
1 
 

Relative Timing of Uplift along the Zagros Mountain Front Flexure 
(Kurdistan Region of Iraq): Constrained by Geomorphic Indices and 
Landscape Evolution Modelling 
Mjahid Zebari1,2, Christoph Grützner1, Payman Navabpour1, Kamil Ustaszewski1 
1Institute of Geological Sciences, Friedrich-Schiller-University Jena, Jena, 07749, Germany 5 
2Geology Department, Salahaddin University-Erbil, Erbil, 44002, Kurdistan Region of Iraq 

Correspondence to: Mjahid Zebari (mjahid.zebari@uni-jena.de) 

Abstract. The Mountain Front Flexure marks a dominant topographic step in the frontal part of the Zagros Fold-Thrust Belt. 

It is characterized by numerous active anticlines atop of a basement fault. So far, little is known about the relative activity of 

the anticlines, about their evolution, and about how crustal deformation migrates over time. We assessed the relative 10 

landscape maturity of three along-strike anticlines (from SE to NW: Harir, Perat, and Akre) located on the hanging wall of 

the Mountain Front Flexure in the Kurdistan Region of Iraq to identify the most active structures and to get insights into the 

evolution of the fold-thrust belt. Landscape maturity was evaluated using geomorphic indices such as hypsometric curves, 

hypsometric integral, surface roughness, and surface index. Subsequently, numerical landscape evolution models were run to 

estimate the relative time difference between the onset of growth of the anticlines, using the present-day topography of the 15 

Harir Anticline as a base model. A stream power equation was used to introduce fluvial erosion, and a hillslope diffusion 

equation was applied to account for colluvial sediment transport. For different time steps of model evolution, we calculated 

the geomorphic indices generated from the base model. While Akre Anticline shows deeply incised valleys and advanced 

erosion, Harir and Perat anticlines have relatively smoother surfaces and are supposedly younger than the Akre Anticline. 

The landscape maturity level decreases from NW to SE. A comparison of the geomorphic indices of the model output to 20 

those of the present-day Akre Anticline topography revealed that it would take the Harir Anticline about 80-100 kyr and 

160-200 kyr to reach the maturity level of the Perat and Akre anticlines, respectively, assuming erosion under constant 

conditions and constant rock uplift rates along the three anticlines. Since the factors controlling geomorphology (lithology, 

structural setting and climate) are similar for all three anticlines, and under the assumption of constant growth and erosion 

conditions, we infer that uplift of the Akre Anticline started 160-200 kyr before that of the Harir Anticline, with the Perat 25 

Anticline showing an intermediate age. A NW-ward propagation of the Harir Anticline itself implies that the uplift has been 

independent within different segments. Our method of estimating the relative age difference can be applied to many other 

anticlines in the Mountain Front Flexure region to construct a model of temporal evolution of this belt. 
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1 Introduction 

The Zagros Fold-Thrust Belt is an active orogen that resulted from the collision between the Arabian and Eurasian plates and 

contains the deformed portions of the NE part of the former Arabian passive margin (Fig. 1; Berberian, 1995; Mouthereau et 

al., 2012). Many aspects of the structural configuration and the evolution of the Zagros Fold-Thrust Belt are by now 

satisfactorily constrained, but the detailed spatial and temporal distribution of deformation across the belt is not yet well 5 

understood. This concerns especially the NW part of the belt in the Kurdistan Region of Iraq (KRI) due to a lack of 

comprehensive studies and for geopolitical reasons that make access to the field challenging. The style, timing, and relative 

activity of front thrusts, deformation propagation, and along-strike variations have not been sufficiently studied. It is not 

well-known which structures are currently the most active ones either. 

One of the morphologically most conspicuous structural elements of the Zagros Fold-Thrust Belt is the Mountain Front 10 

Flexure (MFF), which separates the High Folded Zone and the Foothill Zone (known in Iran as the Zagros Simply Folded 

Belt and Zagros Foredeep, respectively; Figs. 1 and 2; Berberian, 1995; Jassim and Goff, 2006; McQuarrie, 2004; 

Mouthereau et al., 2012; Vergés et al., 2011). In most parts of the Zagros, the MFF marks a pronounced topographic step, 

separating folds with high amplitudes, narrow wavelengths, and higher topography in the High Folded Zone from folds with 

relatively low amplitudes, long wavelengths, and lower topography in the Foothill Zone (Fig. 2). The MFF is characterized 15 

by numerous active anticlines atop of fault strands emerging from a basement fault. It was suggested that the onset of the 

MFF activity in the NW Zagros was about 5±1 Ma based on low temperature thermochronology (Koshnaw et al., 2017). The 

timing of this activity is expected to differ along-strike the belt and, hence, the initiation of uplift of the anticlines on the 

hanging wall of the MFF is the key to understand this temporal and spatial evolution. In the neighbouring Iranian part, the 

MFF was a relatively long-lived structure active from 8.1 to 7.2 Ma to about the Pliocene-Pleistocene boundary. After that, 20 

only the southwesternmost anticline remained active in front of the MFF. This was inferred from progressive unconformities 

and magnetostratigraphy (Hessami et al., 2001, 2006; Homke et al., 2004). 

In active orogens, the main factor that contributes to building up topography is ongoing convergence (e.g. Bishop, 2007; 

Burbank and Anderson, 2012; Whittaker, 2012). Recent advancements in the availability of high-resolution digital elevation 

models (DEMs) and GIS software allowed to quantitatively analyse the landscape (Bishop, 2007; Tarolli, 2014). Tectonic 25 

geomorphology approaches and landscape maturity studies have been used extensively and proven to be efficient in studying 

the relative tectonic activity of different areas in contractional settings (Cheng et al., 2012; Mahmood and Gloaguen, 2012; 

Ramsey et al., 2008; Regard et al., 2009). Nevertheless, the NW part of the Zagros lacks modern studies on tectonic 

geomorphology - with few exceptions. Bretis et al. (2011) detected sets of wind gaps (i.e. segments of river valleys 

abandoned due to lateral and vertical fold growth) in the High Folded Belt, NE of the MFF, suggesting that larger folds grew 30 

by linkage of smaller, shorter folds. Zebari and Burberry (2015) performed detailed analyses of various geomorphic indices 

for numerous anticlines in the High Folded Zone, concluding that the combination of clearly asymmetric drainage patterns 

and the mountain front sinuosity index (Bull, 2007; Keller et al., 1999) is a valuable tool for identifying putatively active 
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fault-related folds. Obaid and Allen (2017) studied the landscape maturity of various anticlines within the Zagros Foothill 

Zone and constrained the order of deformation of these anticlines by proposing an out-of-sequence propagation of 

underlying faults into the foreland. They proposed that the Zagros Deformation Front was among the earliest faults that have 

been reactivated within the Foothill Zone. 

In an active orogen such as the Zagros, a better understanding of the temporal and spatial distribution of deformation due to 5 

ongoing tectonics can be achieved with landscape modelling. In the last two decades, numerical models have been 

extensively used to study landscape evolution (Chen et al., 2014; Tucker and Hancock, 2010) and several software packages 

were specifically developed for this purpose (e.g. Hancock and Willgoose, 2002; Hobley et al., 2017; Refice et al., 2012; 

Salles and Hardiman, 2016; Tucker et al., 2001). Most of these models include algorithms for bedrock fluvial incision and 

hillslope creep as input parameters. Several studies have constrained the landscape evolution with the involvement of the 10 

corresponding tectonics and structures elsewhere (Collignon et al., 2016; Cowie et al., 2006; Miller et al., 2007; Refice et al., 

2012). 

In this study, we assessed variations in the landscape maturity of three anticlines (from SE to NW, the Harir, Perat and Akre 

anticlines) located on the hanging wall of the MFF by quantitatively analysing landscape indices (hypsometric curve, 

hypsometric integral, surface roughness, and surface index) in order to distinguish more mature segments from less mature 15 

ones, and to reconstruct the relative variation of uplift time and/or rate along these anticlines. We then computed the 

difference in the onset of uplift between more mature anticlines and less mature ones using a landscape evolution model. The 

present-day topography of the least mature anticline served as an input model for computing the time that it takes this 

anticline to reach the same state as the most mature one. Also, three structural cross-sections were constructed across the 

three anticlines to delineate their structural style and to link it with their landscape maturity. 20 

2 Geological Setting 

The Zagros Fold-Thrust Belt is the result of the collision between the Arabian and Eurasian plates (Fig. 1; Berberian, 1995; 

Mouthereau et al., 2012). Continental collision started in the Early Miocene following the progressive subduction of Neo-

Tethyan oceanic lithosphere underneath Eurasia (Agard et al., 2011; Csontos et al., 2012; Koshnaw et al., 2017; Mouthereau 

et al., 2012). The Zagros Fold-Thrust Belt extends for about 2000 km from the Strait of Hormuz in southern Iran to the KRI 25 

and further into SE Turkey. Since the onset of collision, the deformation front has propagated 250-350 km southwestward, 

involving the northeastern margin of the Mesopotamian foreland basin and the Persian Gulf into a largely NW-SE-trending 

foreland fold-thrust belt (Mouthereau, 2011; Mouthereau et al., 2007). The shortening across different sectors of the Zagros 

Fold-Thrust Belt is estimated to range between 10% and 32% (Blanc et al., 2003; McQuarrie, 2004; Molinaro et al., 2005; 

Mouthereau et al., 2007; Vergés et al., 2011). GPS-derived horizontal velocities between Arabia and Eurasia show present-30 

day convergence rates between 19 and 23 mm/yr (McClusky et al., 2003). It is suggested that deformation partitioning 

occurs between the external and internal portions of the Iranian part of the Zagros Fold-Thrust Belt. While the internal 
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Zagros Fold-Thrust Belt currently accommodates 3-4 mm/yr of right-lateral displacement along the Main Recent Fault (Fig. 

1; Reilinger et al., 2006; Vernant et al., 2004), the external part accommodates 7-10 mm/yr of shortening by thrusting and 

folding (Hessami et al., 2006; Vernant et al., 2004), 2-4 mm/yr of which is taken up by the MFF in the Fars Arc (Oveisi et 

al., 2009). However, no such estimates are available for the Iraqi segment of the Zagros Mountains. It is hence not known 

how much of the total Arabia-Eurasia plate convergence is being accommodated across the Iraqi part of the Zagros Fold-5 

Thrust Belt. 

The NW segment of the Zagros Fold-Thrust Belt in the KRI is subdivided into several NE-trending morphotectonic zones. 

These zones from NE to SW are: (i) Zagros Suture, (ii) Imbricated Zone, (iii) High Folded Zone and (iv) Foothill Zone (Figs. 

1 and 2; Jassim and Goff, 2006). These zones are bounded by major faults in the area. The faults include Main Zagros Thrust 

separating the Zagros Suture from the Imbricated Zone, High Zagros Fault that separates the Imbricate Zone from the High 10 

Folded Zone, and the Mountain Front Flexure that separates the High Folded Zone from the Foothill Zone (Figs. 1 and 2; 

Berberian, 1995; Jassim and Goff, 2006). 

The deformed sedimentary succession is composed of 8 - 12 km thick Paleozoic to Cenozoic strata that rest on the 

Precambrian crystalline basement (Aqrawi et al., 2010; Jassim and Goff, 2006). The thick sedimentary cover consists of 

various competent and incompetent rock successions separated by detachment horizons. The infra-Cambrian Hormuz salt, 15 

which acts as a basal detachment in much of the Southern and Central Zagros Mountains in Iran, pinches out towards 

northwest (Hinsch and Bretis, 2015; Kent, 2010). Other intermediate detachment horizons influence the structural style of 

Central Zagros in Iran (e.g., Sherkati et al., 2006; Sepehr et al., 2006), but their behaviour is uncertain in NW Zagros due to 

limitations in outcrops and insufficient seismic profiles southwest of the Main Zagros Thrust. Some proposed detachment 

levels include Ordovician and Silurian shales (Aqrawi et al., 2010), Triassic-Jurassic anhydrites (Aqrawi et al., 2010; Hinsch 20 

and Bretis, 2015; Zebari, 2013; Zebari and Burberry, 2015), and Lower Miocene anhydrite (Aqrawi et al., 2010; Csontos et 

al., 2012; Jassim and Goff, 2006; Kent, 2010; Zebari and Burberry, 2015). 

The exposed geological units within the High Folded Zone are limited to c. 5 km thick Upper Triassic to Recent rocks (Fig. 

2; Jassim and Goff, 2006; Law et al., 2014). Most anticlines are made up of Cretaceous carbonate rocks, while Upper 

Triassic-Lower Cretaceous strata are only exposed in the core of some anticlines. The Tertiary clastic rocks are preserved 25 

within the adjacent synclines. Within the studied structures, the Upper Jurassic-Lower Cretaceous Chia Gara and Lower 

Cretaceous Sarmord formations only crop out in Bekhme and Zinta gorges and consist of medium to thick bedded marly 

limestone, dolomitic limestone, and shale (Figs. 2 and 3). The Lower Cretaceous succession of Qamchuqa and Upper 

Cretaceous Bekhme and Aqra formations consist of thick bedded and massive reef limestone, dolomitic limestone, and 

dolomite. These units are generally rigid and resistant to erosion. Thus, they build the raised cores of anticlines. The Upper 30 

Cretaceous-Tertiary succession consists primarily of clastic rocks, which are mostly denuded, and alternating Upper 

Paleocene and Upper Eocene limestone of Khurmala and Pila Spi formations, respectively. They form a ridge surrounding 

the anticlines (Figs. 2 and 3). Unconsolidated Quaternary sediments in the study area consist of slope deposits, residual soil, 

alluvial fan deposits, and river terraces. 
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There is no agreement concerning the overall structural style of the NW Zagros in KRI. Several authors (Al-Qayim et al., 

2012; Ameen, 1991; Fouad, 2014; Jassim and Goff, 2006; Numan, 1997) suggested that the Iraqi part of the Zagros Fold-

Thrust Belt reveals a combination of both thin- and thick-skinned deformation. Partly relying on reflection seismic data, it 

was also suggested that contraction has been localized on inherited passive-margin normal faults in the basement, which 

were inverted during the late stage of deformation since c. 5 Ma (Abdulnaby et al., 2014; Burberry, 2015; Koshnaw et al., 5 

2017). The structural relief across the MFF (Fig. 2) is likely linked to blind thrusts in the basement (Al-Qayim et al., 2012; 

Ameen, 1991, 1992; Fouad, 2014; Koshnaw et al., 2017; Numan, 1997). The same linkage between structural relief and a 

regional basement blind thrust is also documented in the Iranian Zagros (Blanc et al., 2003; Emami et al., 2010; Leturmy et 

al., 2010; Sherkati et al., 2006). Alternatively, Hinsch and Bretis (2015) argued that the structural relief in the hanging wall 

of the MFF is related to an underlying duplex structure that is linked to a stepped detachment horizon rooting in a Lower 10 

Paleozoic detachment in the internal parts of the orogen. The relief has been attributed to the accumulation of the Hormuz 

salt in the Iranian Zagros (McQuarrie, 2004). Even though the MFF is believed to be a major blind thrust in the basement 

(Berberian, 1995), it is usually mapped along the southwestern limb of the last high anticline where the Pila Spi limestones 

or the Bekhme and Aqra limestones crop out (Fouad, 2014; Jassim and Goff, 2006; Numan, 1997). Given that landforms in 

the vicinity of the MFF indicate ongoing tectonic deformation, we suspect that these blind faults might be active at present. 15 

Unfortunately, however, instrumental seismicity in the entire region is too diffusely distributed to be attributed to any 

particular faults (Jassim and Goff, 2006). 

Structurally, this segment of Zagros Fold-Thrust Belt is dominated by NW-SE trending fault-related folds, the trend of folds 

changes to nearly E-W to the west of the Greater Zab River (Fig 2). The folds are usually S-verging and the related faults 

emerge to the surface within both Imbricated Zone and High Folded Zone, while they remain blind within the Foothill Zone 20 

(Fouad, 2014; Hinsch and Bretis, 2015).  

3 Data and Methods 

We calculated and analysed landscape indices from DEMs for the studied anticlines and built a landscape evolution model 

that simulates progressive uplift and erosion of the landscape. We also constructed structural cross-section across these 

anticlines based on literature data and our own field observations. 25 

3.1 Geomorphic Indices 

The present-day relief in the study area resulted from a competition between rock uplift triggered by horizontal contraction 

and erosion destroying it. Parameters controlling these competing processes are the rate of tectonic accretion, rock erodibility 

and climate (Bishop, 2007; Burbank and Anderson, 2012). 

In order to quantitatively analyse the landscape for the Harir, Perat and Akre anticlines (Figs. 2 and 4), we calculated 30 

hypsometric curves and determined three geomorphic indices: (i) hypsometric integral, (ii) surface roughness, and (iii) 
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surface index. These are considered proxies for the relative maturity of a particular landscape. The hypsometric curve and 

integral refer to the distribution of surface area of a landscape with respect to the elevation (Strahler, 1952). The surface 

roughness value is mainly sensitive to incision (Andreani et al., 2014; Andreani and Gloaguen, 2016; Pike and Wilson, 

1971); the surface index is a measure for the amount of erosion. When referring to the results obtained by using this set of 

geomorphic indices, we colloquially refer to them as “landscape maturity” parameters. 5 

3.1.1 Hypsometric Curve 

The hypsometric curve for a basin is the frequency distribution of elevation of the watershed area below a given height 

(Strahler, 1952). Convex-shaped hypsometric curves represent relatively youthful stages of the basin, s-shaped and concave 

curves refer to more mature and old stages (Strahler, 1952).  Hypsometric curves are usually calculated for a specific 

drainage basin. In this study, we calculated the weighted mean of the hypsometric curves for basins with areas > 0.25 km2 10 

within each anticlinal ridge, weighted by the basin area within the anticline. We restricted our analyses to those basins where 

Upper Cretaceous carbonates are exposed (Fig. 4). This allowed us to make realistic comparisons between the three 

anticlines, neglecting the differences in rock erodibility that arise when varying lithologies are included. Wind gaps and 

water gaps as well as the plunging crests of the anticlines were also excluded from the calculation. 

3.1.2 Hypsometric Integral 15 

The hypsometric integral (HI) is the ratio of area under the hypsometric curve (Strahler, 1952). It is used to highlight the 

erosional stage of a landscape with high values corresponding to less mature landscapes and low values indicating advanced 

stages of erosion. The hypsometric integral is computed for a certain area by the following equation (Pike and Wilson, 

1971): 

𝐻𝐻𝐻𝐻 = ℎ𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚−ℎ𝑚𝑚𝑚𝑚𝑚𝑚
ℎ𝑚𝑚𝑚𝑚𝑚𝑚−ℎ𝑚𝑚𝑚𝑚𝑚𝑚

 ,           (1) 20 

where hmean, hmin and hmax are the mean, minimum and maximum elevations [m] of the examined area. 

3.1.3 Surface Roughness 

The surface roughness (SR) measures how much an area deviates from being totally flat. It differentiates flat planar surfaces 

with values close to 1 from irregular surfaces with higher values. It increases with the increase in incision by streams. The 

surface roughness is calculated using the following equation (Grohmann, 2004; Hobson, 1972): 25 

𝑆𝑆𝑅𝑅 = 𝑇𝑇𝑇𝑇
𝐹𝐹𝑇𝑇

 ,            (2) 

where TS and FS are the areas [m2] of the actual topographic surface and the corresponding projection of that surface onto a 

planar surface, respectively. 
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3.1.4 Surface Index 

The surface index (SI; Andreani et al., 2014) combines elevations, hypsometric integral and surface roughness to map 

simultaneously preserved and eroded portions of an elevated landscape. It is calculated using equation 3 (Andreani and 

Gloaguen, 2016): 

𝑆𝑆𝐻𝐻 = (𝑁𝑁𝐻𝐻𝐻𝐻 ∗ 𝑁𝑁ℎ) − 𝑁𝑁𝑇𝑇𝑆𝑆 ,           (3) 5 

where NHI, Nh and NSR are the normalized hypsometric integral, elevations, and surface roughness values, respectively. 

Elevated and poorly incised landscapes with high hypsometric integral and low surface roughness show positive surface 

index values. Highly dissected landscapes with a high surface roughness yield negative surface index values. This means that 

the surface index is also sensitive to elevation. 

3.2 Digital Elevation Models 10 

The geomorphic indices for this study were calculated from the 12 m resolution TanDEM-X DEM (Krieger et. al., 2007) 

obtained from the German Aerospace Center (DLR) and the 30 m resolution SRTM1 DEM (NASA JPL, 2013); these two 

inputs were used since different DEM inputs give slightly different geomorphic results (Andreani et al., 2014; Koukouvelas 

et al., 2018; Obaid and Allen, 2017). Geomorphic indices were calculated using both the TanDEM-X and the SRTM1 data. 

However, the TanDEM-X data revealed numerous artefacts and voids, which made calculations unstable and results 15 

unreliable (also see the comparison in the supplementary material). All results of the geomorphic indices and subsequent 

calculations presented in the following sections were calculated from a 100 * 100 cell (3 * 3 km) moving window on the 30 

m resolution SRTM1 data. A larger moving window makes the obtained measurements smoother and vice versa. The size of 

the moving window must be chosen based on the scale of the target; here we targeted anticlines with wavelengths varying 

from 5 to 8 km. A 3 km moving window covered almost an entire limb of an anticline. We also tested the method proposed 20 

by Pérez-Peña et al. (2009) in order to account for the neighbouring cells in the calculation of the geomorphic indices. Rather 

than using a moving window, this approach uses a spatial autocorrelation of neighbouring cells and maps clusters of high 

and low values of indices using Moran’s I statistic (Moran, 1950) and Gi* statistics (Ord and Getis, 1995). We have tested 

the same method here by calculating the HI for a 500 * 500 m grid of the SRTM data. We applied a hot spot analysis using 

Gi* statistics with a distance of 1.5 km to define neighbour cells. Then, we resampled the HI map calculated from a 100 * 25 

100 cell (3 * 3 km) moving window to 500 * 500 m grid from SRTM data. The calculations were performed using the focal 

and zonal toolsets in ESRI ArcGIS 10.4 software. In addition, the SRTM DEMs with 30 m resolution were used to extract 

topographic profiles, drainage networks, watersheds, stream slopes, and upstream drainage areas wherever required. 
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3.3 Modelling Landscape Evolution  

We built a landscape evolution model to quantify the time difference in between the maturity level of the more mature and 

less mature anticlines by comparing the geomorphic indices of the evolved landscape with those of both anticlines based 

upon the open-source Landlab toolkit (Hobley et al., 2017; http://landlab.github.io). 

We used two components in our model: one simulating erosion due to fluvial action and another simulating sediment 5 

transport along slopes due to hillslope diffusion processes. Chen et al. (2014) showed that consideration of only these two 

components is sufficient for many landscapes but cannot model fluvial sedimentation. However, from field observations and 

from satellite imagery, we know that no significant fluvial sedimentation takes place on the slopes of the analysed anticlines. 

On slopes of anticline flanks, the detachment-limited erosion due to the fluvial system tends to be the dominant process 

(Howard, 1994). To detect changes in the landscape due to fluvial erosion through time, we applied the commonly accepted 10 

idea that the rate of stream incision is directly proportional to the hydraulic shear stress of a stream (Braun and Willett, 

2013). Consequently, we used the stream power incision law (Sklar and Dietrich, 1998; Whipple and Tucker, 1999): 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝐾𝐾𝐴𝐴𝑚𝑚𝑆𝑆𝑛𝑛 ,            (4) 

where ∂z/∂t is the erosion rate [myr-1]; K is an erodibility coefficient [yr-1m(1-2m)] that encompasses the influence of climate, 

lithology, and sediment transport processes; A is the upstream drainage area [m2] and is typically taken as a proxy for 15 

discharge (Wobus et al., 2006); S = ∂z/∂x is the local channel slope [m/m]; z is the elevation [m]; and m and n are the area 

and slope exponents, respectively. The stream power incision law (Eq. 4) is derived since the upstream drainage area A 

scales with channel discharge and channel width. The magnitude of the sediment flux in the channel is assumed to equal 

unity in the standard detachment-limited stream power model (Perron, 2017; Whipple, 2002). In the model, an incision 

threshold (C) was included, below which no incision occurs (Hobley et al., 2017). 20 

To account for the provision of sediment due to hillslope diffusion processes from slopes outside the river system, we used 

the hillslope diffusion equation (Culling, 1963; Tucker and Bras, 1998): 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝐾𝐾𝑑𝑑𝛻𝛻2𝑧𝑧 ,            (5) 

where Kd is the diffusivity coefficient [m2yr-1], z is the elevation [m], and ∇2 is the Laplace operator, i.e. the divergence of 

the gradient. 25 

Finally, the overall evolution of the landscape in different time steps was calculated as the uplift rate subtracted by the 

changes due to both fluvial erosion and the hillslope diffusion (Temme et al., 2017): 

𝑌𝑌 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑈𝑈 − 𝐾𝐾𝐴𝐴𝑚𝑚𝑆𝑆𝑛𝑛 − 𝐾𝐾𝑑𝑑𝛻𝛻2𝑧𝑧 ,          (6) 

where U is the uplift rate [myr-1]. 
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A DEM raster grid of the present-day less mature anticline (Harir) and the surrounding basins (Fig. 5a) served as model 

input. The advantage of using Harir Anticline was that the evolved drainage network overprinted the pre-existing one. The 

boundary conditions were set as closed on all sides except in pre-existing outlets in the input grid. The basins surrounding 

Harir Anticline were also included in the input grid to minimize the effect of the boundary conditions on the Harir Anticline 

itself. In the input raster grid, a flow route of each cell was connected with neighbouring cells both diagonally and 5 

orthogonally. This means that each cell had the possibility to be linked with eight surrounding cells across its sides and 

corners (Hobley et al., 2017; Tucker et al., 2016). 

Concerning the parameter used in the model, the value of m/n, n, and K were found following the methodology described by 

Harel et al. (2016), Mudd et al. (2014), and Perron and Royden (2013), and by comparison with data from Harel et al. 

(2016). The value of m/n was found by plotting the elevation against X (elevation-X plot) for streams in the input grid (Fig. 10 

5a), where X is found following the equation described by (Perron and Royden, 2013): 

𝑋𝑋 = ∫ � 𝐴𝐴0
𝐴𝐴(𝑥𝑥)

�
𝑚𝑚 𝑛𝑛⁄𝑥𝑥

𝑥𝑥𝑥𝑥 𝑑𝑑𝑑𝑑 ,           (7) 

where A0 is the reference drainage area [m2] of 166160 m2 and x is the horizontal upstream distance [m]. In this approach, 

we ascribed values for m/n range from zero to one, and X was calculated for each time from Eq. 7. The value of m/n with 

maximum regression (R2) value in the elevation-X plot was taken as the best-fitting value, which was 0.41 in our case for the 15 

present-day Harir Anticline’s drainages (Fig. 5b). This value of m/n is located within the theoretically predicted values of 

m/n, which ranges from 0.3 to 0.7, based on the stream power incision model (Kwang and Parker, 2017; Temme et al., 2017; 

Whipple and Tucker, 1999). 

In the model, n = 1.7 and K = 3.0E-6 yr-1m-0.4 were used; these values were estimated as mean of K and n in Harel et al. 

(2016) for those areas that are comparable with our study area in aspect of lithology, climate, and precipitation. The value of 20 

m was 0.7. We used an incision threshold of C = 1.0E-5myr-1, which is widely adopted for erosion of an upland landscape 

(Hobley et al., 2017). A present-day annual mean precipitation of c. 0.7 myr-1 was used through the time due to the lack of 

nearby paleoclimate data with good quality. The average of the modelled precipitation anomaly data for Lake Van in SE 

Turkey (200 km to the NNW of the studied anticlines) is close to zero (Stockhecke et al. 2016; supplementary material). The 

current elevation of the Bekhme and Aqra formations in the crest of Harir Anticline is about 1500 m above sea level. Above 25 

that, 2070 m of Upper Cretaceous-Miocene units (Law et al., 2014) and 300 m of Upper Miocene Lower Bakhtiari were 

exhumed before exposure of the Bekhme and Aqra formations. If we consider that the Lower Bakhtiari have been deposited 

close to sea level before onset of the MFF c. 5 Ma, there would be 3872 m of rock uplift at a rate of ~0.0007 myr-1, which 

was used in the model. This rate of vertical uplift is reasonable for the area and it matches with the vertical uplift in 

Kurdistan that has been presented by Tozer et al. (2019). Since soil (regolith) is rare and very thin when present on the 30 

slopes, a low diffusivity coefficient of Kd = 0.001 m2yr-1 was used (Fernandes and Dietrich, 1997). 
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There are minor variations in lithology between the three anticlines (they consist of a thick pile of dominantly Cretaceous 

carbonate) and no variation in climate can be expected on such a relatively local scale. Therefore, no significant variances 

are expected in the used parameters. Lastly, the parameters were calibrated by comparing the nature of the evolved landscape 

to other anticlines within the High Folded Zone that are cored by Cretaceous carbonates and more mature than the Harir 

Anticline to evaluate how realistic the evolved landscape is. 5 

4 Results 

4.1 Landscape Maturity 

The three studied anticlines are composed of the raised Cretaceous carbonates in their crests, whereas the Tertiary clastic 

rocks have been denuded, but conserved in the adjacent synclines. The three anticlines are dissected by rivers that form 

water gaps across them. Bekhme and Zinta gorges cut the Perat and Akre anticlines, respectively. We also observed wind 10 

gaps, such as those in the NW end of Harir Anticline (Zebari and Burberry, 2015). Therefore, neither the location of these 

water and wind gaps nor the plunging tips of anticlines have been considered in interpreting the geomorphic indices as 

proxies for relative landscape maturity. 

The anticlines reach up to c. 1500 m asl. The minimum altitude is c. 700 in the adjacent synclines and c. 400 m in the 

Greater Zab river course. The hypsometric curves for the three anticlines are presented in Fig. 6. Harir Anticline’s curve is 15 

more convex, and its shape is close to the youthful stage of Strahler's diagram (Ohmori, 1993; Strahler, 1952) with 78% of 

the area above the mean elevation, while Akre Anticline is less convex and close to a mature stage with only 50% of the area 

above the mean elevation. Perat Anticline’s values are located in between and closer to the Harir Anticline curve with 64% 

of its area above the mean elevation. 

The three calculated geomorphic indices (HI, SR, and SI) seem to be substantially influenced by the local structure, and wind 20 

and water gaps (Fig. 7). Hypsometric integral values vary between 0.2 and 0.77, with lower values in the adjacent synclines 

and higher values in the crest of the anticlines. The HI values decrease toward the plunging ends of the anticlines and at 

gorges, e.g. Perat Anticline’s HI values are minimum at the Greater Zab River. In general, Harir Anticline shows higher 

values than the other two anticlines. Harir Anticline has a broad crest and has been incised by narrow valleys. This makes the 

mean elevation within the moving window in the calculation close to the maximum elevation and, thus, causes higher values 25 

of the hypsometric integral. Perat Anticline shows high values of HI on its crest to the west of Bekhme Gorge. Among the 

three anticlines, Akre Anticline shows the lowest values of HI in its central part, which is due to presence of more incised 

and wider valleys. Elevation drops rapidly from the hinge of the anticline toward the limbs, which causes the mean elevation 

within the window to fall. 

The surface roughness values range between 1 and 1.33 in the area. The lowest values of the SR are also present in the 30 

adjacent synclines and in the plunging tips of the anticlines. The highest values are associated with the location of water 

gaps. These are areas where rivers deeply incised at both Bekhme and Zinta gorges. Harir Anticline has lowest surface 
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roughness values. Perat Anticline shows the highest value of SR especially in its northern limb. Akre Anticline has moderate 

SR values in its central segment and western side where a wind gap is present. 

The results of the surface index range between -0.04 to 0.70 in the three anticlines studied. Few locations show negative 

values. These are associated partly with adjacent synclines and with Bekhme Gorge. Apart from these locations, the area 

shows positive surface indices. Harir Anticline exhibits higher values on its broad crest. Perat Anticline shows moderate 5 

values of SI on its crest to the west and east of Bekhme Gorge. For Akre Anticline, SI values are lower than in both Harir 

and Perat anticlines, with highest values on its crest east of Zinta Gorge. These high values of SI highlight the flat areas with 

high elevation and high hypsometric integral. The surface index values also highlight the Pila Spi and Khurmala limestone 

ridges encircling the anticlines with values close to zero. 

In our calculation, the results of geomorphic indices change with changing the size of the moving window and the resolution 10 

of the input data (see supplementary material). This was also detected by Andreani et al. (2014) and Obaid and Allen (2017). 

Andreani et al. (2014) found that the DEM resolution does not affect the hypsometric integral, but it affects the surface 

roughness, while the size of the moving window affects both hypsometric integral and surface roughness. The results 

become smoother with an increasing size of the moving window. Here, we found that it is reasonable to use a 100 * 100 cell 

(3 * 3 km) moving window, which covers approximately one limb of the anticline with 6-7 km width. It therefore highlights 15 

the desirable signal. The cluster map for the HI Gi* statistics was calculated following the approach by Pérez-Peña et al. 

(2009) for the 500 * 500 m grid. We obtained results similar to the HI map calculated from a 100 * 100 cell (3 * 3 km) 

moving window and resampled to 500 * 500 m grid in terms of highlighting the cluster of high and low HI values (Fig. S19 

a and b in supplementary material). This comparison proves that our method is equally applicable and valid. We therefore 

ran all analyses based on the 100 * 100 cell moving window as described above. 20 

According to the hypsometric curves and the geomorphic indices, we found that there is a measurable difference in 

landscape maturity between the three anticlines. We classified our anticlines as relatively mature (Akre Anticline), 

moderately mature (Perat Anticline), and less mature (Harir Anticline). The difference in the maturity level must be due to a 

difference in one or more of the factors tectonics, climate, or rock erodibility. No variation in the climate is expected for the 

scale of the studied area, therefore its impact on the landscape maturity can be neglected. The three anticlines show 25 

essentially the same lithology (Figs. 2 and 3), i.e. similar lateral rock type and erodibility. Thus, the only factors that may 

vary along the anticlines are uplift rate or onset time of the uplift. This can be interpreted with one of the following 

scenarios: either the anticlines started to uplift in the order 1) Akre, 2) Perat and 3) Harir from west to east, or all of them 

started at the same time but with different rates. In the latter case, the uplift rate would have been highest at Akre and lowest 

at Harir, exposing Akre to erosion earlier than Harir. 30 

4.2 Landscape Evolution Model 

The aged landscape from the model run (Figs. 8 and 9) is the result of fluvial erosion and hillslope diffusion on the one hand, 

and uplift due to folding on the other hand. In the landscape modelling, various simulations with different parameters and 
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time spans were performed (supplementary material S24-S27). Harir Anticline was used as an input model and the landscape 

evolution model was run for a time span of 10 kyr up to 100 kyr and then it was run for a time span of 20 kyr. The evolving 

drainage system overprints the pre-existing one in the input and gradually becomes more deeply incised from the anticline 

flanks carving toward its core (Fig. 8). Harir Anticline is a box-shaped anticline with a wide and flat crest area. With ongoing 

incision towards the core of the anticline, this plain crest narrowed gradually and finally became a sharp ridge that divided 5 

the drainage basins of the SW flank from those of the NE. 

We compared the hypsometric curves of the model outputs to the present-day curves of the anticlines. The hypsometric 

curves were calculated first as total weighted mean for basins within the anticline and later calculated for the entire anticlinal 

ridges (Fig. 9). Statistically (with minimum RMS), the hypsometric curve of Harir Anticline was closest to the present-day 

Perat Anticline after 100 kyr and 80 kyr of erosion when using total weighted mean and entire anticlinal ridge, respectively, 10 

in calculation of the hypsometric curves. The output curve after 160 kyr and 200 kyr matched best with present-day Akre 

Anticline, when using total weighted mean and entire anticlinal ridge, respectively, in calculation of the hypsometric curves. 

We conclude that it will take Harir Anticline roughly about 80 to 100 kyr to reach the maturity level of Perat Anticline and 

about 160 to 200 kyr to reach the level of Akre Anticline based on our model and comparison of the hypsometric curves if 

the uplift rates of the three anticlines were the same. The other possibility is that the anticlines started to grow at the same 15 

time but with different uplift rates. In this case, it is not possible to find the difference in uplift rates via our landscape 

modelling. Since the factors that control geomorphology (lithology, structural setting, and climate) were similar for all three 

anticlines, and under the assumption of constant growth and erosional conditions, we infer that uplift of Akre and Perat 

anticlines started respectively 160-200 kyr and 80-100 kyr before Harir started to grow if their uplift rates were the same. 

4.3 Geometry of the Studied Anticlines 20 

The structural cross-sections for the three anticlines (Fig. 10) constructed from field data and literature (Syan, 2014) shows 

that the anticlines are box-shaped with broad crests. They are asymmetrical verging toward the SW with a nearly vertical or 

overturned forelimb. The three anticlines are thrust-related, in accordance with published studies of the area (Csontos et al. 

2012), and have a thrust in their forelimb. Perat Anticline additionally exhibits a back thrust in its NE limb. The shortening 

across the three anticlines was calculated using line-length balancing. We found 26%, 28% and 29% shortening for Harir, 25 

Perat and Akre anticlines, respectively, and conclude that there is no significant variation. A difference in the fold amplitude 

between the three anticlines can be discerned in the cross-sections. The amplitude of Perat Anticline is higher than that of 

both Harir and Akre anticlines. Another difference concerns the thickness of the Upper Cretaceous - Middle Eocene clastic 

succession, which dwindles toward the Akre Anticline. The whole Miocene succession, however, is the thickest in the Akre 

Anticline. Both the Upper Cretaceous - Middle Eocene and Miocene successions consist of highly erodible clastic rocks, and 30 

the thicker Miocene succession in the Akre Anticline counterbalances the thinner Upper Cretaceous - Middle Eocene 

succession. Therefore, it is not expected that these variations in the structural geometry and stratigraphic thickness have a 

great impact on the variation of the landscape maturity in the three anticlines and the landscape model. 
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5 Discussion 

 5.1 Landscape Maturity and Modelling 

Any relative change in the base level induced by tectonics or climate leads to the change of erosion rates. A relict landscape 

survives when its uplift is not completely counterbalanced by erosion (Andreani and Gloaguen, 2016; Burbank and 

Anderson, 2012; Pérez-Peña et al., 2015). The relative relict landscape and its distribution on these three anticlines atop the 5 

MFF reveal clues about underlying tectonics since there is no significant variation in climate and lithology. 

Within the three studied anticlines, the geomorphic indices effectively highlighted their incision. The surface index which 

combines both hypsometric integral and surface roughness, sets apart relict landscapes of positive and high values from 

transient landscapes of negative values that are preferentially incised (Andreani et al., 2014). There is a notable relative 

deviation in areas where anticlines are crossed by rivers e.g. Bekhme and Zinta gorges, which show a high surface 10 

roughness. Also, variations in surface index are found in comparable areas in the three anticlines. Focussing on the crest of 

the anticlines, we observe that Harir Anticline shows higher values than the two others. The lowest values are found in Akre 

Anticline. Harir has low incision at elevated surfaces while Akre has more incised uneven landscape, because erosion has 

worked deeper into the core of the anticline. This can also be inferred from the valley shapes. We observe tight V-shape 

valleys in the flanks of Harir and open V-shape valleys in Akre (Figs. 11a and 11b). We relate this difference to the tectonic 15 

uplift and to the effects of longer erosion acting on Akre. The observation can be interpreted with one of the following two 

premises: either the anticlines started to uplift successively (first Akre, then Perat, and finally Harir), or all of them started at 

the same time but with different uplift and exhumation rates (Akre the fastest, Harir the slowest). In other words, the 

Cretaceous carbonates in Harir Anticline were exposed to the erosion later than in Akre Anticline and, consequently, incised 

less. 20 

The current landscape of these anticlines exposes Cretaceous carbonates of the Qamchuqa, Bekhme and Aqra formations, 

which became exposed to erosion only after unroofing of the entire Palaeogene - Neogene succession. The Upper Miocene-

Pliocene Bakhtiari Group, which is the youngest stratigraphic unit in the area, is affected by folding, as observed from 

growth strata (Csontos et al., 2012). This has also been observed in the Upper Bakhtiari (Pliocene-Pleistocene) close to the 

MFF (Koshnaw et al., 2017). In between Bekhme and Aqra and the Upper Bakhtiari formations, 2.37 km of the Upper 25 

Cretaceous - Miocene clastic rocks interbedded with thin units of limestone (Law et al., 2014) have been exhumed due to 

successive rock uplift in the crest of the studied anticlines, triggered by shortening and erosion. They are only preserved in 

the adjacent synclines. The Cretaceous carbonates themselves have been exposed in the crests of Akre, Perat, and Harir 

anticlines for c. 0.9 km above the level of the other exhumed units. Based on the thickness, the amount of the exposed 

Cretaceous carbonate makes c. 28 % of the total exhumed and exposed thickness in the crest of the anticlines. Therefore, 30 

with both scenarios (different uplift time or different uplift rate) and with assumption of constant (linear) rock uplift rate 

through time, the Cretaceous carbonate in Harir Anticline was exposed to erosion later than in the Akre Anticline (Fig. 12a). 
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The steeper valley flanks in Harir Anticline compared to those of Akre also support higher uplift rates of the Harir Anticline. 

Furthermore, the relationship between stream slope and upstream drainage area at any given point of streams in the Harir 

Anticline is positive (Fig. 12b). This means that the streams have a convex shape and the streams’ segments with steeper 

slopes are still located in the flanks of the anticline. In the Akre Anticline, this relationship is negative (Fig. 12b), which 

means that the streams have a concave shape and the segments with steeper slopes have migrated toward the core of the 5 

anticline. This implies that tectonic activity in the Harir Anticline is younger than in the Akre Anticline; in other words, the 

Harir Anticline was exposed to erosion later than the Akre Anticline. Therefore, the premise of having Harir Anticline 

starting its uplift later than Akre Anticline is most likely. This is our preferred scenario in the model for the successive 

tectonic evolution of the study area presented below. 

The geomorphic indices have been widely used to assess the landscape maturity and, subsequently, active tectonics 10 

(Andreani and Gloaguen, 2016; Mahmood and Gloaguen, 2012; Pérez-Peña et al., 2009). The challenging aspect of 

landscape maturity modelling is to obtain an absolute quantification of tectonics and the relevant time spans. The same holds 

true with using a landscape evolution model to estimate the relative time difference between two landscapes, because it is 

difficult to compare two landscapes in terms of maturity by absolute means. The results of the landscape modelling approach 

yielded a numerically derived estimate on the relative age difference between the studied anticlines but without absolute 15 

growth ages. 

In the model, various parameters and two well-known landscape evolution equations for the fluvial erosion and hillslope 

diffusion were used, but in general it is impossible to mimic nature perfectly. The relative time difference of landscape 

evolution of these anticlines was estimated from the model assuming that the climate has not changed much during the 

evolution of the landscape since there was not much variation in the precipitation based on the modelled data (Stockhecke et 20 

al. 2016) and for the sake of simplicity, admitting that climatic change has a significant impact on the landscape. In addition, 

neither rock fall nor karstification were included in the model for simplicity. Field observations suggest that karstification 

does not have a significant impact on the landscape. Overall, the evolved landscape from the model seems to be plausible in 

comparison with the other anticlines that surround Harir Anticline, and the landscape models are more mature with respect to 

the developed topography and to the overall drainage patterns. 25 

5.2 Structural Style and Regional Tectonics 

An orogenic bend is depicted in the area where the trend of structures changes across the Greater Zab River from NW-SE at 

the eastern side of the river to nearly E-W at its western side. The course of the Greater Zab River is suggested to overlie a 

NE-trending transversal basement fault with right-lateral displacement (Ameen, 1992; Burberry, 2015; Jassim and Goff, 

2006; Omar, 2005) evidenced by an offset of the High Folded Zone propagation foreland-ward. At the eastern side of the 30 

river the deformation has propagated for about 25 km further than on its western side (Figs. 1 and 2). The origin of this fault 

reaches back to the Late Proterozoic tectonic history of the Arabian Plate. This fault has been reactivated later in subsequent 

tectonic events (Ameen, 1992; Aqrawi et al., 2010; Burberry, 2015; Jassim and Goff, 2006). This can also be noticed in the 
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thickness of the sedimentary cover, which is thinner to the west of the Greater Zab River (Ameen, 1992; Zebari and 

Burberry, 2015). This change in thickness is attributed to a series of uplift events and erosional/non-depositional gaps during 

the Mesozoic (Ameen, 1992; Aqrawi et al., 2010). Further propagation of the deformation (Mountain Front) in the eastern 

side of the Greater Zab River may be due to the existence of a thicker sedimentary cover than on the western side, which in 

turn may have influenced the foreland-ward propagation of deformation (Marshak and Wilkerson, 1992). The deference in 5 

propagation of deformation may also be due to the convergence being accommodated differently across the curved fold-

thrust belt  (Csontos et al., 2012). In the eastern side of the Greater Zab River, the convergence is accommodated across 

NW-SE trending structures through belt-normal slip and right-lateral strike-slip components, while in the western side of the 

river the convergence is accommodated only by a belt-normal slip across E-W trending structures (Csontos et al., 2012; 

Reilinger et al., 2006). 10 

Zebari and Burberry (2015) found that anticlines to the east of the Greater Zab River (Harir, Shakrok and Safin anticlines) 

demonstrate pronounced NW-ward propagation based on their geomorphic criteria, and the start point of the NW-ward 

propagation of the Harir Anticline is close to its SE end. This implies that progressing uplift in the hanging wall of the MFF 

was not gradually continuing from the Akre Anticline towards the Perat Anticline and further SE-ward to the Harir 

Anticline. The uplift progress is probably rather partitioned into segments along the belt. In addition, other anticlines to the 15 

south (Safin Anticline) and to the southwest (Shakrok Anticline) of Harir Anticline are more mature than Harir Anticline 

itself, based on their hypsometric curves (Fig. 13) and geomorphic indices (supplementary material; S1-S18), implying that 

the foreland-ward propagation of the deformation was also out-of-sequence in this part of the High Folded Zone. This has 

also been noted in the Foothill Zone based on thermochronological dating (Koshnaw et al., 2017) and landscape maturity 

(Obaid and Allen, 2017). Thus, the most plausible scenario is that deformation in the Harir segment started sometime after 20 

that in Akre segment (160-200 kyr according to our landscape evolution modelling). Harir Anticline uplift would also 

postdate Perat Anticline uplift (80-100 kyr) to the west and the onset of Safin and Shakrok anticlines to the south and 

southeast, which are not included in the model (Fig. 14). As discussed by Csontos et al., (2012), the fold relay corresponds to 

the change in strain partitioning and rotation of the horizontal stress direction from NE-SW to N-S in Late Pliocene 

(Navabpour et al., 2008; Navabpour and Barrier, 2012). During the latest stage of the N-S convergence, a right-lateral shear 25 

and superposed folding along the NW-SE trending anticlines (Csontos et al., 2012) can be observed from the relay of the 

Shakrok, Harir and Perat anticlines (Figs. 2 and 14). Applying this concept requires a comprehensive paleostress analysis 

investigation especially within these studied anticlines, which is beyond the scope of this paper. 

6 Conclusions 

The geomorphic indices used in this study allowed us to quantitatively differentiate between variably degraded landforms in 30 

the frontal Zagros Mountain of NE Iraq. This area is characterized by active folding due to ongoing convergence between the 

Eurasian and Arabian plates. Three active thrust-related anticlines that are aligned along-strike the MFF were studied in 
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detail. While the Akre Anticline shows deeply incised valleys indicative of advanced erosion, the Harir and Perat anticlines 

have relatively smooth surfaces and show younger landscape than Akre. We related this difference to the underlying 

tectonics. This can be interpreted with one of the following concepts: either anticlinal growth started at different times or all 

of them started to grow at the same time, but with different surface uplift and exhumation rates. 

A comparison of the geomorphic indices values of the model output with those of the present-day Akre Anticline topography 5 

revealed that it will take Harir Anticline about 160-200 kyr to reach the maturity level of today’s Akre Anticline, and about 

80-100 kyr to reach the maturity level of the Perat Anticline assuming constant uplift rates along the three anticlines. Due to 

similarity in the lithology, structural setting and climate along the three anticlines and by assuming constant growth and 

erosion conditions, we infer that Akre Anticline started to grow 160-200 kyr before Harir Anticline. The onset of growth of 

Perat Anticline lies in between that of Harir and Akre anticlines. A NW-ward propagation of Harir Anticline itself implies 10 

that the uplift has been independent within different segments rather than having been continuous from the NW to the SE. 

Our method of estimating relative age differences in variously degraded anticlines can be applied to many other anticlines 

along the MFF and could eventually develop into a model of the temporal evolution of this fold and thrust belt. 
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5 Figure 1: Tectonic subdivision of the NW segment of the Zagros Fold-Thrust Belt (modified after Berberian, 1995; Emre et al., 2013;

Koshnaw et al., 2017; Zebari and Burberry, 2015). Names within the parentheses are known in the Iranian part of Zagros.
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Figure 2: Geological map of the Zagros Belt in KRI showing the location of the three anticlines Harir, Perat, and Akre with respect

to the MFF that separates the High Folded Zone from the Foothill Zone (modified after Csontos et al., 2012; Sissakian, 1997; Zebari

and Burberry, 2015).
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Figure 3:  Stratigraphic column of the exposed rock units in the area. Thicknesses are given as in well Bijeel-1 (Fig. 2), which is

located 5 km to the south of Perat Anticline (modified after Law et al., 2014). The column is scaled to the stratigraphic thicknesses.
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5

Figure 4: Topography and slope maps of the studied anticlines obtained from 30 m resolution SRTM1 DEM data showing the

location of water and wind gaps across these anticlines. 
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Figure 6: Present-day hypsometric curves of the studied anticlines. The curves are calculated as a total weighted mean for drainage

basins within each anticline. We only use those parts where Upper Cretaceous carbonate rocks crop out and we exclude wind gaps,

water gaps, and the plunging tips of anticlines. n is the number of basins used in calculation of the hypsometric curve for each

anticline.
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Figure 8: The input landscape (a), which is the present-day Harir topography, and the evolved landscape through time; b) 80 kyr,

c) 100 kyr, d) 160 kyr, e) 180 kyr, f) 200 kyr, g) 220 kyr, and h) 240 kyr.

Figure 7: Surface index maps for the three anticlines calculated from 100 * 100 cell (3 * 3 km) and moving windows; a) hypsometric

integral, b) surface roughness, and c) surface index.
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Figure 9: Hypsometric curves of the studied anticlines and those of the evolved Harir landscape from the model for different time

spans. a) The curves were calculated using the total weighted mean for drainage basin within each anticline, indicating that the

evolved landscapes after 100 and 160 are the closest ones to the present-day Perat and Akre anticlines, respectively. n is the number

of basins used in calculation of the hypsometric curve for each time; b) the curves were calculated for the entire anticline, indicating

that the evolved landscapes after 80 and 200 are the closest ones to the present-day Perat and Akre anticlines, respectively.
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10

5

Figure 11: Different shape of valleys in the Harir (a) and Akre anticlines (b). See Figures 2 and 4 for the locations.
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Figure 10: Structural cross-section across the three studied anticlines; a) Harir section (modified after Syan, 2014), b) Perat section

constructed from field data and thrusts inferred from a seismic line by Csontos et al. (2012), c) Akre section constructed from field

data (see Figure 2 and 4 for the locations). In Akre and Perat anticlines the data were collected along gorges and the topographic

profile across the anticline along an adjacent transect to the gorges are delineated by a dotted line. The shortening 5 percentage

since Late Miocene is shown on each cross-section.
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Figure 12: a) Diagram showing the exposure time of the Upper Cretaceous carbonates in Akre and Harir Anticlines. Two different

scenarios are plotted for Harir: Having a slower uplift rate than Akre, or onset of uplift later than Akre. b) Channel slope-drainage

area plots for streams in both Akre and Harir Anticlines.
5

Trend of the Akre Anticline

Trend of the Harir Anticline with di�erent uplift
time and same uplift rate as Akre Anticline 
Trend of the Harir Anticline with same uplift
time and di�erent uplift rate as Akre Anticline

Ex
hu

m
at

io
n 

of
 c

. 2
.3

7 
km

L.
 C

re
ta

ce
ou

s 
– 

U
 M

io
ce

ne
 ro

ck
s

Su
rf

. E
xp

. o
f c

. 0
.9

 k
m

 
 C

re
t. 

Ca
rb

on
at

es

5  4  3  2  1  0 

km
3

2

1

0

Surface Exposure of the Cretaceous Carbonates

Time (Ma)

0.1

1

10 10 10
6 7 8

Akre Anticline

Harir A
nticline

Sl
op

e 
(m

/m
)

Drainage Area (m  )2

a)                                                                                                                                                                         b)



34

Figure 13: Total weighted mean hypsometric curves for drainage basin within the studied anticlines as compared to those of the

Shakrok and Safin anticlines. The Harir’s curve is more convex than that of both Shakrok and Safin. n is the number of basins used

in calculation of the hypsometric curve for each anticline.
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Figure 14: Simplified history of the formation of anticlines during the propagation of the deformation front over time in the study

area. The Harir anticline is likely the latest to have formed within the High Folded Zone in its SE end. It occupies the position of a

relay structure during the linkage of two adjacent, but overlapping segments of the deformation front. The anticlines were outlined

based on the exposure of Cretaceous carbonates.
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