispersion measurements

::::::
curves

::
for

:::
the

:::::
study

::::::
region, we first created period - group velocity

maps
:::::
create

:::::
group

:::::::
velocity

:
-
::::::
period

::::::::
diagrams

:
(Levshin and Ritzwoller, 2001) for each stacked correlation function between

5
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Figure 2. Record section of correlation functions calculated for inter-station paths of the DANA network. Correlation functions were filtered

between 0.05 and 2.0 Hz and binned and stacked in 0.5 km distance bins, and the amplitude is normalized within each bin. Record sections

for every combination of three component motion are labelled as follows: Z = vertical, R = radial, T = transverse. E.g. The ZR correlation

(bottom left) represents the motion recorded on the radial component due to a vertical point source. ZZ, ZR, RR, RZ components show

Rayleigh waves, and TT shows Love waves.

periods of 1.0 s and 10.0 s (supplementary Fig. S3) using the program do_mft (Herrmann, 2013). We then pick the dispersion

curve for each correlation function manually. Due to a poor
::::::
poorer signal to noise ratio on the ZZ component, Rayleigh wave

dispersion measurements are picked from the RR component correlations, whilst Love wave measurements are picked from the

TT component. Examples of period - group velocity maps used for picking the dispersion curves are shown in supplementary

Fig. S3. Bensen et al. (2007) suggest that in order for dispersion measurements to be considered reliable, the station separation5

must be greater than 3 wavelengths of the target wave. If we assume an average phase velocity of c = 3 km s−1 for the upper

crust, our shortest period surface waves of 1.5 s will have a wavelength of 4.5 km. Thus, in order to satisfy the wavelength

criterion, we discard all measurements with an inter-station distance of 13.5 km or less as unreliable. For longer periods and

inter-station distances, where some of the short period data may be trustworthy, unreliable long period measurements are

6



discarded based on visual inspection. This also ensures that the large amplitudes of the focal spot
:::::::
near-zero

:::::::
arrivals

:
do not

contaminate our measurements from the later arriving surface waves. We use 62 stations in this study, which amounts to a total

of 1891 unique station pairs. As a result of the wavelength criterion, coupled with the visual inspection of each period - velocity

map we retain measurements from 929 station pairs for Rayleigh waves (49% of the RR correlations), and 1173 station pairs

for Love waves (62% of the TT correlations).5

Phase velocity dispersion curves are
:::
also

:
picked using do_mft (Herrmann, 2013). The phase velocity at each period is

calculated from the previously picked group velocity by:

c=
ω0r

−Φ + π
4 + ω0r

U0
+N2π

, (1)

where Φ is the instantaneous phase of a narrow bandpass filtered surface wave, ω0 is the centre frequency of the bandpass filter,

r is the inter-station distance, U0 is the group velocity, and N is some integer. The N2π term in Eq. 1 introduces an ambiguity

in the calculation of the phase velocity. To overcome this ambiguity, do_mft (Herrmann, 2013) uses Eq. 1 to generate a suite10

of dispersion curves corresponding to different values of N . To pick the correct phase velocities, we calculate the theoretical

dispersion curve using an a priori seismic velocity model of the region (Karahan et al., 2001), and manually pick the calculated

dispersion curve (Eq. 1) that most closely corresponds to the theoretical dispersion curve.

2.3 Phase velocity tomography

After picking phase velocity dispersion curves for all inter-station pairs for both Rayleigh and Love waves, we convert the15

phase velocity at each period into a travel time between the stations. We then use these travel time observations to invert

for phase velocity as a function of position at each discrete period. We discretize each model as a 2D grid of phase velocity

nodeswith a spacing of 6.6 km in latitude and 7.6 km in longitude. The phase velocity tomography is carried out in a spherical

co-ordinate system (Rawlinson and Sambridge, 2005), with the node spacing dictated by
:::
(6.6

::::
km

::
in

:::::::
latitude

:::
and

:::
7.6

::::
km

::
in

::::::::
longitude)

::::::::::
comparable

::
to the average horizontal separation of the stations of the DANA network. We begin each inversion with20

a constant velocity model, with the velocity set to the average observed phase velocity at the given period. We then invert the

travel times for periods between 1.5 s and 10.0 s using the method of Rawlinson and Sambridge (2005). This is an iterative

inversion, with each step consisting of calculating travel times through the current phase velocity model by wave front tracking

using the Fast Marching Method (Sethian and Popovici, 1999). The inversion then seeks to minimise the objective function:

| g(m)−dobs |2 + ε
(

(m−m0)
T

(m−m0)
)
, (2)

where g(m) are the travel times through the current model, dobs are the observed travel times from our dispersion data, ε is25

a variable damping factor, m and m0 represent the current model and the starting model respectively. The variable damping

term is included in order to minimise unconstrained model parameters (phase velocities) by preventing them from straying too

far from our initial constant velocity model. The choice of damping parameter, ε, is somewhat subjective. It should be selected

with the aim of achieving a balance between the variance of the perturbations in the final phase velocity model with respect to

the initial model (a high variance indicates unrealistic values for unconstrained model parameters), and obtaining a satisfactory30

7



misfit to the observed travel time data. We constructed trade-off curves (supplementary Fig. S4) of final model perturbation

variance vs. final data misfit for both the Rayleigh and Love wave inversions. We selected a damping factor of 40 s4 km−2

:::::
km−2 for Rayleigh waves as it provided a 68% reduction in the perturbation variance of the final model parameters (0.025 (km

s−1)2 to 0.008 (km s−1)2) for only a 2% increase in data misfit (795 ms to 815 ms) at 4 s period. Likewise, for Love waves

we choose a damping parameter of 60 s4 km−2 which provides a 75% reduction in final model variance (0.055 (km s−1)2 to5

0.014 (km s−1)2) for an 8% increase in misfit (670 ms to 730 ms). Increasing the damping parameter above these values leads

to an increase in misfit to the observed data which we find unacceptable. These constant damping factors are applied to the

inversions at every period (Figs. 3 and 4).
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Figure 3. Rayleigh wave phase velocity maps at 2.0, 3.0 and 5.0 s period. Black lines show the mapped faults. The blue line represents the

Sakarya River, flowing towards the north.

We do not include a separate smoothing parameter in our inversion scheme, as a similar effect can be obtained by sim-

ply reducing the number of model parameters and controlling the inversion through a damping parameter as described above10

(Rawlinson and Sambridge, 2003). We have designed our model discretization so that our velocity node separation is compa-

rable to our station separation, which should be a sufficiently coarse parameterization to constrain all our model parameters,

and produce a smooth final model.

The minimization of the objective function is performed using an iterative subspace inversion approach (Kennett et al.,

1988), which projects the objective function on to a multi-dimensional subspace of the data and model parameters. After 1015

iterations the data misfit does not improve appreciably with further iterations, and the inversion is judged to have converged.

Stable solutions are shown in Fig
:::
Figs. 3 and 4 for periods of 2.0, 3.0, and 5.0 s.

2.4 S-wave velocity inversion

After obtaining 2D maps of phase velocity for all periods between 1.5 and 10.0 s, the resulting dispersion relation at each

node on the same geographic grid was inverted to obtain isotropic S-wave velocity as a function of depth at that location. Both20

Rayleigh and Love wave dispersion data are inverted together, with equal weighting, in order to obtain an S-wave velocity
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model that best satisfies both data sets. The initial inversion was performed using a neighbourhood algorithm (Sambridge,

1999b; Wathelet, 2008) parameterised by a model consisting of 10 layers with variable layer thickness and S-wave velocity.

The total number of free parameters is 20. The S-wave velocity of each layer is permitted to vary with a uniform distribution

between 0.5 and 4.5 km s−1, whilst layer thickness could vary between 0.5 and 1.5 km. An increase of S-wave velocity with

layer depth is also prescribed. The neighbourhood algorithm was allowed to run until 20050 different S-wave velocity models5

had been generated for each node in the grid. The misfit parameter at each location is defined for the neighbourhood algorithm

as:

φm =

√√√√ nf∑
i=1

(vdi− vmi)2

v2dinf
, (3)

nf is the number of frequencies in the dispersion curve, vdi is the observed phase velocity at frequency i from our tomographic

model, and vmi is the phase velocity at that frequency inferred from the inverted S-wave model. Models that fit the dispersion

curves extracted from the phase velocity tomography with φm < 0.25 (eq. 3) were used in a weighted average to construct an10

initial estimate for S-wave velocity vs. depth. Examples of the distribution of models used in the weighted average at three grid

points, one each in the Sakarya Terrane, Armutlu Block and Istanbul Zone, are shown in Fig. 5. The weighting of each model

is the inverse of its misfit to the dispersion data as described in eq. 3.

This average model was then used as the starting model for a linearised iterative inversion scheme as implemented in surf96

(Herrmann, 2013). The inversion was judged to have converged once the root mean square change in the S-wave velocity model15

between iterations was negligible (< 0.1 km/s), usually within 6 iterations. The set of 1D models obtained from the linearised

inversion represent our 3D S-wave velocity model for the region.

The advantage of the neighbourhood algorithm is that it provides a much broader overview of the acceptable parameter space

for our S-wave velocity model, rather than inverting for a single model that best fits the data. The output of the neighbourhood

algorithm (Fig. 5) also allows for an intuitive, if qualitative, understanding of potential uncertainty in our final S-wave velocity20

model. A disadvantage of the neighbourhood algorithm is that only a relatively small amount of model parameters can be

included in the inversion (∼ 30), before the parameter space becomes too large to search efficiently (Sambridge, 1999a). This

means that the neighbourhood algorithm can only constrain relatively simple models. For these reasons, we present the results

of the neighbourhood algorithm (Fig. 5), but also perform a linearised inversion (Herrmann, 2013) to obtain a final model that

better fits the data overall. This approach has been used previously in fault zone imaging (Hillers and Campillo, 2018), and25

attempts to strike a balance between presenting a model that satisfies the data, as well as giving a broader overview of the

acceptable model space that is not available when using only a linearised inversion scheme.

2.5 Measurement of azimuthal anisotropy

In order to quantify the level of azimuthal anisotropy in our phase velocity data set, we plot our raw phase velocity measurements

against the azimuth of the propagation direction (from north). To reduce the scatter in the data and provide a meaningful30

measurement, we bin all of our phase velocity measurements by azimuth, with a bin size of 5◦. The phase velocities within each

9
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Figure 4. Love wave phase velocity maps at 2.0, 3.0 and 5.0 s period. Black lines show the mapped faults. The blue line represents the

Sakarya River, flowing towards the north.

bin are averaged to provide a mean measurement and a corresponding standard error. Rayleigh and Love wave observations

are treated separately. Due to the presumed symmetry of propagation velocity in both directions between pairs of stations,

our measurements are in an azimuth range of 0◦ to 180◦. We attempt to fit the binned data at each period with the following

function to describe the azimuthal variation of phase velocity:

c(θ) = u0 +Acos(2(θ−φ2)) +B cos(4(θ−φ4)).5

Eq. 4 uses the parameterisation of Smith and Dahlen (1973). u0 is the average (isotropic) phase velocity. A is the amplitude

of the 2θ term, which describes an azimuthal variation with 180◦ periodicity. φ2 is the fast direction of the 2θ term. B is the

amplitude of the 4θ term, which has 90◦ periodicity, and φ4 is the corresponding fast direction.

Results of the neighbourhood algorithm inversion for S-wave velocity at three nodes in the different geological units (Fig.

1). The grey region represents the range of accepted models with a misfit below 0.25 (eq. 3). The coloured region shows the10

range of the 1000 models with the lowest misfit. Red colours indicate a higher number of the best 1000 models with a certain

S-wave velocity at that depth. The solid red line shows the best fitting model, the misfit of which is shown at the bottom of

each panel. The location of each of these nodes is shown in Fig. 6.

3 Results

In this section, we describe the phase velocity maps derived separately for Rayleigh and Love wave travel time data. Sensi-15

tivity kernels representing the vertical resolution for Rayleigh and Love waves within our period range can be found in the

supplementary material (Fig. S8), along with synthetic checker board recovery tests to illustrate the horizontal resolution of the

inversion (Fig. S9 and S10). The initial and final data misfit of the tomography models for both Rayleigh and Love wave phase
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velocities are shown in supplementary Figs. S5 and S6. The significant reduction in the variance of the travel time residuals in

the final models, on average about 50%, indicates that the final models better account for structural heterogeneity. Similarly,

the higher variance of the final travel time residuals at shorter periods indicates stronger heterogeneity at shallow depths, or

noisier phase velocity measurements at these periods.

3.1 Rayleigh wave phase velocity5

Fig. 3 shows the results of the Rayleigh wave phase velocity tomography for periods between 2.0 s and 5.0 s. The most

interesting features of the velocity model include the large low velocity (1.5 km s−1 - 2.0 km s−1) anomalies
::::::
anomaly

:
located

north of the northern branch of the NAFZ. These low velocities are likely due to the deep sedimentary basin at Adapazari in

the north eastern part of the model, and heavily faulted sediments near Izmit in the north western sector (Sengör et al., 2005).

In between the two fault strands, the Armutlu Block can be seen as a prominent region of high phase velocity (∼ 3.0 km s−1),10

likely associated with the metamorphic rocks and possible granitic intrusions that exist in this region (Bekler and Gurbuz,

2008; Sengör et al., 2005). At 2.0 s and 3.0 s period, this high velocity region is particularly prominent in the western part of

the Armutlu Block (Fig. 3). At 5.0 s period, the entire Armutlu Block consists of high velocities. At 2.0 s period, the sediments

of the Pamukova basin can be seen along the southern branch of the NAFZ with velocities of approximately 2.0 km s−1. To

the south, in the Sakarya Terrane, a relatively high velocity anomaly (faster than 2.5 km s−1) can be seen at all periods greater15

than 2.0 s. These velocities are in general higher than those observed in the part of the Istanbul Zone that bounds the fault,

and they likely indicate the crystalline basement of the Sakarya Terrane at shallower depths, with thinner sedimentary cover.

It is likely that the high phase velocities observed in the far north of the model correspond to the older sedimentary units and

crystalline rocks of the Istanbul Zone that underlie the clastic sediments at Izmit and Adapazari (Okay et al., 1994). In general,

at 5.0 s period and lower, the contrast in phase velocity between the major tectonic units is relatively low. This is likely due to20

the longer wavelength of these waves, which will average lateral variations in structure at these larger periods.

3.2 Love wave phase velocity

The Love wave phase velocity images (Fig. 4) show a very similar pattern to the Rayleigh wave images. To the north of

the fault extremely low (∼ 1.2 km s−1) phase velocities are associated with the faulted sediments near Izmit, as well as the

Adapazari Basin. Both of these features are visible for periods < 5.0 s. Low velocities also seem to be strongly associated with25

the NW-SE striking faults just north of the rupture zone of the Izmit earthquake
:
at
:
40.7

:

◦N and 30.45◦E. Focal mechanisms

for earthquakes in this region show examples of normal faulting (Altuncu Poyraz et al., 2015), indicating these low velocities

could be associated with a releasing bend on the northern branch. The Armutlu Block in between the two fault strands shows

high phase velocities exceeding 2.4 km s−1, which is comparable with those of the Rayleigh wave images. The Pamukova

basin can be seen for periods < 5.0 s near the southern branch of the fault with velocities of 1.5 - 2.5 km s−1. At 5.0 s period,30

higher phase velocities (> 3.0 km s−1) are observed within the southern portion of the Sakarya Terrane, and the northern part

of the Istanbul Zone. These high velocities are again interpreted to represent the crystalline basement of these tectonic units. As
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Figure 5.
::::::
Results

::
of

::
the

::::::::::::
neighbourhood

:::::::
algorithm

:::::::
inversion

:::
for

:::::
S-wave

:::::::
velocity

:
at
::::
three

:::::
nodes

::
in

:::
the

::::::
different

::::::::
geological

::::
units

::::
(Fig.

::
1).

::::
The

:::
grey

:::::
region

::::::::
represents

::
the

:::::
range

::
of

::::::
accepted

::::::
models

::::
with

:
a
::::
misfit

:::::
below

::::
0.25

:::
(eq.

::
3).

:::
The

:::::::
coloured

:::::
region

:::::
shows

::
the

:::::
range

::
of

::
the

::::
1000

::::::
models

:::
with

:::
the

:::::
lowest

:::::
misfit.

:::
Red

::::::
colours

::::::
indicate

::
a

:::::
higher

::::::
number

::
of

::
the

::::
best

::::
1000

:::::
models

::::
with

:
a
::::::
certain

:::::
S-wave

:::::::
velocity

:
at
::::
that

::::
depth.

::::
The

::::
solid

::
red

:::
line

:::::
shows

:::
the

:::
best

:::::
fitting

::::::
model,

::
the

:::::
misfit

::
of

:::::
which

:
is
:::::
shown

::
at
:::
the

:::::
bottom

::
of
::::
each

:::::
panel.

:::
The

::::::
location

::
of
::::
each

::
of

::::
these

:::::
nodes

::
is

:::::
shown

:
in
::::
Fig.

::
6.

with the Rayleigh wave phase velocity maps (Fig. 3), the lateral resolution of the Love wave images decreases with increasing

period.

3.3 S-wave velocity model misfit

In order to construct an isotropic S-wave velocity velocity profile at each node a two-step inversion process was chosen, as

described in sec. 2.4. Examples of the results of the neighbourhood algorithm from three locations in the Sakarya Terrane,5

Armutlu Block and Istanbul Zone, are shown in Fig. 5. The best 1000 models from the neighbourhood algorithm occupy a

much smaller range for the Sakarya Terrane and Armutlu Block examples. The broader range for the Istanbul Zone example

shows that the data here provide weaker or possibly conflicting constraints on the model velocity profile. In the final step of

the inversion, the linearized
::
To

:::::::
improve

:::
the

::::
data

:::::
misfit

::
in

::::
such

:::::
cases,

:
a
:::::::::
linearized

::::::::
inversion approach using surf96 (Herrmann,

2013) is used to find an optimum model. Supplementary Fig. S7 shows the final fit of the dispersion curves calculated at10

each of the nodes shown in Fig. 5. The dispersion curves were calculated for the final S-wave velocity model, and compared

to dispersion curves extracted from the Rayleigh and Love wave phase velocity tomography. Supplementary Fig. S7 also

summarises the improvement in the misfit to the dispersion data provided by employing the linearised inversion (Herrmann,

12



2013) after the neighbourhood algorithm. Each node has a significant improvement in misfit following the linearized inversion

(> 50%).

3.4 Isotropic S-wave velocity maps

Fig. 6 shows depth slices through the final S-wave velocity model at depths of 1.5 km, 3.5 km and 5.5 km. The final S-wave

velocity model is produced by performing a minimum curvature interpolation between our model nodes, which are spaced5

0.06◦ apart in both latitude and longitude.
:::
have

:::
the

:::::
same

:::::::
spacing

::
as

:::
our

::::::
phase

:::::::
velocity

:::::
model

:::::
(Sec.

::::
2.3).

:
In the top 3 km of

the crust we observe low S-wave velocities (1.6 - 2.0 km s−1) on the north side of the northern fault strand, associated with

the Adapazari basin and faulted sediments near Izmit. These low S-wave velocities are not observed at model depths of 3.5 km

and below (Fig. 7), indicating that the Adapazari basin is likely not deeper than about 3.5 km. At 5.5 km depth, relatively low

S-wave velocities (2.8 km s−1) are clearly associated with the northern branch of the NAFZ, particularly within the zone of10

the Izmit rupture beneath Lake Sapanca at 40.7N and 30.2E. Faster S-wave velocities, up to 3.5 km s−1, are observed within

the Armutlu Block between the two strands of the NAFZ. As with the phase velocity maps, these high velocities are more

prominent west of the Sakarya River to a depth of about 3.5 km. The slow velocities associated with the Pamukova basin

along the southern branch of the NAFZ are much attenuated at 3.5 km depth, indicating that this basin is shallower than the

Adapazari basin. We observe evidence in the southern part of the model for crystalline rocks below a depth of 1.5 km in the15

Sakarya Terrane, where S-wave velocities exceed 2.5 km s−1. These high velocities are also observed in the far north of the

model within the Istanbul Zone. Both the northern and southern branches of the NAFZ appear to exploit the regions where we

observe high gradients in seismic S-wave velocity. Both branches of the main fault skirt the edges of the high velocity zone

associated with the Armutlu Block.

3.5 Isotropic S-wave velocity vertical profiles20

Fig. 7 shows two vertical sections through the S-wave velocity model along a North - South profile located at 30.2◦E (profile

A-A’), and 30.4◦E (profile B-B’). In profile A-A’ the low velocity zone associated with the heavily faulted sediments near

Izmit (40.82◦N) can be observed to a depth of ∼ 3.5 km, as can the Adapazari basin along the profile B-B’. In profile A-A’ the

Armutlu Block is clearly distinguishable as a region of high velocity (∼ 2.8 km s−1) extending towards the surface between

40.5◦N and 40.6◦N. It is clear that high velocity metamorphic rocks found in this region (Yılmaz et al., 1995) are located closer25

to the surface than the basement rocks of the Sakarya Terrane and Istanbul Zone. In both profiles, a zone of low velocity (∼
2.8 km s−1) can be seen extending to a depth of at least 6 km beneath the location of the surface expression of the northern

branch of the NAFZ. This low velocity zone appears to be on the order of 10 km wide (40.65◦N to 40.75◦N). Low velocities

associated with the southern branch of the fault zone are less clear, particularly for the eastern profile B-B’, but are evident to

5 km depth beneath profile A-A’. However, it is difficult to distinguish the southern branch of the fault from the surrounding30

sedimentary cover of the Sakarya Terrane and Pamukova basin.

13



1.2

1.6

2.0

2.4

2.8

3.2

3.6

S
−

w
a

v
e

 v
e

lo
c
it
y
 (

k
m

/s
)

29.8˚ 30˚ 30.2˚ 30.4˚ 30.6˚ 30.8˚
40.2˚

40.4˚

40.6˚

40.8˚

41˚

29.8˚ 30˚ 30.2˚ 30.4˚ 30.6˚ 30.8˚
40.2˚

40.4˚

40.6˚

40.8˚

41˚

29.8˚ 30˚ 30.2˚ 30.4˚ 30.6˚ 30.8˚
40.2˚

40.4˚

40.6˚

40.8˚

41˚

1.0 km 3.5 km 5.5 km

Figure 6. Isotropic S-wave velocity maps at 1.5, 3.5 and 5.5 km depth. Black lines show the mapped faults. The blue line represents the

Sakarya River, flowing towards the north. The black squares represent the locations of the nodes shown in Fig. 5.

3.6 Azimuthal anisotropy

The
:
In

:::::
order

::
to
::::::::

quantify
:::
the

:::::
level

::
of

:::::::::
azimuthal

:::::::::
anisotropy

::
in

:::
our

::::::
phase

:::::::
velocity

::::
data

:::
set,

:::
we

::::
plot

::::
our

:::
raw

::::::
phase

:::::::
velocity

:::::::::::
measurements

:::::::
against

:::
the

:::::::
azimuth

::
of
::::

the
::::::::::
propagation

::::::::
direction

:::::
(from

::::::
north).

:::
To

::::::
reduce

:::
the

::::::
scatter

::
in

:::
the

::::
data

::::
and

:::::::
provide

:
a
::::::::::
meaningful

::::::::::::
measurement,

:::
we

:::
bin

:::
all

::
of

::::
our

:::::
phase

:::::::
velocity

::::::::::::
measurements

:::
by

::::::::
azimuth,

::::
with

::
a
:::
bin

::::
size

::
of

::::
5◦.

:::
The

::::::
phase

::::::::
velocities

:::::
within

::::
each

:::
bin

:::
are

::::::::
averaged

::
to

::::::
provide

::
a
:::::
mean

:::::::::::
measurement

:::
and

:
a
::::::::::::
corresponding

:::::::
standard

:::::
error.

::::::::
Rayleigh

:::
and

:::::
Love5

::::
wave

:::::::::::
observations

:::
are

::::::
treated

:::::::::
separately.

::::
Due

::
to

:::
the

:::::::::
presumed

::::::::
symmetry

::
of

:::::::::::
propagation

:::::::
velocity

::
in

::::
both

::::::::
directions

::::::::
between

::::
pairs

::
of

:::::::
stations,

:::
our

::::::::::::
measurements

:::
are

::
in

::
an

:::::::
azimuth

:::::
range

::
of

:::
0◦

::
to

:::::
180◦.

:::
We

::::::
attempt

::
to

::
fit

:::
the

::::::
binned

::::
data

::
at

::::
each

::::::
period

::::
with

::
the

:::::::::
following

:::::::
function

::
to

:::::::
describe

:::
the

:
azimuthal variation of the

::::
phase

:::::::
velocity

:::::::::::::::::::::
(Smith and Dahlen, 1973)

:
:

c(θ) = u0 +Acos(2(θ−φ2)) +B cos(4(θ−φ4)).
::::::::::::::::::::::::::::::::::::::::

(4)

:::::
where

:::
u0 :

is
:::
the

:::::::
average

:::::::::
(isotropic)

:::::
phase

::::::::
velocity.

::
A

::
is

:::
the

::::::::
amplitude

::
of

:::
the

:::
2θ

:::::
term,

:::::
which

::::::::
describes

:::
an

::::::::
azimuthal

::::::::
variation

::::
with

::::
180◦

::::::::::
periodicity.

::
φ2::

is
:::
the

:::
fast

::::::::
direction

::
of

:::
the

::
2θ

:::::
term.

::
B

::
is

:::
the

:::::::::
amplitude

::
of

:::
the

::
4θ

:::::
term,

:::::
which

:::
has

::::
90◦

:::::::::
periodicity,

::::
and10

::
φ4::

is
:::
the

::::::::::::
corresponding

:::
fast

::::::::
direction.

:

:::
The

:::::::::
azimuthal

:::::::
variation

:::
of

:::
the

:
raw Rayleigh wave phase velocity measurements between 2.0 and 8.0 s period is shown

in Fig. 8. Fig. 9 shows the variation of fast direction and magnitude of anisotropy for all periods between 1.5 s and 10.0 s.

It is clear that the fast direction for both the 2θ and 4θ terms varies between 45
:::::::
Although

:::::
there

::
is

:::::::::::
considerable

:::::::::
variability

::
in

::
the

:::::::::
individual

:::::
phase

:::::::::
velocities,

::::
there

::
is
::
a

:::::
robust

::::::::::
dependence

::
of

:::::
phase

:::::::
velocity

:::
on

::::::::::
propagation

::::::::
direction

:::
that

::
is

::::::::
observed

:::::
when15

::::::::
averaging

:::::::
veocities

:::
in

:
5◦ and 90◦. The amplitude of the 2θ component is variable, and generally increases at longer periods.

The average amplitude of anisotropy for the measurements shown in Fig. 8 is 0.048 km s−1 or 1.7%.

::::::
azimuth

:::::
bins. Fig. 9 shows a smooth variation in the fast direction with increasing period of the wave. At short periods (2

- 3 s) the fast direction is aligned close to 90◦ from north, but changes smoothly to ∼ 50◦ – 70◦ from north above 5 s period.
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Below 2 s period, the anisotropy has a magnitude greater than 1%, but this magnitude decreases substantially between 2 and 4

s period, before increasing again at periods greater than 4.0 s to a value of ∼ 3%.

In general, the amplitude of the 4θ term is at least 50% lower than the 2θ term, which is to be expected for Rayleigh waves

(Smith and Dahlen, 1973). The exception to these trends is at 2.0 s period. Here, the fast directions do not align with those

observed at longer periods, and the 4θ component has twice the amplitude of the 2θ component. However, both the RMS5

misfit and the variance of the residuals between the observed data and eq. 4 are much greater at 2.0 s period, as is the case

with the phase velocity tomography. In particular, the greater variance of the residuals implies a greater uncertainty in the data

fit. Greater variance in the 2 s phase velocities is likely due to the fact that waves at 2.0 s period are more sensitive to short

wavelength heterogeneities near the surface.

A further source of uncertainty in our calculation of azimuthal anisotropy is the unknown noise source distribution of10

the region. It is clear from the azimuthal distribution of our phase velocity measurements (Fig. S17 and Fig. S18 in the

supplementary material) that there is a strong bias towards
:::::::
possible

::::
bias

:::
due

::
to

:::
the

:::::::
number

::
of ray paths that are oriented north

– south. Consequently, fewer
:::::
Fewer

:
observations are available for ray paths that are not aligned in the dominant direction,

leading to higher uncertainty on our measurements of anisotropy. This effect is visible in Fig. 8: measurements taken from east

– west oriented ray paths (∼ 90◦) generally display a higher standard error of the mean than those for north – south oriented15

ray paths (0◦ or 180◦).

The azimuthal anisotropy of the Love wave phase velocities is shown in supplementary Fig. S13. The Love wave anisotropy

is less clear. In general, the 2θ fast direction lies between 25◦ and 40◦ from north. The 4θ fast direction is more variable, mostly

lying between 85◦ and 120◦. The average amplitude of the 2θ term is 0.036 km s−1. Whilst the amplitude of the 4θ term is

more comparable in amplitude to the 2θ term than for the Rayleigh waves, it is still consistently smaller, with an average of20

0.024 km s−1. The RMS misfit and variance of the residuals is again higher at the shorter periods of 2.0 s and 4.0, again

indicating sensitivity to shorter wavelength structural complexities near the surface. The azimuthal distribution of ray paths

used in this analysis is shown in supplementary Figs. S14 and S15.

4 Discussion

4.1 S-wave velocity model25

The horizontal resolution of the S-wave velocity model at depth in Fig. 7 is limited by the wavelength of the surface waves used

in this study. Receiver function and autocorrelation studies of the region show that the shear zone associated with the NAFZ is

perhaps no wider than ∼ 7 km through the crust and into the upper mantle (Kahraman et al., 2015; Taylor et al., 2016). In the

upper crust, the main fault strands are estimated to be no more than a few kilometres wide in this region (Okay and Tüysüz,

1999). Low S-wave velocities associated with the northern branch of the NAFZ are observable in our model down to a depth of30

6 km. Below this depth, we rely on observations derived from Rayleigh waves with a period greater than 8.0 s (phase velocity

sensitivity kernels in supplementary Fig. S8). Assuming a phase velocity of 3 km s−1, these waves have a wavelength of ∼ 24

km. Thus, we cannot expect to resolve such a narrow structure at depth, unless it offsets rocks of differing seismic velocity.
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In the supplementary material (Fig. S9), we include the resolution kernels of the final S-wave velocity models at the three

locations specified in Fig. 6.

Our tomographic models show that both the northern and southern branches of the NAFZ have exploited boundaries between

major lithological units. In particular the metamorphic rocks of the Armutlu Block are clearly mapped due to the strong velocity

contrast with rocks of the Istanbul Zone to the north and the Sakarya Terrane to the south (Figs. 3, 4 and 6).5
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Figure 7. Top: Map of the Izmit-Adapazari region showing station locations of the DANA network as red triangles, and mapped faults as

black lines. Thick red lines indicate the location of the vertical profiles taken through S-wave velocity model along lines A - A’ and B - B’.

Middle: Vertical S-wave velocity profile between A – A’. Bottom: Vertical S-wave velocity profile between B – B’. The profiles show S-wave

velocity between the surface and 9 km depth. The approximate location of the surface traces of the northern and southern branches of the

NAFZ are indicated by NNAF and SNAF, respectively.

Seismic velocity models of the crust in this region have also been constructed from teleseismic body wave tomography

by Papaleo et al. (2017) and Papaleo et al. (2018). They image depth averaged seismic velocity between the surface and 90

km depth, with a vertical and horizontal resolution of ∼ 15 km (Papaleo et al., 2017, 2018). Despite the large difference in

model resolution and a non-overlapping depth range, Papaleo et al. (2017) and Papaleo et al. (2018) detect reduced crustal

seismic velocities immediately to the north of the NAFZ, in the same regions we observe low S-wave velocities associated10

with the Adapazari Basin, and heavily faulted sedimentary cover in the north western part of the array (Figs. 6, 7). Low P-wave

velocities observed by Papaleo et al. (2017) are also co-located with the low S-wave velocities detected in this study beneath

the Pamukova basin. Papaleo et al. (2017) and Papaleo et al. (2018) also found relatively high seismic velocity at depth within

the Armutlu Block. We detect high S-wave velocities much closer to the surface, that we attribute to the shallow metamorphic

rocks reported in this region (Yılmaz et al., 1995). We note that the relatively high seismic velocities we find in the upper crust15

of the Armutlu Block also corresponds to a region of relatively low electrical resistivity found by Tank et al. (2005) in the upper

10 km.

The depth of sedimentary cover of the Adapazari basin has been estimated to be at least 1.0 km in some locations (Komazawa

et al., 2002). These estimates were made by inverting Rayleigh wave phase velocity measurements from microseisms recorded

at two arrays within the basin. Due to a lack of measurements below 0.6 Hz (>∼ 1.6 s period) the inversion of Komazawa et al.20
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(2002) assumed an S-wave velocity of 3.5 km s−1 below a depth of 500 m in the basin. Our velocity model, which incorporates

Rayleigh wave observations up to 10.0 s period, indicates that S-wave velocity may be no greater than 3.0 km s−1 up to a

depth of 2.5 km within the basin. Our measurements therefore imply that the Adapazari basin could have a depth of up to 2.5

km based on the observed increase in S-wave velocity at this depth. Similarly, the Pamukova basin may be as deep as 2.5 km,

though it is difficult to accurately detect the depth to material interfaces using only surface wave observations.5

Studies of the near surface structure of the San Jacinto fault zone in southern California (Allam and Ben-Zion (2012);

Zigone et al. (2015)) observe prominent ‘flower structures’ associated with the fault. These structures are zones of low seismic

velocity that are wide near the surface, become narrower with depth, and are interpreted to be a damage zone created during

fault propagation through undeformed crust. The surface wave analysis does not enable us to observe a narrowing with depth

of the low-velocity zone associated with the northern branch of the NAFZ in Fig. 7. Nonetheless the low velocity anomalies10

associated with the Adapazari and Izmit regions might be interpreted as crust that has been damaged by movement on and

around the northern strand of the fault. It is clear that the strongest contrasts in seismic velocities in our model (Figs. 3, 4

and 6) are associated with boundaries between the three main tectonic units. The North Anatolian Fault Zone appears to have

developed along pre-existing tectonic boundaries.

Such seismic velocity contrasts across an active strike-slip fault are also present in California on the creeping section of the15

San Andreas Fault to the north of Parkfield where the fault trace is located along a strong
::::::
seismic

:
velocity contrast between

the Great Valley sedimentary sequence and the granites of the Salinian terrane (Eberhart-Phillips and Michael, 1993; Thurber

et al., 2006). This phenomenon is also observed across the Hayward fault near San Francisco where there is a clear
::::::
seismic

velocity contrast between the Great Valley sequence and the Franciscan Complex (Hardebeck et al., 2007; Thurber et al., 2006).

Eberhart-Phillips and Michael (1993) suggest that the San Andreas Fault is likely to creep in sections where this clear velocity20

contrast exists, whilst being locked and rupturing seismogenically where the velocity contrast across the fault is less defined.

However, this association between a creeping fault segment and a clearly defined velocity contrast evidently does not hold for

this section of the NAFZ where the 1999 Izmit and Düzce earthquakes occurred. Furthermore, a recent geodetic study found

evidence of only low creep rates on this segment, probably related to earthquake after-slip at shallow depths (Hussain et al.,

2016).25

The relatively high S-wave velocities we observe within the Armutlu Block likely indicate metamorphic rocks and pre-

Jurassic basement (Akbayram et al., 2016) of which the surface outcrops are of unknown provenance and age (Okay and

Tüysüz, 1999). This metamorphic unit within the Armutlu Block is evidently resistant to strain, which is deflected onto the

northern and southern branches of the NAFZ that bound this high S-wave velocity region. This behaviour is also observed in

the near surface structure of the south eastern section of the Alpine Fault on South Island, New Zealand, where the fault trace is30

located at the edge of the metamorphic Haast Schist, and cuts through thick coastal sediments (Eberhart-Phillips and Bannister,

2002). Fichtner et al. (2013) image the S-wave velocity structure of the upper mantle beneath the NAFZ using full waveform

inversion. At this much larger length and depth scale, they also note that the NAFZ appears to be bounded by tectonic blocks

of high seismic velocity. They interpret this as evidence that the fault zone developed along the edges of high-rigidity blocks,

analogous to our observations for the near-surface structure of the Armutlu Block.35
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Figure 8. Azimuthal variation of Rayleigh wave phase velocities with propagation azimuth (from north). Black dots indicate the raw phase

velocity measurements, large red dots show the average of the phase velocities within 5 degree azimuth bins, and the corresponding standard

error of the mean for the bin. The blue line is the best fitting curve (eq. 4) to the binned data (red dots). u0 is the average (isotropic) phase

velocity. We show the root mean square misfit of the blue curve to the phase velocity measurements, as well as the variance of the residuals.

We indicate the 2θ and 4θ amplitudes and fast directions that correspond to the blue curve. The azimuthal distribution of ray paths used in

this analysis is shown in supplementary Fig. S14.

4.2 Azimuthal anisotropy

The 2θ and 4θ fast directions for Rayleigh waves varies between 50◦ - 90◦ from north (Fig. 9), whilst Love wave 2θ fast

directions vary from 20◦ to 40◦ from north .
::::
(Fig.

::::
S13).

:
The Love wave 4θ fast direction is highly variable, with no distinct

pattern that can be readily observed.

Our observations of azimuthal anisotropy are compatible with
:::::::::::::
complementary

::
to the observations of previous studies along5

the North Anatolian Fault. Two studies of shear wave splitting measurements of the Karadere - Düzce segment (∼ 50 km east

of the current study region) by Peng and Ben-Zion (2004) and Peng and Ben-Zion (2005) also display a seismic fast direction in
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Figure 9. Variation of 2θ Rayleigh wave anisotropy with period in the Izmit-Adapazari region. The red dots are the measured magnitude of

anisotropy at each period, and the corresponding uncertainty is the standard deviation of the anisotropy magnitude taken from the covariance

matrix during the curve fitting process described in section 3.6. The black lines indicate the angle from north of the 2θ fast direction at each

period, where the top of the plot represents north.

the upper crust that clusters between 45◦ and 90◦ from north, often aligning parallel to the strike of the North Anatolian Fault.

Further shear wave splitting measurements made by Hurd and Bohnhoff (2012) at the station CAY, located within our study

region to the east of Lake Sapanca (Fig. 1), also showed directions between 30◦ and 90◦, with the majority falling between

40◦ and 50◦.
::::::
Further

::::
east,

:::
the

:::
fast

::::::::::
polarisation

::::::::
directions

::::::::
measured

:::
by

::::::::::::::::::::::
Hurd and Bohnhoff (2012)

:::
are

::::
more

:::::::::
commonly

:::::::
aligned

:::
NW

::
–
:::
SE.

:
5

There are two possible explanations for
::::::::::
mechanisms

::
of

:
crustal anisotropy: aligned cracks or mineral fabric. Some minerals

in upper crustal rocks, such as micas and amphibole, typically have cleavage planes or crystallographic axes aligned with

the dominant strain direction , and are the dominant source of anisotropy within the bulk rock (e. g. Kern and Wenk (1990),

Mainprice and Nicolas (1989), Sherrington et al. (2004)). These minerals are particularly common in high grade metamorphic

rocks such as slates and schists, and are likely abundant within the Armutlu Block. Analysis of samples of calcite and10

amphiboles taken from the Uludag Massif (∼ 100 km south-west of Izmit-Adapazari) by Farrell (2017) show that the fast

propagation for both P and S waves aligns parallel to the foliation direction in these minerals. We therefore think it likely that the

seismic fast directions we observe are determined by deformation fabrics aligned with the dominant shear regime
:::::::::::::
stress-controlled

::
or

:::::::::::::::::
structure-controlled.

::
If

:::
the

:::::::::
anisotropy

:::
is

::::::::::::::
stress-controlled,

::
it
::
is
::::::::

expected
::::

that
:::
the

::::
the

:::
fast

::::::::
direction

::::
will

:::::
align

::::
with

::::
the

:::::::
direction

::
of

:::::::::
maximum

:::::::::
horizontal

:::::::::::
compression

::
in

:::
the

:::::
stress

::::
field

::::
due

::
to

:::
the

:::::::
closure

::
of

::::::
cracks

::
on

:::
the

::::::::::::
perpendicular

::::::::
direction15

::::::::::::::::::::::
(Crampin and Lovell, 1991)

:
.
:::
For

::
an

::::
east

:
–
::::
west

:::::::
striking

::::
fault,

:::
this

::::::
would

:::::
result

::
in

::
an

:::::::
expected

::::
fast

:::::::
direction

::::::
aligned

::::
NW

:
–
::::
SE,

::
or

::::
120◦

:
–
:::::
160◦

::::
from

::::
north

:::::::::::::::::::
(Bohnhoff et al., 2006)

:
.
:::
Our

:::::::::::
observations,

:::
and

:::::
those

::
of

:::::::
previous

::::::
studies

:::::::::::::::::::::::::::
(Peng and Ben-Zion, 2004, 2005)

:
,
::::
show

::::
that

:::
this

::
is

:::
not

:::
the

::::
case,

::
at
::::
least

:::
for

:::::::
stations

::::::
located

:::::
close

::
to

:::
the

::::
fault.

::
A
::::::::
dominant

::::
fast

:::::::
direction

::::::::
between

:::
50◦

:
–
::::
90◦

::::
(NE
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:
–
::::
SW)

:::::
from

:::::
north

::::
(Fig.

::
9)

::::::::
indicates

:::
that

::::
the

:::::::::
anisotropy

::
in

:::
the

:::::
region

::
is
:::::
likely

:::::::::::::::::
structure-controlled.

::::
This

::::::::::
observation

::::
was

::::
also

::::
noted

:::
in

:::::::::
anisotropic

:::::::
receiver

::::::::
functions

:::
by

::::::::::::::::::
Licciardi et al. (2018)

:
,
::::
who

:::::
found

::::
that

:::
the

:::
fast

:::::
shear

:::::
wave

::::::::::
polarisation

:::::::::
directions

::::
along

:::
the

::::::
central

:::::::
portion

::
of

:::
the

:::::
North

:::::::::
Anatolian

::::
Fault

:::::
align

::::
with

:::
the

:::::
strike

::
of

:::::::
mapped

:::::
faults

::
at

:::::::
stations

::::::
located

:::::
close

::
to

:::::
those

:::::
faults,

::::::::
implying

::::::::::::::::
structure-controlled

:::::::::
anisotropy.

Fig. 9 shows a nearly 90◦ fast direction at 2 -
:
–
:
3 s period

::
(∼

::
0

:
–
::
3

:::
km

:::::
depth)

:
that aligns approximately with the strike of the5

North Anatolian Fault through the region. Above 3 s period, the fast direction smoothly transitions to an alignment closer to

70◦ from north
::::
This

::::::::::
observation

::::::
clearly

::::::
implies

::::::::::::::::
structure-controlled

:::::::::
anisotropy

::::
that

::
is

:::::::::
dominated

::
by

:::::::
faulting

::
in

:::
the

::::
very

:::::
upper

::::
crust,

::::::
similar

::
to
:::
the

:::::::::::
observations

::
of

::::::::::::::::::
Licciardi et al. (2018)

:::
for

:::
the

:::
top

::
15

:::
km

::
of

:::
the

::::::
central

::::::
section

::
of

:::
the

:::::
North

:::::::::
Anatolian

:::::
Fault.

::
At

::::::
periods

:::::::
greater

::::
than

:::
4.5

:
s
::::
(Fig.

:::
9),

:::
our

::::::::
observed

:::
fast

::::::::
direction

::::
does

::::
not

::::::::::::
systematically

::::
align

::::
with

::::
any

::
of

:::
the

:::::::
mapped

:::::
faults

::
in

:::
the

:::::
region

:
(Fig. 9). Shear

::
1).

:::::::
Instead,

:::
the

:::
fast

::::::::
direction

::
at

::::
these

:::::::
periods

:
is
:::::
better

:::::::::
compared

::
to

:::
the

:::
45◦

::::::::
direction

::
of

:::::::::
maximum10

::::::::
extension

::
for

:::
the

::::::::::::::
Izmit-Adapazari

:::::
region

:::::::::
calculated

::::
from

::::::::::
interseismic

::::
GPS

::::
data

::
by

::::::::::::::::::::::
Allmendinger et al. (2007),

::::
and

:
is
:::::::::
consistent

::::
with

::::
shear

:
wave splitting measurements of

::::
from the central portion of the North Anatolian Fault by Biryol et al. (2010)

:::::
made

::
by

::::::::::::::::
Biryol et al. (2010),

::::
who

:
found a fast polarisation direction that varied between 35◦ and 60◦. Further analysis of shear wave

splitting results by Vinnik et al. (2016) show an average fast direction of ∼ 60◦ down to a depth of about 30 km. These shear

wave splitting measurements in these two studies are mainly sensitive to the lithospheric mantle, where mineral fabric is known15

to be

::::
This

::::
close

::::::::::::::
correspondence

:::::::
between

:::
the

:::::::
seismic

::::
fast

::::::::
direction

:::
and

::::
the

:::::::
direction

:::
of

:::::::::
maximum

::::::::
extension

:::::::
implies

::::
that

:::
the

::::::::::::::::
structure-controlled

:::::::::
anisotropy

::
is

:::
the

:::::
result

::
of

:::::::
mineral

:::::::
foliation

::::::
within

:::
the

:::::
crust.

:::::
Some

::::::::
minerals

::
in

:::::
upper

::::::
crustal

:::::
rocks,

:::::
such

::
as

:::::
micas

::::
and

:::::::::
amphibole,

::::::::
typically

::::
have

::::::::
cleavage

:::::
planes

:::
or

:::::::::::::
crystallographic

::::
axes

:::::::
aligned

::::
with

:::
the

::::::::
dominant

:::::
strain

:::::::::
direction,

:::
and

:::
are

:
the dominant source of seismic anisotropy

:::::::::
anisotropy

::::::
within

:::
the

::::
bulk

:::::
rock

:
(e.g. Christensen and Crosson (1968)20

::::::::::::::::::
Kern and Wenk (1990)

:
,
:::::::::::::::::::::::::
Mainprice and Nicolas (1989),

::::::::::::::::::::
Sherrington et al. (2004)). These fast directions may be compared to

the 45◦ direction of maximum extension for the
::::::
minerals

::::
are

::::::::::
particularly

:::::::
common

:::
in

::::
high

:::::
grade

:::::::::::
metamorphic

:::::
rocks

:::::
such

::
as

:::::
slates

::::
and

::::::
schists,

::::
and

:::
are

::::::
likely

::::::::
abundant

::::::
within

:::
the

::::::::
Armutlu

::::::
Block.

::::::::
Analysis

::
of

:::::::
samples

:::
of

::::::
calcite

::::
and

::::::::::
amphiboles

::::
taken

:::::
from

:::
the

:::::::
Uludag

::::::
Massif

:::
(∼

::::
100

:::
km

:::::::::
south-west

:::
of Izmit-Adapazariregion calculated from interseismic GPS data by

Allmendinger et al. (2007). The average orientation of the fast direction of short period (1.5 s – 4.0 s) and long period25

(4.0 s – 10.0 s) Rayleigh waves is shown on Fig. 1, alongside the average fast polarisation direction (43◦) observed by

Biryol et al. (2010). We observe a relatively smooth and monotonic variation of the fast anisotropy direction from alignment

with the principle shear direction in the upper 2 – 3 km to an alignment with the principle extension direction for the lithosphere

(Biryol et al., 2010; Allmendinger et al., 2007)
:
)
:::
by

::::::::::::
Farrell (2017)

::::
show

:::
that

:::
the

::::
fast

::::::::::
propagation

::
for

::::
both

::
P
:::
and

::
S
:::::
waves

::::::
aligns

::::::
parallel

::
to

:::
the

::::::::
foliation

:::::::
direction

::
in
:::::

these
::::::::
minerals.

:::
We

::::::::
therefore

:::::
think

::
it

:::::
likely

:::
that

:::
the

:::::::
seismic

:::
fast

:::::::::
directions

:::
we

:::::::
observe

::
at30

:::::
longer

::::::
periods

:::
are

::::::::::
determined

::
by

:::::::::::
deformation

::::::
fabrics

::::::
aligned

::::
with

:::
the

::::::::
dominant

:::::
shear

::::::
regime.
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5 Conclusions

We utilised the ambient noise field recorded at a temporary network in the Izmit-Adapazari region of north western Turkey to

retrieve Rayleigh and Love waves propagating between the stations of the array. We performed surface wave phase velocity

tomography, followed by an inversion for S-wave velocity structure, with waves of periods from 1.5 to 10.0 s to image the

shear wave velocity in the top 10 km of the North Anatolian Fault Zone.5

Our model shows low S-wave velocity to the north of the NAFZ, associated with faulted marine clastic sediments near Izmit

(Akbayram et al., 2016) and with the Adapazari sedimentary basin, which we estimate to have a thickness of at least 2.5 km.

In between the two branches of the NAFZ, we observe a high velocity region linked to metamorphic and igneous rocks in the

Armutlu Block. It is likely that this high S-wave velocity in the upper crust is indicative of a rheologically strong region that

preferentially localises strain at the boundaries of the Armutlu Block, particularly along its northern boundary which has been10

identified as the Intra-Pontide Suture Zone. We also image the Pamukova basin as a region of low S-wave velocity to a depth

of about 2.5 km, associated with the southern branch of the NAFZ. Both basins are likely related to pull-apart motion along

the northern and southern branches of the NAFZ, where they are oblique to the principal shear direction.

To the south of the NAFZ, we image the Sakarya Terrane as a region of moderate to high S-wave velocity, consistent with the

Sakarya Terrane being an accretionary complex of sedimentary rocks overlying a metamorphic crystalline basement (Yılmaz15

et al., 1995). We find that
:::
Our

:::::::
analysis

::
of

:::
the

:::::::::
azimuthal

::::::::
variation

::
in

:::::
phase

:::::::::
velocities

::::
finds

::::
that

:::::::
regional

:::::::
seismic

:::::::::
anisotropy

:
is
::::::

likely
:::::::::::::::::
structure-controlled.

::
At

:::::
short

:::::::
periods,

:
both Rayleigh and Love waves have a fast direction which varies smoothly

::::::
roughly

:::::
aligns

:::::
with

::
the

:::::
strike

::
of
:::
the

::::::
North

::::::::
Anatolian

::::
Fault

:::::
(east

:
–
::::::
west),

::
as

:::::::
opposed

::
to

:::
the

:::::::
direction

:::
of

::::::::
maximum

:::::::::::
compression

::::
(NW

::
–

::::
SE).

:::
At

::::::
longer

::::::
periods

:::
(>

:::
4.0

:::
s),

:::
the

::::
fast

::::::::
direction

::::::::
smoothly

:::::::::
transitions

:
from the maximum shear direction in the

upper few kilometres of the crust towards the principle extension direction of the lithosphere at greater depth. The
::::
(NE

:
–
:::::
SW),20

::::::::
indicating

::::
that

::::::
mineral

:::::
fabric

::::
may

:::
be

:::
the

::::::
source

::
of

::::::::
azimuthal

::::::::::
anisotropy.

:::::::
Studying

:::
the

:
relationship between the three distinct

tectonic units of the region, and the
::::::::
including

:::
the

:::::::
patterns

::
of

:::::::
seismic

:::::::::
anisotropy,

:::::::
provides

::::::
insight

::::
into

:::
the

:
potential for strain

localisation along both the northern and southern branches of the NAFZ.
::::
This

::::::::::
knowledge is critical to understanding the long

term behaviour of the fault zone, and the seismic hazard that it poses.

Data availability. The final S-wave velocity model of the Izmit-Adapazari region is included as an ASCII text file within the supplementary25

material. Data for this study can be found at the IRIS Data Management Centre under network code YH (2012 - 2013) (DANA, 2012).
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