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Abstract. Recent seismological observations focusing on the collapse of an impulsive wavelet revealed the existence of small-

scale random heterogeneities in the earth medium. The radiative transfer theory (RTT) is often used for the study of the prop-

agation and scattering of wavelet intensities, the mean square amplitude envelopes through random media. For the statistical

characterization of the power spectral density function (PSDF) of the random fractional fluctuation of velocity inhomogeneities

in a 3D space, we use an isotropic von Kármán type characterized by three parameters: the root mean square (RMS) fractional5

velocity fluctuation, the characteristic length, and the order of the modified Bessel function of the second kind, which lead

to the power-law decay of PSDF at wavenumbers higher than the corner. We compile reported statistical parameters of the

lithosphere and the mantle based on various types of measurements for a wide range of wavenumbers: photo scan data of rock

samples, acoustic well log data, and envelope analyses of cross-hole experiment seismograms, regional seismograms and tele-

seismic waves based on the RTT. Reported exponents of wavenumber are distributed between –3 and –4, where many of them10

are close to –3. Reported RMS fractional fluctuations are of the order of 0.01∼0.1 in the crust and the upper mantle. Reported

characteristic lengths distribute very widely, however, each one seems to be restricted by the dimension of the measurement

system or the sample length. In order to grasp the spectral characteristics, eliminating strong heterogeneity data and the lower

mantle data, we have plotted all the reported PSDFs of the crust and the upper mantle against wavenumber for a wide range

10−3 ∼ 108 km−1. We find that the spectral envelope of those PSDFs is well approximated by the –3rd power of wavenumber.15

It suggests that the earth medium randomness has a broad spectrum. In theory, we need to re-examine the applicable range

of the Born approximation in the RTT when the wavenumber of a wavelet is much higher than the corner. In observation, we

will have to measure carefully the PSDF on both sides of the corner. We may consider the obtained power-law decay spectral

envelope as a reference for studying the regional differences. It is interesting to study what kinds of geophysical processes

created the observed power-law spectral envelope in different scales and in different geological environments in the solid earth20

medium.
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1 Introduction

The first image of the solid earth is composed of spherical shells, for example, PREM (Dziewonski and Anderson, 1981).

As seismic networks were deployed on the regional scale and worldwide, the velocity tomography based on the ray tracing

method revealed 3D heterogeneous structure in various scales; however, spatial variations of the resultant velocity structure

are essentially smooth compared with seismic wavelengths. Aki and Chouet (1975) first put a focus on long lasting coda5

waves of small earthquakes and interpreted them as scattered waves by small-scale random heterogeneities. They proposed

to measure the scattering coefficient g, the scattering power per unit volume as a measure of medium heterogeneity. They

analyzed the mean square (MS) amplitude time trace of coda waves as an incoherent sum of scattered waves’ power by using

the Born approximation (e.g. Chernov, 1960), which is a simplified version of the radiative transfer theory (RTT). There have

been many measurements of the total scattering coefficient giso supposing isotropic scattering (e.g. Sato, 1977a) in various10

seismo-tectonic environments. The total scattering coefficient of S-waves is reported to be of the order of 10−2 km−1 for

1∼ 20Hz in the lithosphere, and it marks a higher value beneath active volcanoes (e.g. Sato et al., 2012; Yoshimoto and Jin,

2008). There were precise measurements of regional variations in giso as Carcolé and Sato (2010) in Japan and Eulenfeld and

Wegler (2017) in US. Hock et al. (2004) analyzed medium heterogeneity in Europe from the analyses of tele-seismic waves

using the modified energy flux model (Korn, 1993). There were also measurements of the anisotropic scattering coefficient15

from the analysis of S coda envelopes (e.g. Jing et al., 2014; Zeng, 2017).

Aki and Chouet (1975) derived the angular dependence of the scattering coefficient of scalar waves from the power spectral

density function (PSDF) of the fractional velocity fluctuation using the Born approximation. Sato (1984) extended the envelope

synthesis of scalar waves to the the whole envelope synthesis of 3-component seismograms from the P onset to S coda on the

bases of the single scattering approximation of the RTT. His syntheses well explain how seismogram envelopes in different20

back azimuths vary depending on the source fault mechanism. Extension to the multiple scattering case was developed by using

Stokes parameters (e.g. Margerin et al., 2000; Margerin, 2005; Przybilla et al., 2009; Sanborn et al., 2017). We also note that

the Monte Carlo simulation was developed to solve stochastically the RTT (e.g. Hoshiba et al., 1991; Gusev and Abubakirov,

1987; Yoshimoto, 2000). For the data processing, it is more appropriate to stack MS envelopes of observed seismograms for

comparison with the averaged intensity time traces stochastically synthesized by the RTT (e.g. Shearer and Earle, 2004; Rost25

et al., 2006; da Silva et al., 2018) .

When the center wavenumber of a wavelet increases much larger than the corner wavenumber of the PSDF, the wavelet

around the peak value is mostly composed of narrow angle scattering around the forward direction. In such a case, the Born

approximation becomes inappropriate; however, the phase shift modulation based on the parabolic approximation is useful,

which is called the phase screen approximation. As an extension of the RTT with the phase screen approximation, the Markov30

approximation was also used for the analysis of envelope broadening and peak delay with increasing travel distance (e.g.

Sato, 1989; Saito et al., 2002; Takahashi et al., 2009). Kubanza et al. (2007) measured regional differences in the lithospheric

heterogeneity from the partitioning of seismic energy of tele-seismic P waves into the vertical and transverse components based

on the Markov approximation.
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There have been various kinds of measurements of the PSDF of the random velocity fluctuation, where the PSDF is often

supposed to be a von Kármán type. In the following section, the main objective is to compile reported PSDF measurements

in various scales in different geological environments of the solid earth: photo scanning of small rock samples, acoustic well

logs, array analyses of tele-seismic waves; waveform analyses using FD simulations, analyses of seismogram envelopes on the

basis of the RTT. We enumerate their statistical parameters and plot their PSDFs against wavenumber. We will show that the5

envelope of all the PSDFs is well approximated by a power-law decay curve. Then, we will discuss the results obtained and a

few problems in the envelope synthesis theory for such random media and the geophysical origin of such power spectra.

2 Statistical characterization of random media

We consider the propagation of scalar waves as a simple model, where the inhomogeneous velocity is given by V (x) =

V0(1+ξ(x)). The fractional fluctuation ξ(x) is supposed to be a random function of space. We imagine an ensemble of random10

media {ξ(x)}, where 〈ξ〉= 0. Angular brackets mean the ensemble average. We suppose that random media are homogeneous

and isotropic, then we statistically characterize them by using the auto-correlation function (ACF):

R(x) =R(r) = 〈ξ(y)ξ(y+x)〉 , (1a)

where r = |x|. The MS fractional fluctuation as a measure of the strength of randomness is supposed to be small, ε2 ≡R(0)�
1. The Fourier transform of ACF gives the PSDF:15

P (m) = P (m) =

∞∫∫∫
−∞

R(x)e−imxdx, (1b)

where wavenumber m= |m|. In some literature, (2π)−3 is used as a prefactor in the righthand side of (1b).

2.1 Several types of random media

There are several types of PSDF and ACF characterized by a few parameters.

von Kármán-type20

The ACF is written by using a modified Bessel function of the second kind of order κ and characteristic length a:

R(r) =
21−κ

Γ(κ)
ε2

( r
a

)κ
Kκ

( r
a

)
for κ > 0, (2a)

which is an exponential type R(r) = ε2e−r/a when κ= 1/2. In the case of space dimension d, the PSDF is

P (m) =
2dπ

d
2Γ(κ+ d

2 )ε
2 ad

Γ(κ)(1+ a2m2)
κ+ d

2

for κ > 0

∝m−2κ−d for m� a−1. (2b)25
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Figure 1. (a) Log-log plot of PSDF vs. wavenumber m in 3-D space (von Kármán-type, κ=0.1, 0.5 and 1; Henyey-Greenstein type, HG,

κ=0; Gaussian type, G). (b) Linear plot of ACF vs. lag distance r.

The PSDF obeys a power-law decay at large wavenumbers: P (m)∝m−2κ−3 for the 3D case and P (m)∝m−2κ−1 for the 1D

case, where κ corresponds to the Hurst number. In the following we will basically use a von Kármán-type for characterizing

the earth medium heterogeneity.

Especially for an anisotropic case, we define the von Kármán-type PSDF in 3D (e.g. Wu et al., 1994; Nakata and Beroza,

2015):5

P (m) =
23π

3
2Γ(κ+ 3

2 )ε
2 axayaz

Γ(κ)
(
1+ a2xm

2
x+ a2ym

2
y + a2zm

2
z

)κ+ 3
2

for κ > 0. (3)

Henyey-Greenstein type

For a case formally corresponding to κ= 0 of the von Kármán-type PSDF, we define the Henyey-Greenstein type ACF and

PSDF in 3D (Henyey and Greenstein, 1941):10

R(r) = ε2K0

( r
a

)
, (4a)

P (m) =
2π2ε2a3

(1+ a2m2)3/2
≈ 2π2ε2m−3 for m� a−1. (4b)

Note that parameter ε2 characterizes P but ε2 6=R(0) since R(r) diverges as r→ 0.

Gaussian-type15

Gaussian-type ACF and PSDF are also used because they are mathematically tractable.

R(r) = ε2e−
r2

a2 , (5a)

P (m) =
√
π3ε2a3e−

m2a2

4 . (5b)

4



We plot those PSDFs against wavenumber and ACFs against lag distance in Figure 1.

3 Measurements of random heterogeneities

There are several kinds of measurements for estimating statistical parameters characterizing random media. Here we principally

collect measurements supposing a von Kármán type for isotropic randomness; however, we include a few measurements5

supposing anisotropic randomness and a Gaussian type. In a small scale, the photo scan method is applied to small rock

samples. Acoustic well logs are available in deep wells drilled in the shallow crust. When the precise velocity tomography result

is available, we can directly calculate the PSDF. In seismology, the most conventional method is to analyze seismograms of

natural earthquakes or artificial explosions after traveling through the earth heterogeneity. It is better to focus on MS amplitude

envelopes (intensity time traces) since phases are complex caused by random heterogeneities. Comparing observed seismogram10

envelopes with envelopes synthesized in random media, we can evaluate von Kármán parameters. For the synthesis, we can use

the finite difference simulation (FD), the RTT with the Born approximation, and the RTT with the phase screen approximation

that is equivalent to the Markov approximation. For each reported measurement, we enumerate the target region, data and

the method, the measured PSDF as a function of wavenumber m, von Kármán parameters (κ, ε, a), the frequency range, the

wavenumber range, and the reference in Tables 1∼3. Note that measurements of heterogeneity listed in the Tables are by no15

means the only ones. Especially in seismological measurements, we estimate the wave number range from the frequency range

by using the typical velocity of the target medium. In the Tables, the parameter value in brackets (· · ·) is a priori fixed in the

measurement. Then, we plot obtained PSDFs against wavenumber in Figures 2∼5. When the estimated parameter value is

given by a range, a value in squared brackets [· · · ] is used as a representative for plotting PSDFs in the Figures. Measurement

of a label with an asterisk ∗ is insufficient for plotting the PSDF in the Figures.20

3.1 Photo scan of the rock surface

The photo scan method uses a scanner to take a picture of the polished flat surface of a small rock sample (e.g. Sivaji et al.,

2002; Spetzler et al., 2002; Fukushima et al., 2003). For the case of a granite sample, they classified color images on a straight

line into three types of mineral grains; quartz, plagioclase and biotite. Assigning a typical velocity VP or VS to each mineral

grain, they constructed a velocity profile along the line. Then, they estimated the 1D PSDF of the velocity fractional fluctuation.25

They measured 1D PSDFs of granite and gabbro samples fixing κ=0.5 as R1∼R5. Figure 2 (a) shows estimated 1D PSDFs,

where the wavenumber range is of the order of 1 mm−1. We note that raw 1D PSDFs in Figures 4 and 5 of Fukushima et al.

(2003) decay a little slower than those of R4 and R5 in Figure 2 (a) especially at large wavenumbers.
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Figure 2. (a) 1D PSDF vs. wavenumber for rock samples and acoustic well logs. (b) Converted 3D PSDF vs. wavenumber, where the

randomness is supposed to be isotropic. See labels in Table 1.

3.1.1 Conversion from 1D PSDF into 3D PSDF

In the case of isotropic randomness, we evaluate the 1D PSDF from the 3D ACF along the z-axis at x= y = 0 as follows:

P1D (mz)≡
∞∫

−∞

R3D (0,0,z)e−imzzdz =

∞∫
−∞

 1

(2π)
3

∞∫∫∫
−∞

P3D

(
m′
x,m

′
y,m

′
z

)
eim

′
zzdm′

e−imzzdz

=
1

(2π)
2

∞∫∫
−∞

P3D

(
m′
x,m

′
y,mz

)
dm′

xdm
′
y. (6a)

Substituting (2b) into the above equation, we have5

P1D (mz) =
1

(2π)
2

∞∫∫
−∞

8π3/2ε2a3Γ(κ+3/2)

Γ(κ)
[
1+ a2

(
m′2
x +m′2

y +m2
z

)]κ+3/2
dm′

xdm
′
y =

2π1/2Γ(κ+1/2)ε2a

Γ(κ)(1+ a2m2
z)
κ+1/2

. (6b)

Thus, we can evaluate the 3D PSDF from the 1D PSDF using parameters ε, κ and a of 1D PSDF.

Supposing the randomness is isotropic, we evaluate corresponding 3D PSDFs of R1∼R5 and plot them in Figure 2 (b).

3.2 Acoustic well loggings in boreholes

An acoustic well log is obtained from the measurement of the travel time of an ultrasonic pulse along the wall of a borehole.10

Measurements W1 (volcanic tuff) and W2 (tertiary to pre-tertiary) in Japan clearly show power law decay with κ= 0.225

and 0.045, respectively; however, a corner is not clearly seen in each PSDF. Measurement W4 at the deep well KTB in

Germany shows κ=0.10. Measurement W3 in the same well shows that the exponent of wavenumber is –0.97, which formally

corresponds to a negative κ. Measurement W5 at Cajon pass in California shows κ= 0.11. All these measurements show very
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Figure 3. 3D PSDF vs. wavenumber for (a) the lithosphere (the crust and most upper mantle), (b) strong heterogeneities and array data

analyses in the lithosphere. See labels in Table 2.

small κ values close to 0. Shiomi et al. (1997) made a list of reported exponents of wavenumber, which shows that most of κ

values are smaller than 0.25. Measurement of a seems to be restricted by the sample length. We enumerate those measurements

in Table 1 and plot their 1D PSDFs against wavenumber in Figure 2 (a). Figure 2 (b) plots the corresponding 3D PSDFs of W4

and W5.

We note that Wu et al. (1994) measured anisotropy of randomness from the analysis of well-logs obtained from two parallel5

wells at KTB: the ratio of characteristic scales in horizontal to vertical directions ah/az=1.8 (see (3)) as shown in W3.

3.3 Velocity tomography

There have been measurements of velocity tomography in various scales, from which we can calculate the PSDF and then

estimate von Kármán-type parameters. This method depends on the spatial resolution of tomography result. Measurement L1

in Table 2 is calculated from the precise VP tomography result of the shallow crust, Los Angeles, California: the exponent of10

wavenumber is –3.08 (κ= 0.04). Anisotropic randomness is also reported: az=0.1 km and ah=0.5 km (see eq. (3)). We show

those in Figures 3 (a). Measurement M2 in Table 3 is evaluated from the 2D PSDF of VS tomography result of the upper mantle

in a low wavenumber range. Although there is a resolution limit of the tomography method, the exponent of wavenumber is

between –2 and –3, which means 0< κ < 0.5. We note that Figure 8 of Mancinelli et al. (2016a) shows that the 1D PSDF

estimated from the VP tomography result in the upper mantle (Meschede and Romanowicz, 2015) well covers that of MU215

(κ=0.05, ε=0.1, a=2000 km) for the wavenumber range 2× 10−4 ∼ 10−2 km−1.
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3.4 Array analysis of tele-seismic P waves

Tele-seismic P waves registered by a large aperture array were used for the evaluation of the 3D PSDF of the lithosphere

beneath the array: LA1 and LA2 of Table 2 in Montana and LA3 in southern California used amplitude and phase coherence

analyses, where a Gaussian-type PSDF (eq. (5)) was supposed because of mathematical simplicity. As shown in Figure 3 (b),

they drop very fast as wavenumber increases. Later Flatté and Wu (1988) developed the angular coherence analysis in addition5

to the above methods. Analyzing tele-seismic P waves registered at NORSAR, they proposed a two overlapping layer model

LA4, which is composed of a band-limited flat spectrum from the surface to 200 km in depth and m−4 spectrum (κ= 0.5,

ε= 1∼ 4%) for depths from 15 to 250 km. It means κ < 0.5 and the roll-off of their PSDF is much smaller than that of

Gaussian types (not shown in Figure 3 (b)).

3.5 Finite difference simulations10

The finite difference (FD) simulation is often used for the numerical simulation of waves in an inhomogeneous velocity struc-

ture. For the evaluation of average MS amplitude envelopes, we have to repeat simulations of the wave propagation through

random media having the same PSDF that are generated by using different random seeds. There are several measurements of

statistical parameters using FD as L9∼L11 and ML4 in Tables 2 and 3. Measurement LS5 focused on the fact that the sub-

ducting oceanic plate is an efficient waveguide for high-frequency seismic waves: estimated anisotropic parameters are κ=0.5,15

ε=0.02, ap=10 km and at=0.5 km in the parallel and transverse directions, respectively. Note ML2 supposes a Gaussian-type.

3.6 Analyses of seismogram intensities (MS amplitude envelopes)

The RTT is essentially stochastic to synthesize directly the intensity (the average MS amplitude envelope) of a wavelet propa-

gating through random media. There are two conventional methods on the basis of the RTT: one uses the Born approximation
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and the other uses the phase screen approximation based on the parabolic approximation when the wavenumber is larger than

the corner. The former neglects the phase shift, but the latter correctly considers the phase shift.

3.6.1 Scalar wave scattering by a single obstacle

We here study the deterministic scattering of scalar waves by a single spherical obstacle (radius a= 5 km and velocity anomaly

ε=+0.05) embedded in a homogeneous medium (V0 =4 km/s) as a mathematical model. The Born approximation calculates5

spherically outgoing scattered waves putting the incident plane wave of wavenumber kc in the interaction term of the first

order perturbation equation. From the scattering amplitude we evaluate the total scattering cross-section σ0 as a measure of

scattering power of the obstacle. The resultant σ0 monotonously increases with frequency as shown by a blue line in Figure 6.

As the wavenumber increases (akc � 1), the phase shift increases as the incidence plane wave penetrates the obstacle. Putting

the phase modulated wave according to the parabolic approximation (the phase screen approximation) into the interaction10

term of the first order perturbation equation, we calculate the scattering amplitude and then the total scattering cross-section.

It is the distorted-wave Born approximation with the phase screen approximation, which is also referred to as the Eikonal

approximation. This approximation predicts that σ0 (a red line in Figure 6) saturates at high frequencies and converges to 2πa2,

which is twice the geometrical section area of the obstacle as predicted by shadow scattering (e.g. Landau and Lifshitz, 2003,

p. 519 and 543). We recognize that the conventional Born approximation is still accurate even for akc > 1; however, it works15

well only for ε2a2k2c .O(0.1). We should use the distorted-wave Born approximation with the phase screen approximation
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for ε2a2k2c &O(1). The two approximations predict nearly the same σ0 value in the intermediate range. We note that 2εakc

is the phase shift on the center line after passing the obstacle. Note that the phase screen approximation is not applicable for

akc < 1 since it is based on the parabolic approximation.

Interpreting ε and a as the RMS fractional fluctuation and the characteristic length of uniformly distributed random media,

we may use the inequality ε2a2k2c �O(1) or ε2a2k2c .O(0.1) as a criterion of the Born approximation used in the RTT.5

3.6.2 RTT with the Born approximation

For uniformly distributed random media characterized by P (m), the Born approximation leads to the scattering coefficient at

wavenumber kc into scattering angle ψ:

g(kc,ψ) =
k4c
π
P (2kc sin

ψ

2
), (7a)

which is axially symmetric. The total scattering coefficient is10

g0(kc)≡
1

4π

∮
g(kc,ψ)dΩ=

1

2

π∫
0

g(kc,ψ)sinψdψ =

2kc∫
0

gker(kc,m)dm, (7b)

where m= 2kc sin
ψ
2 . The integral kernel in the wavenumber space is given by

gker(kc,m) =
k2c
2π
mP (m). (7c)

The upper bound of the integral is twice the wavenumber. As an example, Figure 7 shows plots of P (m) (blue) vs. m and

gker(m) vs. m at 0.1 Hz (red) and 1 Hz (green) for the case of κ=0.5, ε=0.05, a=1 km and V0=4 km/s. As shown at the15
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and 1 Hz (green, left scale) according to the Born approximation. Scattering angles are marked by dots on each trace. For the case of frequency

band between 0.1 and 1 Hz, the phase screen approximation based on the parabolic approximation covers the wavenumber range from 0 to

the upper bound (line at the bottom), however, the Born approximation covers the range from 0 to twice the upper bound (line next to the

bottom). We use those line styles in Figures 3∼5 and 9.

upper-right corner, the scattering pattern at 1 Hz has a large lobe into the forward direction; however, it becomes isotropic as

the frequenxy decreases. Dots on each gker curve show corresponding scattering angles.

In the framework of the RTT, the Monte Carlo simulation is a simple method to synthesize stochastically the wavelet

intensity time trace. A particle carrying unit intensity is shot randomly from a point source, and its trajectory is traced with the

increment of time steps. The occurrence of scattering is stochastically tested by inequality g0V0∆t > Random[0,1] at every5

time step of ∆t, and g(kc,ψ)/(4πg0(kc)) is used as the probability of scattering into angle ψ. Note that Random[0,1] is a

uniform random variable between 0 and 1. Since g0V0∆t is chosen to be small enough, scattering does not occur every time

step but intermittently. As a simple example, Figure 8 (a) schematically illustrates the flowchart of the Monte Carlo simulation

for the isotropic radiation from a point source in uniform random media. At lapse time t, dividing the number of particles n

registered in a spherical shell of radius r and a thickness ∆r by the total number of particles N and the shell volume 4πr2∆r,10

we calculate the intensity Green function G(r, t). The intensity time trace I(r, t) is calculated by the convolution of G(r, t) and

the source intensity time function S(t) in the time domain. It is easy to introduce a layered structure of background velocity

and intrinsic absorption into the simulation code.

The RTT for the scalar wave case can be extended to the elastic vector wave case by using Stokes parameters. There are

four scattering modes, PP, PS, SS and SP scatterings, and the S-wave scattering coefficients are not axially symmetric (see15

Sato et al., 2012, Figure 4.7). Many papers (e.g. Shearer and Earle, 2004; Przybilla et al., 2009) suppose proportional relations
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RTT with the Born approximation. (b) RTT with the phase screen approximation.

δVp/VP0 = δVS/VS0 = ξ and δρ/ρ0 = ν ξ based on the empirical Birch’s law, which reduce three fractional fluctuations into

one (e.g. Sato et al., 2012, eqs. 4.58 and 4.59).

The RTT with the Born approximation has been often used not only for the analyses of S coda envelopes but also for the

whole seismogram envelope from the P onset via P coda through S wave until S coda (see Tables 2 and 3). This method has

been often used not only for the analyses of regional seismograms propagating through the lithosphere but also for the analyses5

of tele-seismic waves propagating through the mantle. This method is not only applied to direct P phase but also PcP and

PKPprec phases and so on. In this review, we neglect intrinsic attenuation parameters a priori assumed or measured in each

paper. For a given wavenumber range (kl,ku) (gray) in Figure 7, each PSDF curve using this method in Figures 3∼5 and 9 is

drawn by a dotted line for (0,kl) and a solid line for (kl,2ku) as the line next to the bottom of Figure 7. As indicated by dots

on the gker curves, the wavenumber interval of solid line reflects wide angle scattering and that of dotted line reflects narrow10

angle scattering around the forward direction.

Most of measurements of S-waves in the lithosphere cover the wavenumber range up to 100 km−1. Measurement L2 ana-

lyzed cross-hole seismograms of the order of kHz by using 2D-RTT, of which the wavenumber range is as high as the order of

1 m−1. Measurement MU2 for tele-seismic P wave envelopes at long periods in the upper mantle shows that the characteristic

scale a=2000 km is much larger than those of MU3 and ML1 at short periods. Several measurements a priori suppose κ=0.5;15

however, most of measurements show κ < 0.5 except L6. Measurements ML3 and MW1 propose the H-G type (see eq. (4))
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corresponding to κ= 0 for the lower/whole mantle. We note that Mancinelli et al. (2016b) proposed an alternative model of

3D-PSDF ∝m−2.6 in addition to ML3 (not shown in Figure 4 ).

3.6.3 RTT with the phase screen approximation

When akc � 1, scattering mostly occurs within a narrow angle around the forward direction. At a large travel distance, the

wavelet just after the onset is mostly composed of those waves. The phase screen approximation correctly calculates the phase5

shift modulation. For the incidence of a plane wave into the z direction, the mutual coherence function (MCF) of the phase

shift modulated waves for an increment ∆z is given by

Φ(kc, r⊥,∆z) = e−k
2
c(A(0)−A(r⊥))∆z. (8a)

The longitudinal integral of the ACF is

A(r⊥) =

∞∫
−∞

R(x⊥,z)dz =
1

(2π)2

∞∫∫
−∞

P (m⊥,mz = 0)eim⊥x⊥dm⊥, (8b)10

where x⊥ is the transverse coordinate vector and r⊥ = |x⊥| (Sato et al., 2012, eq. 9.60). Taking the Fourier transform of MCF

Φ with respect to transverse coordinates, we have

Φ̆(kc,k⊥,∆z) =
1

(2π)2

∞∫∫
−∞

Φ(kc, r⊥,∆z)e
ik⊥x⊥dx⊥ −→

∆z→0
δ(k⊥). (8c)

Since
∫∫∞

−∞ Φ̆(kc,k⊥,∆z)dk⊥ = 1, interpreting Φ̆(kc,k⊥,∆z) as the probability of ray bending angle ψ = tan−1 k⊥
kc

per

increment ∆z = V0∆t, we can stochastically synthesize the intensity by using the Monte Carlo simulation (e.g Williamson,15

1972; Takahashi et al., 2008; Saito et al., 2008). As a simple example, Figure 8 (b) schematically illustrates the flowchart

of the RTT with the phase screen approximation for the isotropic radiation from a point source in uniform random media.

Different from the Born approximation, narrow-angle ray bending occurs at every time step. The intensity Green function can

be obtained in the same manner as the RTT with the Born approximation. This approximation well synthesizes the intensity

time trace having a delayed peak from the onset and a decaying tail of early coda at large travel distances. This approximation20

can not synthesize the late coda intensity since wide angle scattering is neglected. The Markov approximation is known as a

stochastic extension of the phase screen method for the two-frequency mutual coherence function (e.g. Saito et al., 2002). If

we focus on the intensity time trace around the peak arrival, the Markov approximation and the RTT with the phase screen

approximation show good coincidence (see Sato and Emoto, 2018, Figure 8).

When this approximation is used, kc � a−1 is a priori supposed. Most of this type of measurements read the peak delay25

and the envelope width of each seismogram envelope. There is a merit that the peak delay measurement is rather insensitive to

intrinsic absorption. In the NE Japan, κ value beneath a volcano LS2 is smaller than those in the fore-arc side L12 and L13. Note

that narrow angle scattering around the forward direction dominates in tele-seismic wavelets even if the Born approximation is

used for the analysis. Narrow angle scattering is mostly produced by the PSDF in low wavenumbers compared with kc. For a
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Figure 9. 3D PSDF vs. wavenumber for the crust and the upper mantle. Data of Gaussian-type, anisotropy type, strong heterogeneity, the

lower mantle, and the whole mantle are excluded. The light gray straight line visually well fits to most of spectral envelopes.

given wavenumber range (kl,ku) (gray) in Figure 7, each PSDF curve using this method in Figure 3 is drawn by a dotted line

for (0,kl) and a solid line for (kl,ku) as the bottom line of Figure 7.

3.7 Characteristics of reported PSDFs

3.7.1 All the data

Some measurements a priori assumed κ= 0.5; however, most of measurements report κ < 0.5. In the mantle, κ is very small5

close to zero and an H-G type is also proposed. The RMS fractional fluctuation ε is of the order of 0.1 for rock samples and

well log data and of the order from 0.01 to 0.1 in the lithosphere and the upper mantle. Large values are reported for the shallow

crust L16 and beneath a volcano LS3, however, smaller values are reported for the lower mantle. The characteristic scale a

varies a lot depending on measurements. The corner wavenumber a−1 is not clearly seen in PSDFs of acoustic well logs. Some

measurements report anisotropy: W3 of well-logs, L1 of velocity tomography in the shallow crust and LS5 in the subducting10

oceanic slab. The characteristic length in the vertical direction is smaller than the horizontal direction in the shallow crust, and

that in the transverse direction is smaller than that in the direction parallel to the subducting slab.

Plotting PSDFs against wavenumber is more informative for understanding the random heterogeneity compared with enu-

merating statistical parameter values. Figure 5 shows the plot of 3D PSDF vs. wavenumber for all the data covering a wide

wavenumber range 10−4 ∼ 108 km−1. We recognize that Gaussian type PSDFs show very different behavior from others,15
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which suggests Gaussian type assumption is inappropriate. PSDFs in the lower mantle take smaller values, and those for

volcanoes and for the shallow crust take larger values than others.

3.7.2 Lithosphere and the upper mantle except strong heterogeneity, Gaussian and anisotropy-types

Eliminating data supposing a Gaussian type LA1∼LA3, strong heterogeneity data LS1∼LS4, anisotropy type data L1 and LS5,

and the lower mantle and the whole mantle data ML1∼ML4 and MW1∼MW2 from Figure 5, we plot the rest of data for the5

crust and the upper mantle in Figure 9. Most of ε values are of the order of 0.01∼ 0.1, most of κ values are less than or equal

to 0.5 and many of them are close to 0, and the high wavenumber end of the power-law decay branch of each PSDF is not far

from each corner wavenumber.

We draw a power-law decay line PSDF(m) = 0.01m−3 km3 (gray) visually fitting to most of PSDF envelopes for a very

wide range of wavenumbers 10−3 ∼ 108 km−1. This line is not the average of PSDFs. This line looks like an extension of MU210

in the upper mantle into higher wavenumbers of the shallow crust.

4 Discussions

4.1 Measurements

It will be necessary for us to measure the small-scale randomness of sedimentary rock samples. More measurements are

necessary in the wavenumber range 103 ∼ 105 km−1 since there are few measurements.15

In most of PSDF measurements, each power-law decay branch is short since the Born approximation senses the spectrum

up to twice the wavenumber. It will be necessary to measure how each power-law decay branch varies with wavenumber

increasing. It will be necessary to estimate the corner a−1 in each measurement with a wide wavenumber-range covering

sufficiently large enough the both sides of the corner. The flat part, the low-wavenumber side of each PSDF drawn by a dotted

line in Figures is also important as the cause of narrow angle scattering.20

Although most of measurements used in this review analyzed intrinsic attenuation; however, we did not enumerate them in

this review since different assumptions were used in different measurements. It will be necessary for us to measure systemati-

cally the PSDF of random heterogeneity in conjunction with intrinsic attenuation.

We should note that there are large variations in δ lnVS/δ lnVP and ν ≡ δ lnρ/δ lnVS in the earth. Koper et al. (1999)

estimated δ lnVS/δ lnVP to be in the range 1.1∼1.5 in the Tonga Slab. Romanowicz (2001) estimated δ lnVS/δ lnVP to25

be larger than 2.5 in the lower mantle at larger scale lengths. Many measurements reported use ν = 0.8 for the synthesis,

which is appropriate for the shallow lithosphere. Parameter ν takes smaller values as 0.17 for volcanic-tuff (Shiomi et al.,

1997) and 0.31∼0.33 for sandstone and shale (Kenter et al., 2007). In the mantle, Karato (2008) estimated ν= 0.23∼0.42

for the S-wave velocity predicted from the temperature derivatives of seismic wave velocities and thermal expansion, and ν=

0.15∼0.23 including the influence of anelasticity. It will be necessary to introduce realistic δ lnVS/δ lnVP and δ lnρ/δ lnVP30

in the synthesis.
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Figure 9 summarizes reported PSDF measurements supposing isotropic randomness; however, there are measurements

clearly showing anisotropic randomness such as W3 and L1 for the shallow crust and LS5 for the oceanic slab. Those may

reflect the effect of gravity for the creation of anisotropy. It will be necessary for us to study how a wavelet propagates through

anisotropic random heterogeneity of the earth medium (e.g. Margerin, 2006).

4.2 Mathematical Theory5

In section 3.6, we mentioned that the conventional Born approximation is inapplicable and the phase screen approximation

is useful when the phase shift becomes large as the wavenumber increases. In order to avoid the difficulty, taking the center

wavenumber of a wavelet as a reference, Sato and Emoto (2018) proposed to divided the PSDF into two components (see also

Sato, 2016; Sato and Emoto, 2017). They use the Born and phase-screen approximations to the short-scale (high-wavenumber)

and long-scale (low-wavenumber) components, PS and PL, respectively, in the RTT in order to explain simultaneously the10

envelope broadening just after the onset and the excitation of late coda waves. Figure 10 illustrates the flowchart of their Monte

Carlo simulation. Their spectrum division method looks like an implementation of the distorted-wave Born approximation

in the RTT since it describes wide angle scattering for the incidence of the phase-shift modulated wave. They successfully

synthesized intensity time traces that well explain FD simulation results for the case of akc = 23.6 and ε2a2k2c = 1.39. It

would be interesting to see how this method may be extended to polarized elastic waves.15

We note that some papers numerically show that the RTT with the Born approximation works well in some cases over the

above limitation. Przybilla et al. (2006) synthesizes vector-wave intensity that well fits to that of the FD simulation in 2D even

for S-waves of akc=58 and ε2a2k2c = 8.4 (see their Table 1) if the wandering effect is convolved as a result of the travel time

fluctuation. Emoto and Sato (2018) show that the synthesized scalar intensity by the RTT with the Born approximation well fits

to that of the FD simulation in 3D even for the case of akc = 23.6 and ε2a2k2c = 1.39 when the wandering effect is convolved.20

If the earth heterogeneity is represented by a power-law decay power spectrum for such a wide wavenumber range, which

means that the corner wavenumber is very low, we should carefully examine the applicability of the Born approximation in the

RTT.

Acoustic well-logging and photo scan faithfully measure the inhomogeneous elastic coefficients. The RTT used here sup-

poses the scattering contribution of random inhomogeneity of elastic coefficients only; however, observed seismograms do not25

only reflect those but also the scattering contribution of pores and cracks distributed over the earth medium. It will be necessary

for us to study their contribution in the intensity synthesis.

4.3 Power-law decay spectral envelope

In observation, we may take the power-law spectral envelope as a reference curve for studying the regional differences espe-

cially in the power-law decay part of the PSDF. The characteristic length a seems to increase as the wavenumber of a wavelet30

decreases or as the dimension of measurement system becomes large. It reminds us that the characteristic scale of the slip

distribution increases with increasing source dimension as Mai and Beroza (2002) analyzed finite-fault source inversion results

(see their Figure 12).
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The power-law decay spectral envelope reminds us of the observed fractal nature of various kinds of surface topographies:

Sayles and Thomas (1978a, b) show 1D-PSDF ∝m−2 for wavelengths 10−6 ∼ 103 km although the power exponent varies

from –1.07 to –3.03 for small segments; Brown and Scholz (1985) show 1D-PSDF ∝m−1.64∼−3.36 for the wavenumber

range 10−6 ∼ 0.1 µm−1 especially for the topography of natural rock surfaces and faults. We also note that the PSDF of the

refractive index fluctuation of air obeys the Kolmogorov spectrum: 3D-PSDF ∝m−11/3, where κ= 1/3. This spectrum is5

physically produced by the cascade in the turbulent flow of low viscosity air: the large eddies breaks up originating smaller

eddies dissipating energy by viscosity. However, it may be difficult to apply this cascade model to the mantle since the viscosity

of mantle fluid is thought to be high.

For igneous rocks such as granite, there are variations in composition of minerals and grain sizes, which depend on a variety

of slow crystallization differentiations of basaltic magma. Random variations of acoustic well-log profiles reflect the complex10

sedimentation process during the geological history. Volcanism produces more heterogeneous structures composed of pyro-

clastic material and lava. For random heterogeneities in the mantle, we imagine complex mantle flow. Mancinelli et al. (2016a)

referred to a marble cake mantle model (Allègre and Turcotte, 1986) containing heterogeneity mostly composed of basalt and

harzburgite in many scales in the upper mantle in order to explain the power-law spectrum. Stixrude and Lithgow-Bertelloni

(2007) proposed the velocity variation due to chemical and phase stability at different depths, which is a possible candidate15

17



especially for the heterogeneity in the vertical direction. If we accept the power-law decay spectrum, we will have to study

what kinds of geophysical mechanisms created such random medium spectra in different scales and in different geological

environments in the solid earth.

4.4 Isotropic scattering coeffcient

In advance to the measurements based on the RTT for anisotropic scattering presented here, there have been many measure-5

ments of the isotropic scattering coefficient giso in the world on the basis of the RTT with the isotropic scattering assumption

(e.g. Sato et al., 2012; Yoshimoto and Jin, 2008). The isotropic scattering model is mathematically tractable, and the multiple

lapse-time window analysis (Fehler et al., 1992; Hoshiba, 1993) has been often used for practical analyses. This method essen-

tially estimates giso from the ratio of late coda excitation to the radiated energy irrespective of the envelope broadening. Recent

measurements show that giso decreases with depth (e.g. Rachman and Chung, 2016; Badi et al., 2009). It will be interesting10

to plot the frequency dependence of reported giso for a wide range of frequencies and to study the relation with the obtained

power spectral envelope shown in Figure 9.

5 Conclusions

Recent seismological observations focusing on the collapse of an impulsive wavelet revealed the existence of small-scale ran-

dom heterogeneities in the earth medium. The RTT has been often used for the study of the propagation of wavelet intensities,15

the MS amplitude envelopes. For the statistical characterization of the PSDF of random velocity inhomogeneities in a 3D space,

we have used von Kármán type with three parameters: the RMS fractional velocity fluctuation ε, the characteristic length a, and

the order κ of the modified Bessel function of the second kind. This model leads to the power-law decay of PSDF ∝m−2κ−3

at wavenumber m higher than the corner at a−1. We have compiled reported statistical parameters of the lithosphere and the

mantle based on various types of measurements for a wide range of wavenumbers: photo scan data of rock samples, acoustic20

well log data, and envelope analyses of cross-hole experiment seismograms, regional seismograms and tele-seismic waves

based on the RTT. Reported κ values are distributed between 0 and 0.5 (PSDF ∝m−3∼−4), where many of them are close to

0 (PSDF ∝m−3). Reported ε values are of the order of 0.01∼0.1 in the crust and the upper mantle, where smaller values in

the lower mantle and higher values beneath volcanoes. Reported a values distribute very widely, however, each one seems to

be restricted by the dimension of the measurement system or the sample length. In order to grasp the spectral characteristics,25

eliminating strong heterogeneity data and the lower mantle data, we have plotted all the reported PSDFs in the crust and the

upper mantle against wavenumber m for a wide range 10−3 ∼ 108 km−1. We find that the envelope of those PSDFs is well

approximated by a power-law decay curve 0.01m−3 km3. Multiple plots of PSDFs and the power-law decay spectral envelope

obtained require us to do the followings: In theory, it will be necessary to examine whether the Born approximation is reliable

or not if the wavenumber increases much larger than the corner; in observation, we will have to examine more carefully the30

behavior of each PSDF on both sides of the corner. If we accept the power-law decay spectral envelope, it suggests that the

earth medium randomness has a broad spectrum. We may consider the obtained power-law decay spectral envelope as a refer-
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ence for studying the regional differences. It is interesting to study what kinds of geophysical processes created the power-law

spectral envelope in different scales and in different geological environments of the solid earth medium.
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