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Abstract 21 

Natural fracture network characteristics can be known from high-resolution outcrop images 22 

acquired from drone and photogrammetry. These outcrops Such images might also be good 23 

analogues of subsurface naturally fractured reservoirs and can be used to make predictions of 24 

the fracture geometry and efficiency at depth. However, even when supplementing fractured 25 

reservoir models with outcrop data, gaps in that model will remain and fracture network 26 

extrapolation methods are required. In this paper we used fracture networks interpreted in two 27 

outcrops from the Apodi area in Brazil to present a revised and innovative method of fracture 28 

network geometry prediction using the Multiple Point Statistics (MPS) method.  29 

mailto:p.b.r.bruna@tudelft.nl


2 
 

The MPS method presented in this article uses a series of small synthetic training images 30 

(TIs) representing the geological variability of fracture parameters observed locally in the 31 

field. The TIs contain the statistical characteristics of the network (i.e. orientation, spacing, 32 

length/height and topology) and allow representing complex arrangement of fracture 33 

networks. These images are flexible as they can be simply sketched by the user.  34 

We proposed to use simultaneously a set of training images in specific elementary zones of 35 

the Apodi outcrops defined in a probability map in order to best replicate the non-stationarity 36 

of the reference network. A sensitivity analysis was conducted to emphasize the influence of 37 

the conditioning data, the simulation parameters and the used training images. Fracture 38 

density computations were performed on the best selected realisations and compared to the 39 

reference outcrop fracture interpretation to qualitatively evaluate the accuracy of our 40 

simulations. The method proposed here is adaptable in terms of training images and 41 

probability map to ensure the geological complexity is accounted for in the simulation 42 

process. It can be used on any type of rock containing natural fractures in any kind of tectonic 43 

context. This workflow can also be applied to the subsurface to predict the fracture 44 

arrangement and fluid flow efficiency in water, heat geothermal or hydrocarbon fractured 45 

reservoirs. 46 

 47 

I] Introduction 48 

I.1 The importance of the prediction of fracture network geometry  49 

Fracture Fractures are widespread in Nature and depending on their density and their aperture, 50 

they might have a strong impact on fluid flow and fluid storage in water aquifers (Berkowitz, 51 

2002; Rzonca, 2008), heat and in geothermal (Montanari et al., 2017; Wang et al., 2016) and 52 

hydrocarbon reservoirs (Agar and Geiger, 2015; Lamarche et al., 2017; Solano et al., 2010) 53 

They are typically organised as networks ranging from nanometre to multi-kilometre scale 54 
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(Zhang, 2016), and present systematic geometrical[PB-C1] characteristics (i.e. type, orientation, 55 

size, chronology, topology) that are determined from specific stress and strain conditions. 56 

These conditions have been used to derive concepts of fracture arrangements in various 57 

tectonic contexts and introduced the notion of geological fracture-drivers (fault, fold, burial, 58 

facies). Based on these drivers it is possible to some extent to predict reservoir heterogeneity 59 

and to define potential permeability pathways within the rock mass (Lamarche et al., 2017; 60 

Laubach et al., 2018). Despite the existence of these concepts, a range of parameters including 61 

fracture abutment relationships as well as height/length distributions cannot be adequately 62 

sampled along a 1D borehole and are mainly invisible on seismic images. In addition, fracture 63 

networks may present a spatial complexity (variability of orientation or clustering effect) that 64 

is also largely unknown in the subsurface. Long and Witherspoon, (1985) and Olson et al., 65 

(2009) showed how those parameters impact the connectivity of the network and 66 

consequently affect fluid flow in the subsurface. In outcrops, the fracture network 67 

characteristics can be observed can be observed in 2D and understood directly. Consequently, 68 

outcrops are essential to characterize fracture network attributes that cannot be sampled in the 69 

subsurface, such as length or spatial connectivity. 70 

 71 

I.2 Surface rocks as multiscale reservoir analogues 72 

In this context, the study of outcrop analogues is one of the few ways to constrain the 73 

architecture of fracture networks (Bisdom et al., 2014; Bruna et al., 2017; National Research 74 

Council, 1996; Lamarche et al., 2012; Lavenu et al., 2013). Outcrops can be considered as a 75 

natural laboratory where the structural reality can be observed and quantified at various 76 

scales. At the small – measurement station – scale (order of 10’s m), fracture type, 77 

chronologies and topology relationships can be characterised using classical ground-based 78 

[PB-C2]structural geology method such as scanlines (Lavenu et al., 2013; Mauldon et al., 2001). 79 
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At the intermediate – outcrop – scale (order of 10
2
’s m), length of fractures and geometry 80 

variability can be qualified and quantified using unmanned aerial vehicles (UAV - drones). 81 

Working on outcrops allows an understanding of the geological history of the targeted area 82 

and eventually possibly to decipher how, when and where fractures were developed. In 83 

addition, outcrops constitute an efficient experimental laboratory where some of properties of 84 

the fracture network (i.e. fracture distribution, apertures, permeability and fluid flow 85 

behaviour) can be known and modelled (Bisdom et al., 2017). At the large – reservoir – scale 86 

(order of 10
3-4

m) satellite imagery and geophysical maps provide the characterisation of the 87 

100’s of meter long objects such as large fracture systems or faults.  88 

However, not every outcrop can be considered as a good analogue for the subsurface. Li et al., 89 

(2018), in their work on the Upper Cretaceous Frontier Formation reservoir, USA, observed 90 

significant differences in the fracture network arrangement in subsurface cores compared to 91 

an apparent good surface analogue of the studied reservoir. In the subsurface, fractures 92 

appeared more clustered than in the outcrop where the arrangement is undistinguishable from 93 

random. The origin of these differences is still debated but these authors suggest that 94 

alteration (diagenesis) or local change in pressure-temperature conditions, may have 95 

contributed to the observed variability. The near-surface alteration processes (exhumation, 96 

weathering) may also ontributed contribute to misinterpretations of the characteristics of the 97 

network. In this case, one should be particularly careful while using observed networks to 98 

make geometry or efficiency (porosity, permeability) predictions in the subsurface. Therefore, 99 

the application to the subsurface of the characteristics observed in the outcrop is not always 100 

straightforward or even possible, and may lead to erroneous interpretations. Relatively 101 

unbiased signals such as stylolites or veins and particular geometric patterns build trust that 102 

the studied outcrop can be compared to the subsurface. 103 

 104 
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I.3 Modelling approaches classically used to model fracture network geometries  105 

The widely used discrete fracture network (DFN) stochastic modelling tools provide 106 

statistical representation of fracture networks constrained generally by univariate and random 107 

[PB-C3]distribution of orientation, size, spacing and density/intensity data (Bisdom et al., 2014; 108 

Bisdom et al., 2017; Huang et al., 2017; Panza et al., 2018). The generated models follow a 109 

local stationarity hypothesis. This implies that the statistics used during the simulation are 110 

constant in the defined area of interest (Deutsch and Journel, 1997; Gringarten and Deutsch, 111 

1999; Gringarten and Deutsch, 2001; Journel and Zhang, 2006). Liu et al., (2009), highlighted 112 

the implicit randomisation that conventional DFN models produce and demonstrated that 113 

parameters like fracture connectivity are poorly considered in these representations. In 114 

addition, it is generally admitted that discrete realisations of thousands of fractures objects 115 

fracture objects at the kilometre scale are computationally very demanding and often even 116 

impossible (Jung et al., 2013). Some authors attempted to use a pixel-based method to try to 117 

predict fracture network geometries. Bruna et al., (2015), used a dense hydrogeological 118 

borehole survey sampling a Lower Cretaceous aquifer in the SE of France to define fracture 119 

facies and to model their distribution with two-points geostatistics. In this case, the amount of 120 

available data and their consistency helped to provide realistic results. However, far from 121 

conditioning data (i.e. boreholes) the fractures simulation are poorly constrained. 122 

The work of Hanke et al., (2018) uses a directional semi-variogram [PB-C4]to quantify fracture 123 

intensity variability and intersection density. This contribution provides an interesting way to 124 

evaluate the outputs of classical DFN approaches but requires a large quantity of input data 125 

that are not always available in the subsurface. To geologically represent the fracture network 126 

geometry in various contexts in various geological contexts, an alternative method has to be 127 

developed. This innovative method needs to i) explicitly predicts predict the organisation and 128 
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the characteristics of multiscale fracture objects, ii) takes take into consideration the spatial 129 

variability of the network and iii) requires require a limited amount of data to be realised.     130 

 131 

I.4 Multi-point statistics as an alternative to classic DFN approaches 132 

Since Liu et al., (2002), few authors highlighted the potential of using multi-point statistics 133 

(MPS) to generate realistic fracture networks (Chugunova et al., 2017; Karimpouli et al., 134 

2017). Strebelle, (2002) showed how the MPS are able to reproduce any type of geological 135 

heterogeneities of any shape at any size as long as they present a repetitive character. This 136 

characteristic seems particularly well adapted to predict the geometry of a fracture network. 137 

The MPS method uses training images (TI) to integrate conceptual geological knowledge into 138 

geostatistical simulations (Mariethoz, 2009). The TI is a grid containing geological patterns 139 

that are representative of a certain type of geological structure, type and arrangement. The TI 140 

can be considered as a synthetic model of the geological heterogeneity (i.e. all the elements 141 

characterising a geological object) likely to occur in a larger domain (i.e. reservoir, aquifer, 142 

outcrop). The TI must include the possible range and shape the TI must contain the range of 143 

geobodies that are intended to be modelled, as well as the relationship these geobodies have 144 

with each other (Mariethoz, 2009; Strebelle, 2002). 145 

 146 

I.5 Objectives and contents of this research 147 

In this paper we propose a MPS workflow considering the geological variability of the 148 

fracture network geometry in outcrops (size order of 100m) and a methodology on how to use 149 

this method at the reservoir scale. The approach is based on the direct sampling method 150 

(Mariethoz et al., 2010) and uses multiple training images TIs for a single realisation (Wu et 151 

al., 2008). The concept of the probability map has been revised here to define where a training 152 

image should be used in the simulation grid. Our outcrop-based simulations also take into 153 
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account “seismic-scale” objects (i.e. object longer than 40m) considered as hard conditioning 154 

data. The proposed workflow is tested on outcrops considered as analogues of the Potiguar 155 

Basin, Brazil where fracture network have been previously characterised and interpreted from 156 

drone imagery The proposed workflow is tested on outcrops where fracture network have 157 

been previously characterised and interpreted from drone imagery. The studied outcrops are  158 

considered as analogues of the Potiguar Basin, Brazil (Bertotti et al., 2017; Bisdom, 2016). 159 

Uncertainties were evaluated by comparing original outcrop interpretation (done manually by 160 

a geologist) with the geometrical characteristics of the network generated from MPS. To 161 

evaluate the quality of the simulations, we computed density maps in outcrop fracture 162 

interpretation and on selected stochastic models. The proposed approach is innovative and 163 

provides a quick and efficient way to represent fracture network arrangements at various 164 

scales.  165 

  166 

II] Methodology 167 

II.1 The direct sampling method 168 

The direct sampling method (DS) was introduced by Mariethoz et al., (2010). Figure 1, 169 

synthesizes the DS modelling process developed thereafter. The method requires a simulation 170 

grid where each node is initially unknown and called x, a training image grid (TI) where each 171 

node is known and called y i.e. V(y) is defined where V is the variable of interest (e.g. facies 172 

value). The simulation proceeds as follows. First, the set of conditioning data (if present) is 173 

integrated in the simulation grid. Then, each remaining unknown node x is visited following a 174 

random or defined path, and simulated as follows. 1) The pattern dn(x) = 175 

(x1,V(x1)),…,(xn,V(xn)) formed by the at most n informed nodes the closest to x is retrieved. 176 

Any neighbour xi of x is either a previously simulated node or comes from the conditioning 177 

data set. The lag vectors hi = xi-x define the geometry of the neighbourhood of x. The 178 
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combination of the value and position of xi defines the data event or pattern dn(x). 2) Then, the 179 

TI is randomly scanned to search for a pattern dn(y) similar to dn(x). For each scan node y, the 180 

pattern dn(y) = (y1,V(y1)),…,(yn,V(yn)), where yi=y+hi, is compared to dn(x) using a distance 181 

(Meerschman et al., 2013). When the distance is lower than an acceptance threshold (t) 182 

defined by the user or if the proportion of scanned nodes in the TI reaches a maximal fraction 183 

(f) defined by the user, the scan is stopped and the value of the best candidate y (pattern with 184 

the minimal distance) is directly attributed to x in the simulation grid (i.e. V(x) = V(y)).  185 

As the DS method does not use a catalogue of all possible patterns found in the TI, it is 186 

extremely flexible and in particular allows taking into account both categorical and 187 

continuous variables and managing multivariate cases, provided that the pattern distance is 188 

suitable. In this paper we are using the DeeSse version of the direct sampling code 189 

(Straubhaar, 2017).  190 

 191 

II.2 Multiscale fracture attributes 192 

To evaluate how the direct sampling method is dealing deals with the fracture network, the 193 

present experimentation is based on outcrop data where the present-day “structural reality” 194 

structural reality is observable at various scales. Pavements (i.e. horizontal surfaces in the 195 

order of 10
2
 m scale) were targeted because these objects they contain important information 196 

that is not always accessible with standard with vertical outcrops (Corradetti et al., 2017a; 197 

Corradetti et al., 2017b; Tavani et al., 2016) or with classic geophysical imagery (e.g. seismic 198 

data). Pavement sizes allow the user to interpret and localise fracture patterns variability The 199 

size of pavements allow the user to interpret a large amount of fracture and to define areas 200 

where the geometry of the network varies (Bruna et al., 2018). For instance, clusters of 201 

fractures (i.e. local increase of the fracture density) can be identified by the interpreter. 202 

Pavements also allow to obtain quantitative data on fracture lengths, which are usually 203 
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difficult to get in vertical cliff. In the subsurface, data can be provided by geophysical 3D 204 

maps and fracture attribute detection tools (Chopra and Marfurt, 2007; Somasundaram et al., 205 

2017). However, these tools are not always available and detect the longer lineaments only.  206 

Working with pavements constitutes an asset as small-scale investigation can be conducted in 207 

key zones of the outcrop (i.e. in folded areas, each compartment or dip domain of the fold 208 

should be imaged and investigated in detail [PB-C5]where the gathered data will help to calibrate 209 

larger scale information. Classical fieldwork methods (observation and characterisation, 210 

measurements, statistical analyses, sampling) help interpreting fracture families and are 211 

essential to constrain larger scale observation.  212 

In this study, UAV-based photogrammetry is used to obtain an orthorectified mosaic and 3D 213 

digital outcrops models (Bemis et al., 2014; Claes et al., 2017; Vollgger and Cruden, 2016). 214 

The scale of these images is an intermediate between the scale of measurement station and 215 

that of satellite imagery. Digitization of fracture traces, geological contacts, sedimentary 216 

structures and structural domain boundaries are currently processed by hand and represent a 217 

considerable time investment. In this contribution, fractures were interpreted in orthomosaic 218 

images with the help of GIS software. Length, azimuth, fracture family proportions and 219 

fracture density statistics were extracted from the interpretation. In addition, a series of 220 

measurement station (area of about 2 × 2 m) information was acquired and compared with the 221 

dataset from the drone imagery in order to align interpretations and provide coherent fracture 222 

history.     223 

 224 

II.3 Training images, conditioning data and probability maps 225 

 Training images 226 

Training images (TI) are the base input data of the MPS simulation. Building them is a critical 227 

step to succeed a realisation (Liu et al., 2009). The TI is a pixelated image based on a local 228 
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interpretation of a geological phenomenon (i.e. an interpreted photography taken from a local 229 

zone of interest in the field) or digitised by a geologist and based on geological concepts 230 

(Strebelle, 2002). These images should synthesise all of the recognized geological parameters 231 

that characterise the area to simulate. This implicitly means implies that the proportion of 232 

facies carried by the TI, will be reproduced into the simulation grid but this also requires 233 

extensive pre-processing work (see example of TIs in figures 5, 6, 9 and 10). To manage this 234 

complexity, we used multiple training images where facies proportion and geometrical 235 

distribution can vary. Hence, each TI has a local impact on the simulation. Moreover, in our 236 

approach fractures fracture sets are grouped in facies in the TI, based primarily on their 237 

orientation and possibly on their length or additional parameters defined by the user. The 238 

fractures fracture classification helps reproducing patterns and simplifies the process of 239 

building the TI.  240 

Training images (TI) are the base input data of the MPS simulation. Building them is a critical 241 

step to succeed a realisation (Liu et al., 2009). The TI is a pixelated image based on a local 242 

interpretation of a geological phenomenon (i.e. an interpreted photography taken from a local 243 

zone of interest in the field) or digitised by a geologist and based on geological concepts 244 

(Strebelle, 2002). As the MPS algorithms borrow patterns from the TIs to populate the 245 

simulation grid, one should use TIs synthesising all of the recognized geological parameters 246 

that characterise the area to simulate. To model non-stationary fields, i.e. fields where the 247 

characteristics of the patterns differ depending on their location, one can follow two 248 

strategies. The first one consists in using a non-stationary TI containing all wanted spatial 249 

features. This requires to build one or several auxiliary variables describing the non-250 

stationarity in the TI and to define these auxiliary variables in the simulation grid to constrain 251 

the simulation and indicate which kind of patterns will be simulated in which locations 252 

(Chugunova and Hu, 2008; Mariethoz et al., 2010; Straubhaar et al., 2011). The second 253 
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approach consists in using several stationary TIs, each one depicting the same kind of patterns 254 

everywhere, and defining zones in the simulation grid corresponding to each specific TI. This 255 

second approach is chosen in this work, because it allows to define simple geological 256 

concepts (TIs) specific to regions delineated in the simulation domain. The facies proportions 257 

and their spatial arrangement belongs to each TI and can vary from one image to the other 258 

(figures 5, 6, 9 and 10). Each TI has a local impact on the simulation. Moreover, in our 259 

approach fractures sets are grouped in facies in the TI, based primarily on their orientation 260 

and possibly on their length or additional parameters defined by the user. The fractures 261 

classification helps reproducing patterns and simplifies the process of building the TIs. Note 262 

also that two TIs used for two adjacent zones should share some common features in order to 263 

obtain realistic transitions between the regions in the simulation domain. 264 

 Conditioning data 265 

One limitation of the MPS methods is the tendency to disconnect long continuous objects (i.e. 266 

typically fractures[PB-C6],(Bruna et al., 2017). To manage this issue, long fractures can be 267 

identified and incorporated into the simulation as conditioning data. As per the training 268 

images, such data can be integrated as pixelated grids. They may come from satellite imagery 269 

or they can be interpreted from gravity or magnetic surveys or from 3D seismic imagery 270 

(Magistroni et al., 2014).  271 

 Probability map 272 

The direct sampling method can be used with multiple training images. In this situation, the 273 

user provides a set of TIs, and for each TI a probability map defined is defined on the 274 

simulation grid, giving at each node the probability to use that TI. The pixel-wise sum of 275 

these maps should then be equal to one in every node. If each TI corresponds to a partition of 276 

the area of interest, with for each TI one elementary zone, covering the whole simulation grid, 277 

the probabilities in the map are set to one for specific TI and to zero for the other ones.  278 
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As per the training images, the probability map comes from a simple sketch (i.e. a pixelated 279 

image) given by the MPS user. It is based on the geological concepts or interpretations that 280 

define the geometry variability over the simulated area and that allow a partition of the 281 

outcrop. In each of the zones defined in the area of interest, the simulated property will follow 282 

the intrinsic stationary stationarity hypothesis (Gringarten and Deutsch, 2001; Journel and 283 

Zhang, 2006; Journel, 2005) but the entire domain will be non-stationary.  284 

While working on outcrops, the partition of the area of interest can be determined decided 285 

based on observations. For instance, when the fracture network interpreted from outcrop 286 

images is available, the geologist can visually define where the characteristics of the network 287 

are changing (fracture orientation, intensity, length, topology) and draw limits around zones 288 

where the network remains the same (internal variability, Hooker and Katz, 2015). However, 289 

in other cases outcrops or subsurface observation could be discontinuous between observation 290 

sites. If the data are sparse and come mainly from fieldwork ground observations or 291 

boreholes, the use of alternative statistical approaches can help to provide a robust and 292 

accurate partition of the area of interest. The work of Marrett et al., (2018) interprets the 293 

spatial organisation of fractures using advanced statistical techniques such as normalized 294 

correlation count and weighted correlations count, on scanlines collected in the Pennsylvanian 295 

Marble Falls Limestone. In their approach, the periodicity of fracture spacing (clustering) 296 

calculated from the mentioned techniques is evaluated using Monte Carlo to quantify how 297 

different the fracture networks are from a random organisation. These approaches can be 298 

highly valuable during the process of building a probability maps when less data are 299 

available. The probability maps provide a large-scale framework that may be refined and 300 

modified with additional data such as measurement stations or drone surveys coming from 301 

surface exploration or wells data containing fracture network information.  302 

 303 
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II.4 Testing the simulated network: from pixels to segments 304 

MPS realisations are produced as pixelated images. To evaluate the resulting fracture 305 

network, pixels alignments corresponding to fractures are extracted as discrete straight-line 306 

objects defined by a start and an end x, y coordinate points. Fractures are separated from the 307 

background and in different sets by automatic image classification methods. On grayscale 308 

images, this is obtained by multilevel image thresholding through the Otsu's method (Otsu, 309 

1979). On color images, fracture sets are classified based on their color components with the 310 

k-means clustering algorithm built in MATLAB (Lloyd, 1982). Image classification gives in 311 

output a series of binary images, one for each fracture set, where lineaments are represented 312 

as foreground (Kovesi, 2000).  313 

 314 

III] Results: test case on analogues of the Potiguar Basin, E Brazil 315 

III.1 Geological setting 316 

The Potiguar Basin is a rift basin located in the easternmost part of the Equatorial Atlantic 317 

continental margin, NE Brazil (fig. 2). The basin is found both onshore and offshore (fig. 2). 318 

The basin was generated after the initiation of the South American and African breakup 319 

during the Jurassic - Early Cretaceous times. It was structured by a first NW-SE extension 320 

stage latterly rotating to an E-W extensional direction (Costa de Melo et al., 2016). The rift 321 

basin displays an architecture of horsts and grabens striking NE-SW and bounded towards the 322 

east and south by major faults fault systems (de Brito Neves et al., 1984), fig. 2). The Potiguar 323 

Basin displays three sedimentary sequences deposited since the early Early Cretaceous times 324 

(i.e. syn- and post rift depositions). The last post-rift sequence was deposited from since the 325 

Albian and encompasses the Cenomanian-Turonian Jandaíra Formation. This formation 326 

consists of up to 700 m thick bioclastic calcarenites and calcilutites deposited in transgressive 327 

shallow marine environment. The stress field affecting the Jandaíra Formation during the 328 
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Campanian to the Miocene compression was oriented N-S From the Campanian to the 329 

Miocene, the (compressive) principal stress was oriented N-S (Bertotti et al., 2017). From the 330 

Miocene to the Quaternary the onshore part of the Potiguar basin was uplifted. 331 

Synchronously, a new stress field compressive stress field was established trending to a NW-332 

SE direction (Reis et al., 2013).   333 

 334 

III.2 Outcrop data 335 

The area of interest measures 2.1 × 1.3 km and is located about 25 km NE of the city of Apodi 336 

in the Rio Grande Do Norte state (fig. 2). It contains two outcrops AP3 and AP4 (Bertotti et 337 

al., 2017; Bisdom, 2016, fig. 2) here defined respectively as 600 × 300 m and 400 × 500 m 338 

large pavements localized in the Jandaíra Formation. AP3 and AP4 crop out as pavements 339 

with no significant incision. The outcrops are sparsely covered by vegetation and 340 

consequently they present a clear fracture network highlighted by karstification. In 2013, 341 

images of AP3 and AP4 were acquired using a drone (Bisdom, 2016) and processed using the 342 

photogrammetry method. Two high-resolution ortho-rectified images of these pavements 343 

(centimetre-scale resolution) were used to complete fracture network interpretation and to 344 

extract fracture parameters. In AP3, 775 lineaments were traced (fig. 3) and in AP4, 2593 (fig. 345 

4). These lineaments collectively termed are grouped in this article over the general term 346 

fractures in this paper. For each of these outcrops three fractures sets were identified: set1 347 

striking N135-N165, set2 striking N000-N010/N170-N180 and set 3 striking N075-N105. 348 

Fractures falling outside of these ranges were not considered in the input data. Consequently, 349 

in AP3 we considered 562 only (out of 775 fractures traced in the pavement) and in AP4 we 350 

considered 1810 only out of 2594 2593 fractures. In addition, ground-based fieldwork was 351 

conducted in AP3 and AP4 to understand the structural history of the area and to calibrate the 352 

interpretation conducted on the drone aerial photography (Van Eijk, 2014). General location 353 
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and fracture data are presented in figure 3 and 4 and in table 1.  354 

In AP3, sets 1 and 2 are evenly distributed over the pavement. However, they present intrinsic 355 

intensity variability however, their intensity is variable in the area of interest. Set 3 is mainly 356 

expressed in distinct regions of the outcrop. Small-scale investigations (conducted on 357 

measurement stations in the outcrop) allowed associating set 3 with stylolite and sets 1 and 2 358 

to veins showed that set 3 are stylolites and sets 1 and 2 are veins. In addition, sets 1 and 2 359 

present evidences of shear movements and are then considered as a conjugate system. 360 

In AP4 small-scale investigations highlight the same characteristics as the ones observed in 361 

AP3. Although the conjugate system (set 1 and set 2) is less developed there than in AP3. It is 362 

also notable that more crosscutting relationships were observed in AP4 compared to AP3. 363 

 364 

III.3 Input data for MPS simulation 365 

To evaluate the effect of conditioning data, results of two simulations were compared, with 366 

and without conditioning data. The sensitivity of simulation parameters was investigated by 367 

varying i) the number of neighbours defining patterns (data events dn), ii) the acceptance 368 

threshold (t) defining the tolerance the algorithm authorises to find a matching data event in 369 

the simulation grid (Mariethoz et al., 2010) and iii) the fraction of the TI to be scanned during 370 

the simulation process to search for data events. Results of this sensitivity analysis help to 371 

propose the best possible simulation for AP3 and to optimise the choice of input parameters 372 

for AP4 fracture simulation. 373 

AP3 presents intrinsic fracture network geometry variability. This observation emphasizes 374 

that averaging fracture parameters on the entire domain is not well suited to represent the 375 

complexity of the network. We observed that the length of fracture per sets and the density of 376 

fractures are parameters that vary the most here. The analysis of these variations allow to 377 

partition AP3 and AP4 in elementary zones and to synthesize the fracture network 378 
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characteristics in each of these domains. The following section defines how the TI, 379 

probability map and conditioning data were built. 380 

 Partitioning, training images and probability map for AP3 and AP4 381 

We divided AP3 in 5 elementary zones (EZ) based on visual inspection of the pavement (fig. 382 

5A-B). The number of fractures per EZ is synthesized in the figure 5. The proportion of 383 

fracture per elementary zone is available in table 1. A limited part of the fractures belongs to 384 

two neighbours adjacent elementary zones. This issue is quantified in table 1. 385 

A probability map with sharp boundaries (fig. 5B) was created for AP3. Sharp boundaries are 386 

justified by the variability of the network geometry, which is known from the visual 387 

inspection of the interpreted image. Smooth transitions could also be defined (see discussion). 388 

The input data to build the probability map is an image of the partition of the area of interest 389 

containing the different outcrops. In this image, the indexed zones (elementary zones EZ) are 390 

characterised by a distinctive colour.  391 

At the scale of a reservoir where some outcrops analogues and fracture tracing may be 392 

available, the “interpreted reality” interpreted reality of the network (e.g. a binary 393 

fracture/non-fracture image) can be directly used as a training image. We chose to ignore the 394 

tracing and to rely on parameters that are classically available attained through field 395 

observation without having access to drone images of an entire outcrop (i.e. orientation, 396 

spacing, abutment) and to compare the interpretation with the simulated network. In that 397 

respect fracture orientation were averaged to a single value. Hence, set 1 strikes N150 N090, 398 

set 2 strikes N000 N150 and set 3 strikes N090 N180. According to the outcrop partitioning, 399 

five training images were created (fig. 5C). In each training image, three facies corresponding 400 

to the three fracture sets were created. Set1 (N090) is green, set 2 (N150) is red and set 3 401 

(N000) is blue (fig. 5C). The topology is a crucial problem in fracture simulations because it 402 

influences the connectivity of the network. In the MPS simulations the abutments are 403 
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particularly well reproduced as they represent singular pixels arrangements that are efficiently 404 

taken into account. However, crosscutting relationships imply the use of a different facies at 405 

the intersection locus. This method respects and reproduces intersections during the 406 

simulation process. In AP3, the analysis of the topology relationships showed three main 407 

crosscutting interactions: 408 

- Long N150 crosscut long N000 fractures Long fractures from Set 2 and Long fractures 409 

from Set 3 mutually crosscut  (conjugated sets) 410 

- N000 Set 3 crosscut N090 Set 1 411 

- N150 Set 2 crosscut N090 Set 1 412 

To take into account these topological parameters a different facies colour was attributed to 413 

the crosscutting locus (the crossing facies, fig. 6). When the MPS realization will be later 414 

discretized, the younger fractures will be truly represented as continuous segments. The older 415 

fractures will be cut in pieces but their alignment will be, in most of the case, maintained 416 

during the simulation process.  417 

 Dimensions of the simulation grids and of the training images 418 

The dimensions of the simulation grid for AP3 and of each training image (in pixels) are 419 

shown in fig.5. The number of pixels is automatically determined by the size of the original 420 

drawing made by the geologist.  421 

The size of the input training image does not generally influence the simulation. However, it 422 

has to be chosen sufficiently large with respect to the complexity of the patterns in order to 423 

get reliable spatial statistics. The DS method tends to identify patterns (i.e. dn’s see above) in 424 

the TI and to paste the central node of them into the simulation grid. However, at a constant 425 

resolution and specifically for fractures patterns, it is likely that a 50 × 50 m training image 426 

will carry more complexity and variability than a 10 × 10 m one. This parameter should be 427 
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taken into consideration when starting digitizing training images, especially when spacing 428 

between fractures is not consistent across the simulation grid.  429 

 Long fractures conditioning 430 

Because the MPS method has the tendency to cut long individual segments into smaller 431 

pieces, the fractures longer than 40 meters – the ones visible from satellite/drone imagery in 432 

AP3 – where were isolated and considered as hard conditioning data (fig. 5D). This threshold 433 

was arbitrarily determined from the dataset we have. In AP3, less than 8% of the fractures are 434 

longer than 40 m. 435 

In AP3, long fractures belong only to the sets oriented/striking N000 N180 or N150 (fig. 5D). 436 

18 N000 N180 fractures (3% of the whole) and 30 N150 fractures (5% of the whole) were 437 

digitized and integrated as conditioning data in the simulation.  438 

   439 

III.4 Outcrop scale simulations 440 

 III.4.1 Impact of conditioning data on AP3 simulations 441 

In AP3, the 48 long fractures were manually digitized and imported into the simulation grid as 442 

categorical properties to be considered as hard conditioning data during the MPS simulation 443 

process. The MPS simulation is consequently in charge of stochastically populating the 444 

smaller factures within the grid.  445 

Results of the influence of these data are presented in figure 7. The principal simulation 446 

parameters in the considered scenarios (with and without conditioning data) were set up 447 

identical (constant acceptance threshold (5%), constant percentage of scanned TI (25%) and 448 

constant number of neighbours (50)).  449 

Results showed that the realisation without conditioning data creates 20% less fractures 20% 450 

less number of fractures than the original outcrop reference. The simulation with conditioning 451 

data creates 9% less fractures 9% less number of fractures than AP3, which makes the 452 
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simulation satisfactory which allow to better replicate the long fracture than a non-453 

conditioned simulation. It is also remarkable that the non-constrained simulation represents 454 

only 23 fractures above 40 meters (compared to the 48 long fractures interpreted on the AP3 455 

outcrop). In this simulation the long fractures are essentially located in the zone 3 of the 456 

outcrop. Because the simulation is a stochastic process, the location of the long fractures is 457 

randomly determined in the absence of hard conditioning data. Considering hard-conditioning 458 

data also gives a more realistic representation of the fracture network.    459 

 460 

 III.4.2 Sensitivity analysis on the AP3 simulation parameters 461 

 Simulation parameter set-ups, duration and analyses conducted on the results 462 

Simulation parameters were varied for each simulation in order to emphasize their effect on 463 

each realisation. One realisation per test was performed during this analysis. The goal of this 464 

analysis is to show how the different parameters influence the reproduction of fracture 465 

segments and not to evaluate how good is the matching between the simulation and the 466 

reference. 467 

The MPS realisations are pixelated images. The sensitivity analysis is based on the discrete 468 

segments extracted from these pixelated images (see II.4).  All of the simulations present a 469 

variable percentage of segment lengths that are below the minimal fracture length interpreted 470 

in the AP3 outcrop (i.e. simulation noise). Consequently all segments smaller than 2.2m 471 

where removed from the simulation results. A length frequency distribution was compiled for 472 

each of the generated simulations.  473 

The influence of the number of neighbours was evaluated trough 7 simulations (SIM1 to 474 

SIM7). The acceptance threshold and the number of neighbours was investigated by 475 

comparing 8 simulations (SIM8 to SIM15) where the scanned fraction of the TI was fixed at 476 

25%. The percentage of the scanned fraction of the TI was combined with the 2 two other 477 
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simulation parameters. This combination was tested over 12 simulations (SIM16 to SIM27). 478 

The models set-ups and the duration of the simulations are presented in (table 2). Tt It is 479 

notable that SIM8 / SIM9, SIM10 / SIM11 and SIM13 / SIM14 produce exactly the same 480 

network despite the modification of the simulation parameters. Also The MPS algorithm 481 

successfully performed SIM16 but the segment extraction generated an error preventing the 482 

discretisation of all of the objects.  483 

The total amount of generated fractures segments was counted and compared with the total 484 

number amount of fracture traces interpreted from the original outcrop. A deviation of 10% 485 

compared to the original amount of interpreted fractures is considered as a satisfactory result 486 

as it is very close to the reference amount of fractures. A deviation of 20% compared to the 487 

original amount of interpreted fractures is considered as an acceptable result. This deviation is 488 

consequent but can be adjusted by varying the simulation parameters. A deviation above 20% 489 

was rejected as a complete reconsideration of the parameters is required. Results are 490 

synthesized in table 3.  491 

The total amount of segments was initially counted in the entire simulation domain. The sum 492 

of segments per part is constantly higher than the initial total amount of segments because 493 

segments cutting a sharp boundary are divided in two - segments falling within two 494 

elementary zones and are consequently counted twice. The number of generated fractures per 495 

simulation zone was also computed and the same deviation thresholds were applied to 496 

evaluate if the simulation is satisfactory, acceptable or rejected. Tables 4 to 6 synthesize the 497 

sensitivity analysis conducted of 27 realisations of the AP3 outcrop.  498 

The length of the segments have been computed for each realisation and are presented in 499 

figure 8.  500 
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The influence of the hard conditioning data and of the drawing of the training image was also 501 

quantitatively investigated and compared respectively with the length of the generated 502 

segments and with the amount of segments generated per zone. 503 

 Summary of the results 504 

Increasing the number of neighbours rises lengthens the computation time (table 2, SIM 1 to 505 

7). A small amount of neighbours results in a noisy simulation (table 2, SIM1). The contrary 506 

leads to a downsampling of the generated segments that become longer than the interpreted 507 

fractures in AP3 (table 2, SIM7). Decreasing the acceptance threshold leads to an increase of 508 

the simulation time (table 2 SIM8-15). Increasing the scanned fraction of the TI is the most 509 

time consuming operation (table 2 SIM17-27). 510 

Increasing the number of neighbours only is generally not sufficient to accurately generate a 511 

satisfactory or acceptable total amount of fractures (table 3). Increasing the scanned fraction 512 

of the TI produces in all cases the closest total number of fractures compared to the reference 513 

outcrop (table 3).  514 

The counting of fractures in simulation zones revealed that set 2 and set 3 in zone 1, set 3 in 515 

zone 4 and set 1 in zone 5 are generally underestimated during the simulation process. In 516 

contrast, fracture set 1 in zone 2 is generally overestimated. The consistency of the error over 517 

almost the entire set of simulations indicates an issue on the training image representation 518 

(table 4-6). Increasing the scanned fraction of the TI generally allows to better represent a low 519 

proportion of fracture facies within a TI (Zone TI5, set 2, table 6).  520 

An acceptance threshold below 5% leads to an overestimation of the number of small 521 

fractures (between 0-10 m), fig 8. In this case, amount of segments between 0-20 m is 522 

generally close to the reality. Increasing the scanned fraction of the TI produces the highest 523 

quantity of fractures ranging from 0-10 m (fig. 8). Increasing the number of neighbours and 524 

the percentage of the scanned TI will result in an increase of the length of the fractures used 525 
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as hard conditioning data. However, the fracture elongation does not affect all of the hard 526 

conditioned fractures and represents a very small percentage of the whole modelled fracture 527 

network. 528 

 529 

 III.4.3 Attempt at an optimisation: OPT1 530 

OPT1 was parameterised in regard of the previous observations in order to generate a 531 

simulation that is the closest-to-reality possible. For this purpose, the amount of fractures 532 

from set 2 and set 3 drawn in TI1 and set 3 drawn in TI4 was increased. In contrast, the 533 

amount of fractures from set 1 drawn in TI2 was decreased significantly (fig. 9). We choose 534 

to setup the number of neighbours at 50 and the acceptance threshold at 2%. TI1 and TI4 will 535 

be scanned at 75% and the rest of the TIs will be scanned at 50% (table 2).      536 

The simulation time for the proposed simulation is 2 min 31s (table 2). The total amount of 537 

generated fractures is satisfactory compared to the amount of fractures interpreted in the 538 

original outcrop. 539 

To evaluate the robustness of the optimised simulation, 6 realisations using the same 540 

parametrisation were generated for OPT1. The total amount of fractures generated for these 541 

simulations always fall below the 10% deviation compared to the reference outcrop.  542 

The number of segments comprised between 0-20 m in OPT1 is slightly above the 543 

satisfactory deviation limit. As per all the generated simulations, the number of fractures 544 

between 2.21 m and 10 m is largely overestimated.  545 

OPT1 contains a more satisfactory and acceptable fracture count than any other simulation 546 

generated before (table 6). The amount of segments generated in zone 1 and 2 for set 1 is 547 

slightly overestimated. In zone 3, OPT1 fails to represent the amount of fractures for set 1 548 

(25% deviation) and for set 3. Fracture set 1 in zone 4 is largely overestimated.  549 

 550 
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 III.4.4 Evaluation of the AP3 and OPT1 simulations: P21 calculations 551 

Uncertainty analysis is required when performing simulations of geological parameters, 552 

especially far from data. The sensitivity analysis presented in this paper is a way to compare 553 

the MPS simulations with the reference outcrop.  554 

To reinforce the evaluation of the proposed method, we quantified the values of fracture 555 

intensity in the reference outcrop, in three selected AP3 MPS simulations and in the optimised 556 

simulation (OPT1) (fig. 10). The fracture intensity was classified by (Dershowitz and Herda, 557 

1992) in regard of i) the size and dimension (1D, 2D, 3D) of a selected zone of interest and ii) 558 

the number, length, area or volume of fractures within this selected zone. In this paper, we 559 

chose to calculate the P21 fracture intensity, which corresponds to the sum of all fracture 560 

lengths within a regularly discretized spaced space, with constant area boxes (10 × 10 m) 561 

covering the entire AP3 area of interest.  562 

Visually, the results show an apparent higher P21 intensity in the reference outcrop than in the 563 

simulations. However, zones of high intensity in the reference outcrop are generally well 564 

represented in SIM26 and in OPT1. This is in agreement with the results of the sensitivity 565 

analysis showing that SIM26 and OPT1 best represent the number of fractures present in the 566 

reference outcrop.  567 

The average fracture intensity in each simulation has also been computed and confirms the 568 

observations conducted during the sensitivity analysis. SIM1 and SIM7 present the lowest 569 

average fracture intensity (0.095 m
-1

 and 0.079 m
-1

 respectively) and SIM26 and OPT1 570 

present the highest fracture intensity (0.11 m
-1

 and 0.099 m
-1

  respectively). The average 571 

fracture intensity in the reference outcrop is higher than in any other simulations (0.126 m
-1

). 572 

However, this value remains close to the ones obtained in SIM26 and OPT1.  573 

The fact that the fractures have been simplified as straight lines in the simulations combined 574 

to a relatively small area of calculation (10 × 10 m) could be one element of explanation of 575 
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the observed fracture intensity variation between the reference outcrop and SIM26 and OPT1. 576 

This analysis strengthens the results obtained during the sensitivity analysis and demonstrates 577 

the capacity of the MPS method to represent with a high fidelity the geometry of a fracture 578 

network.        579 

 580 

 III.4.5 Using the sensitivity analysis results to model AP4 581 

As per AP3, AP4 present an intrinsic variability of the fracture network geometry. This 582 

outcrop was divided in 3 elementary zones (fig. 11A-B). According to AP4 partitioning, a 583 

probability map with sharp boundaries (fig. 11B) was created. For AP4, the configuration of 584 

the outcrop led to mask the area where no interpretation data were performed. In these 585 

particular zones a “no data value” was attributed and these masked areas were excluded 586 

during the modelling process. In AP4 three training images were created (fig. 11C). As per 587 

AP3, the size of the AP4 simulation grid was doubled compared to its original dimension 588 

(available in fig.11). In AP4, fractures longer than 40 meters were also considered as hard 589 

conditioning data. Here, less than 1.5% of the fractures are longer than 40m (fig. 11D).  In 590 

AP4, long fractures were found in the 3 sets and mainly in the south-eastern part of the 591 

outcrop (fig. 11D, elementary zone 6). 11 N000 N180 fractures (0.5% of the whole), 13 N150 592 

fractures (0.6% of the whole) and 9 N090 fractures (0.4% of the whole) were digitized and 593 

integrated as conditioning data into the simulation.  594 

Based on the results of the sensitivity analysis of AP3 we generated one simulation for the 595 

AP4 outcrop (fig. 12). The modelling parameters for SIM AP4-1 were selected as following: 596 

the number of neighbours was set up at 50 and the acceptance threshold at 2%. The 3 training 597 

images used in the simulation are presented in figure 12 and are considered as representative 598 

of the fracture arrangement in each region of the simulation. The scanning percentage of TI6 599 

and TI7 was set up at 50%. The scanning percentage of TI8 was set up at 100%. With this 600 
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configuration, the simulation lasts slightly more than 5 minutes. The fact of intensely 601 

scanning TI8 is probably responsible of this duration. The analysis was conducted on the total 602 

amount of segments generated and of segments per set of fractures. In AP4 the total number 603 

of segments is 1810. The simulation realises 1682 segments in total, which constitutes a 604 

satisfactory result. The original AP4 presents 252 segments striking N150 (set 1), 856 605 

segments striking N000 N180 (set 2) and 702 segments striking N090 (set 3). The results of 606 

simulation AP4-1 are always satisfactory or acceptable with 206 segments striking N150 (set 607 

1), 834 segments striking N000 N180 (set 2) and 642 segments striking N090 (set 3). A 608 

detailed analysis was not conducted here because AP4 contains a lot of small fracture 609 

intersections (especially in the TI8 zone) and this makes the segment extraction a complex 610 

process. However, these results are promising for the future.     611 

 612 

IV] Smooth transitions between elementary zones: towards reservoir scale 613 

models to manage uncertainties 614 

The strength of the method proposed here relies on the use of a probability maps and on the 615 

opportunity to consider multiple training images in a single realisation to generate non- 616 

stationary models of fracture network geometries. In the case of AP3 and AP4, the probability 617 

maps are essentially constrained by the variation of geometry of the fracture networks 618 

observed on the geological interpretation made on the drone imagery. Consequently, the 619 

defined areas are pragmatically bounded and the nature of the limit between one zone and 620 

another is a sharp boundary.  621 

AP3 and AP4 outcrops are separated by about 2.5 km and very little is known about the 622 

fracture network geometry between these two locations. Assuming that there is no major 623 

structural deformation (fold or faults) that may cause a change in fracture geometry at the 624 

close vicinity of the outcrop “reality”, the zones initially defined on the AP3 and AP4 outcrop 625 
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can be extended to the limits of the reservoir-scale model boundaries (fig. 13). In this 626 

particular case, filling the gap between the two outcrops appears to define how the transition 627 

between one side of the simulation grid and the other should be determined.  628 

Fractures are localised objects that do not need to be necessarily continuous from one 629 

simulation zone to another. The constant higher proportion of the non-fractured matrix facies 630 

versus localised and thin fracture elements ensures the coherency and relative compatibility 631 

from one simulation region to another. The idea of the simulation grid region partitioning was 632 

re-evaluated and an alternative method, was proposed here. Contrarily to the definition of 633 

sharp boundaries in the probability maps used for AP3 and AP4, a probability map with 634 

smooth transitions is defined as follows. An ensemble of elementary zones covering a part of 635 

the simulation grid is defined. Each TI corresponds to one elementary zone, which is 636 

simulated using exclusively that TI. The probabilities in these zones are then set to one for a 637 

specific TI and to zero for the other TIs. The remaining part of the simulation grid is divided 638 

in transition zones, for which one has to define which TIs may be involved. In a transition 639 

zone, the probabilities of the involved TIs are set proportional to the inverse distance to the 640 

corresponding elementary zones. This process creates smooth transitions in low constrained 641 

area decreasing the influence of one TI towards another (from one elementary zone to 642 

another). 643 

No faults or folds can be initially identified between AP3 and AP4 to condition the drawing of 644 

the probability map. In this case, a rectangular compartment representing a gradual 645 

probability transition to use the training image associated to one outcrop or to the other filled 646 

the blank space between the two outcrops. For instance, fig 13E shows in the 647 

Transition_Zone_1 a decreasing probability to use TI1 from left to right (i.e. zone 1 to zone 6) 648 

and conversely to use TI6 from right to left.  649 
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Recently, investigations conducted on the Rio Grande do Norte geological map (Angelim et 650 

al., 2006), demonstrated the presence of a fault crossing the simulation grid near the AP3 651 

zone. This structure may explain the variability of fracture geometry from AP3 (EW stylolites 652 

and strong presence of conjugated NS/NW-SE system) to AP4 (EW stylolites associated to 653 

NS fracture system, the NW-SE conjugated system is here subordinate). Further geological 654 

investigations need to be conducted in this particular place to proof the influence of this fault 655 

on the network geometry. However, fig 13F shows an alternative probability map taking into 656 

account this interpretation and present how flexible the probability map can be. The proposed 657 

method demonstrates its adaptability in various geological contexts.    658 

 659 

V] A method to create a 3D DFN out of 2D MPS realisations  660 

The MPS simulations presented in this paper are on the form of 2D pixelated maps. 661 

MATLAB codes were developed to extract starting and end point coordinates (georeferenced) 662 

of a series of aligned colorized pixels that represent a fracture trace from these images. 663 

Transforming this output in geologically realistic 3D surfaces is not easy. Karimpouli et al., 664 

(2017) studied samples coming from coalbed methane reservoirs in the fractured Late 665 

Permian Bowen Basin in Australia. They realised multiple 2D and pseudo 3D images (i.e. 666 

orthogonal 2D images) and used the cross-correlation based simulation (CCSIM) to represent 667 

the internal organisation of coal cleats and the heterogeneity of the coal matrix in 3D. Their 668 

approach greatly improved the understanding of the internal complexity of coal samples and 669 

gives better results than classical DFN’s based on averaged distributions. However, their 670 

method requires an important initial amount of information (i.e. CT scans slices used as 671 

training images) that is generally not available at a larger scale. The use of MPS in 3D seems 672 

particularly not suited for fracture network representation because: i) they require to associate 673 

fractures from 2D map view and from 2D section view (3D or pseudo-3D), ii) it appears 674 
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difficult to consider isolated fractures in this type of approach and iii) in the subsurface 675 

fracture height and/or fracture length are generally unknown.  676 

To Tackle these problems we choose to use multiple 2D MPS-generated fracture networks. In 677 

the presented approach, the 3D is obtained by extruding 3D fracture planes in fracture units 678 

(fig. 14). In this approach we consider that fractures are entirely bound to the units, which can 679 

appear as a limitation if isolated fractures occurs inside a layer. However, we can consider 680 

variable levels of fracture units. Figure 14 presents an hypothetic scenario where red fractures 681 

are confined to a large fracture unit (FU1) crosscutting smaller ones (FU4 containing also 682 

smaller red fractures). In such a representation, one 2D planar simulation is required at each 683 

top mechanical unit to generate a new set of fractures.  684 

In real-world subsurface configurations, mechanical units can be extracted from well logs 685 

(resistivity, density, lithology; Laubach et al., 2009). The fracture height distribution, referred 686 

as fracture stratigraphy (Hooker et al., 2013) requires here a particular attention and is 687 

difficult to extract from borehole data. In outcrops, the use of vertical cliffs adjacent to 2D 688 

horizontal pavement should be a way to evaluate these heights and to constrain the 3D model.  689 

In outcrops, the resort to vertical cliffs adjacent to 2D horizontal pavements is required to 690 

define fracture height. This method is already implemented in gOcad-SKUA software as a 691 

macro that extrudes planes of a single fracture family (i.e. all the red fractures in AP3) 692 

vertically into a bounded volume (fig. 14). More developments are in process to generate 693 

oblique planes and to be able to extrude planes in portions of the fracture sets.  694 

 695 

V] Conclusions 696 

In this paper a new method to predict the geometry of a natural fracture network using the 697 

multiple-point statistic algorithm is presented. The method provides stochastic realisation 698 

depicting a realistic non-stationary fracture network arrangement in 2D based on the use of 699 
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multiple, simplified, small training images capturing the natural fracture attributes in specific 700 

zones defined by a probability map. Probability maps are adaptable and follow geological 701 

rules of fracture type and arrangement distribution specific to various tectonic contexts (i.e. 702 

faulting, folding and poor deformation context/no fault, no folds). We developed methods to 703 

be able to consider transition zones into the probability maps (e.g. zones far from hard data) 704 

that allow simulating fracture network geometry at a larger scale (i.e. reservoir scale).  705 

The realisations obtained from 2D MPS constitute a statistical laboratory close enough to the 706 

reality to be tested in terms of fracture mechanical parameters and response to flow. 707 

Comparison between mechanical aperture calculation, fluid flow simulations conducted on 708 

both “reality” fracture network interpretations performed on drone imagery and series of MPS 709 

realisations gives similar results.  710 

The method proposed here is applicable to all rock types and to a wide range of tectonic 711 

contexts. Initially calibrated using outcrop data, the method is fully adaptable to the 712 

subsurface in order to better characterise fractures in water, heat or hydrocarbon reservoirs. 713 

The challenge there, remains on the definition of the different training images on which the 714 

simulation is based. Very few data is are generally available in the subsurface and geological 715 

rules need to be found to define the geological characteristics of the fracture network 716 

(orthogonal or conjugate network) and the associated fracture attributes (length, height, 717 

spacing, density, topology).  718 
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 733 

Appendix A 734 

The DeeSse algorithm (Straubhaar et al., 2011) was used in this paper to reproduce existing 735 

fracture network interpreted from outcrop pavements. The following pseudocode  developed 736 

by Oriani et al., (2017) have been modified to explain how the algorithm is processing the 737 

simulation of fracture. Specific terms can be found in section II.1 of the present paper. In our 738 

study the simulation follows a random path into the simulation grid. This grid is step by step 739 

populated by values (fracture facies in our case) sampled in the training image. The algorithm 740 

proceeds according to the following sequence :  741 

1. Selection of a random location x in the simulation grid that has not yet been simulated 742 

(and not corresponding to conditioning data points, already inserted in the grid). 743 

2. To simulate V(x)  the fracture facies into the simulation grid: The pattern dn(x) = 744 

(x1,V(x1)),…,(xn,V(xn)) formed by at most n informed nodes the closest to x is retrieved. 745 

If no neighbours is assigned (at the beginning of the simulation), dn(x) will then be empty: 746 

in this case, assign the value V(y) of a random location y in the TI to V(x), and repeat the 747 

procedure from the beginning. 748 

3. Visit a random location y in the TI and retrieve the corresponding data event dn(y). 749 
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4. Compare dn(x) to dn(y) using a distance D(dn(x), dn(y)) corresponding to a measure of 750 

dissimilarity between the two data events.  751 

5. If D(dn(x), dn(y)) is smaller than a user-defined acceptance threshold T, the value of 752 

V(y)is assigned to V(x). Otherwise step 3 to step 5 are repeated until the value is assigned 753 

or an given fraction F of the TI, is scanned.  754 

6. if F is scanned, V(x) is defined as V(y), with y the scanned location minimising the 755 

distance D(dn(x), dn(y)). 756 

7. Repeat the whole procedure until all the simulation grid is informed. 757 

 758 

 759 

Figure captions 760 

Figure 1: Direct Sampling method workflow applied to fracture network modelling (modified 761 

from Meerschman et al., 2013)[PB-C7]. 762 

 763 

 764 

Figure 2: Location of the area of interest and of the studied pavements near Apodi area (red 765 

star).  766 
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Table 1: Outcrop characteristics and fracture parameters collected in AP3 and AP4 772 

 773 

 774 

 775 

 776 

 777 

 778 

 779 

 780 

 781 

 782 

 783 

 784 

Orientation

X Y NS (m) EW (m) Min (m) Max (m)

650601 9387908 NNW-SSE 600 300 2,21 123
Elementary 

zone 1

Elementary 

zone 2

Elementary 

zone 3

Elementary 

zone 4

Elementary 

zone 5

Elementary 

zone 1

Elementary 

zone 2

Elementary 

zone 3

Elementary 

zone 4

Elementary 

zone 5

Elementary 

zone 1

Elementary 

zone 2

Elementary 

zone 3

Elementary 

zone 4

Elementary 

zone 5
60% 26% 18% 70% 87% 37% 14% 80% 23% 13% 3% 60% 2% 7% 0%
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Figure 3: Data acquired in the area of interest in pavements AP3. A) ortho-rectified high-resolution pavement aerial images acquired with a 785 

drone, B) fracture interpretation on ortho-rectified images, C) fracture orientation calculated from the north in GIS-based environment. 786 

Corresponding rose diagram for both outcrops, D) length of each fracture trace and E) fracture topology relationship for each pavement observed 787 

on fracture network interpretation.  788 

 789 

 790 

 791 

 792 
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Figure 4: Data acquired in the area of interest in pavements AP4. F) ortho-rectified high-resolution pavement aerial images acquired with a 793 

drone, G) fracture interpretation on ortho-rectified images, H) fracture orientation calculated from the north in GIS-based environment. 794 

Corresponding rose diagram for both outcrops, I) length of each fracture trace and J) fracture topology relationship for each pavement observed 795 

on fracture network interpretation 796 

 797 

 798 
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 800 

 801 

  802 
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Figure 5: A) Partitioning of AP3 in 5 elementary zones (EZ). This partition is defined (with 803 

respect to fracture orientation (fracture facies), fracture density and geometry variability over 804 

the entire simulation domain. B) probability map and associated statistics for each EZ. C) 805 

training images associated with the partition of AP3. In each EZ, the corresponding training 806 

image has a probability (pTI) of 1 to be used. In this zone the other training images are not 807 

used (pTI = 0). D) hard conditioning data for AP3. All the fractures longer than 40 m are 808 

considered deterministically in the simulation process   809 

 810 
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Figure 6: Comparison between results obtained without constraining the topology and with 811 

topological facies constraints.  812 

 813 

 814 

Figure 7: Visual comparison between: A) the reference fracture network interpretation (AP3), 815 

B) the extraction of the longer segments (50 fracture longer than 40m), C) a simulation 816 

conditioned by the long segments, D) a simulation not conditioned by the long segments 817 

 818 
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Table 2: Simulation parametrisation, models set-ups and duration (in seconds) of each run. 819 

 820 

 821 

Table 3: Comparison between the total amount of segments interpreted in the reference 822 

outcrop and in the different sets of simulations (tested parametrisation). Evaluation of the 823 

results in terms of satisfactory (green symbol), acceptable (orange symbol) or non-satisfactory 824 

(red symbol) 825 

 826 

 827 

 828 

 829 

 830 

 831 
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 833 
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Table 4: Results of the sensitivity analysis on the influence of the number of neighbours. The 837 

table presents the number of segments per simulation zone for AP3 (used as reference). Red 838 

symbols show a total amount of segments of the considered set in the considered zone 839 

deviating to more than 20% from the reference case. Yellow symbols show a deviation of 840 

more than 10% from the reference case. Green symbols do not deviate significantly from the 841 

reference outcrop interpretation.  842 

 843 

 844 

 845 

 846 

 847 

 848 

 849 

 850 

Reference SIM1 SIM2 SIM3 SIM4 SIM5 SIM6 SIM7

Zone TI1 Set1 156  ≈ ≈    

Set2 95   ≈    

Set3 6       

Zone TI2 Set1 22       ≈

Set2 12       

Set3 57  ≈    ≈ 

Zone TI3 Set1 20       

Set2 113  ≈  ≈ ≈  

Set3 2    ≈ ≈  

Zone TI4 Set1 25      ≈ 

Set2 10     ≈ ≈ ≈

Set3 3       ≈

Zone TI5 Set1 39  ≈     

Set2 2       ≈

Set3 0       

Satisfactory total No Yes Yes No No No No

# satisfactory 3 3 5 4 4 2 4

# acceptable 0 4 2 2 3 3 2

# not acceptable 12 8 8 9 8 10 9

Number of neighbours 

Segments per parts
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Table 5: Results of the sensitivity analysis on the influence of the number of neighbours and 851 

of the variation of the acceptance threshold. The colour code is the same as the one used in 852 

table 4. 853 

 854 

Table 6: Results of the sensitivity analysis on the influence of the number of neighbours, of 855 

the variation of the acceptance threshold and of the variation of the percentage of the scanned 856 

fraction of the training image. The colour code is the same as the one used in table  857 

 858 

Reference SIM8 SIM9 SIM10 SIM11 SIM12 SIM13 SIM14 SIM15

Zone TI1 Set1 156   ≈ ≈    

Set2 95        

Set3 6        

Zone TI2 Set1 22        

Set2 12 ≈ ≈      

Set3 57        ≈

Zone TI3 Set1 20        

Set2 113   ≈ ≈ ≈   ≈

Set3 2 ≈ ≈   ≈   

Zone TI4 Set1 25        

Set2 10   ≈ ≈ ≈ ≈ ≈ 

Set3 3        

Zone TI5 Set1 39        

Set2 2 ≈ ≈ ≈ ≈  ≈ ≈ ≈

Set3 0        

Satisfactory total Yes Yes Yes Yes No No No Yes

# satisfactory 5 5 4 4 4 5 5 5

# acceptable 3 3 4 4 6 2 2 3

# not acceptable 7 7 7 7 9 8 8 7

Number of neighbours + Acceptance threshold

Segments per parts

Optimisation

Reference SIM16 SIM17 SIM18 SIM19 SIM20 SIM21 SIM22 SIM23 SIM24 SIM25 SIM26 SIM27 OPT1

Zone TI1 Set1 156            

Set2 95     ≈    ≈   

Set3 6            

Zone TI2 Set1 22            

Set2 12            

Set3 57     ≈    ≈   ≈

Zone TI3 Set1 20        ≈    

Set2 113    ≈      ≈ ≈ 

Set3 2 ≈ ≈ ≈     ≈ ≈   

Zone TI4 Set1 25    ≈      ≈ ≈ 

Set2 10    ≈     ≈   

Set3 3         ≈   

Zone TI5 Set1 39 ≈ ≈ ≈      ≈   ≈

Set2 2 ≈ ≈ ≈     ≈ ≈   

Set3 0            

Satisfactory total Yes Yes Yes No No Yes Yes Yes Yes Yes Yes Yes

# satisfactory 5 5 5 4 4 8 8 6 2 7 7 8

# acceptable 3 3 3 3 2 0 0 3 7 2 2 2

# not acceptable 7 7 7 8 9 7 7 6 6 6 6 5

Group3

Segments per parts

Number of neighbours + Acceptance threshold + % TI scan

Group 1 Group 2
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Figure 8: Fracture length distributions tested during the sensitivity analysis. A) fracture 859 

length distribution for SIM1 to SIM7, B) fracture length distribution for SIM10, SIM12, 860 

SIM13, SIM15 and C) fracture length distribution for SIM16, SIM17, SIM20, SIM21, SIM22, 861 

SIM24, SIM5, SIM26. 862 

 863 
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Figure 9: Comparison of the training images 1, 3 and 4 used during the sensitivity analysis 864 

(27 simulations) and their modification for SIM 3 865 
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Figure 10: Comparison of the fracture intensity (P21) calculated in the reference outcrop and 880 

in four select MPS simulations 881 
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Figure 11: A) Partitioning of AP4 in 3 EZ. B) probability map and associated statistics for 898 

each EZ. C) training images associated with the partition of AP4. D) hard conditioning data 899 

for AP4 900 
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Figure 12: Comparison of the AP4 original outcrop with a MPS simulated version AP4-1 910 
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Figure 13: Smooth probability map at the reservoir scale (combination of AP3 and AP4). A) 930 

Relative position of AP3 and AP4 outcrops. B) Apodi fault added into the area of interest. 931 

Extension of the probability map regions in AP3 and AP4 without geological drivers C) and 932 

with the influence of the Apodi fault D). Probability maps with smooth transition zones 933 

without geological drivers E) and with the influence of the Apodi fault F).  934 

 935 

 936 

 937 

 938 
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Figure 14: Fracture network extrusion in 3D. The method consists of identifying the different 939 

fracture units (FU) on which the fracture height is supposed to be constant (A). This method 940 

requires one simulation per top fracture unit (SIM SLICES). (B) is a 3D DFN based on the 941 

hypothetical case (A) and realised in gOcad software. (C) is a cross section realised in the 942 

centre of the 3D model in the E-W direction. 943 
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