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Abstract. The characterisation of natural fracture networks using outcrop analogues is important in understanding sub-surface 10 

fluid flow and rock mass characteristics in fractured lithologies. It is well known from decision- sciences that subjective bias 

can significantly impactsimpact the way data is gathered and interpreted., introducing scientific uncertainty. This study 

investigates the impactscale of and nature of subjective bias on fracture data collected using four commonly used approaches 

(linear scanlines, circular scanlines, topology sampling and window sampling) both in the field and in workshops using field 

photographs. Considerable variability is observed between each participant’s interpretation ofWe demonstrate that geologists’ 15 

own subjective biases influences the data they collect, and, as a result, different participants collect different fracture data from 

the same scanline, and this variability is seen regardless of geological experience. Geologists appear to be either focussing on 

the detail or focussing on gathering larger volumes of data, and this innate personality trait affects the recorded fracture network 

attributes.sample area. As a result, the fracture statistics that are derived from the field data and which are often used as inputs 

for geological models, can vary considerably between different geologists collecting data from for the same scanline., 20 

depending on which geologist collected the data. Additionally, the personal bias of geologists collecting the data affects the 

scanline size (minimum length of linear scanlines, radius of circular scanlines or area of a window sample) required of the 

scanline that is needed to collect a statistically representative amount of data. Fracture statistics derived from field data often 

inputs into geological models that are used for a range of applications, from understanding fluid flow to characterising rock 

strength. We suggest protocols to recognise, understand and limit the effect of subjective bias on fracture data biases during 25 

data collection. Our work shows the capacity for cognitive biases to introduce uncertainty into observation-based data, and has 

implications well beyond the geosciences.  
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1 Introduction 

Natural fracture networks exert a strong control on the hydrogeological and mechanical properties of a rock mass, 

and are useful indicators of palaeostresspalaeo-stress directions. Geological models that depict the spatial distribution and 

nature of a fracture network rely on input data (either distributions or mean values) of fracture statistics to provide a 

geologically reasonable model of the subsurface. Models such as discrete fracture networks (DFNs) may be used for estimating 5 

up-scaled permeability (e.g. (Bigi et al., 2013; Min et al., 2004)(Bigi et al., 2013; Min et al., 2004)) or for rock mechanics 

analysis (Harthong et al., 2012; Jing and Hudson, 2002), with applications, including understanding fluid flow in tight oil and 

gas reservoirs (Aydin, 2000) and hydrogeology (Comerford et al., 2018), and assessing rock strength for mine engineering 

(Mas Ivars et al., 2011). There are four fundamental methods of fracture data collection at outcrop analogues (summarised in 

sect. 2): linear scanlines;Four methods for characterizing natural fractures in outcrops: linear scanlines (Priest, 1993; Priest 10 

and Hudson, 1981); circular scanlines (Mauldon et al., 2001; Rohrbaugh et al., 2002)(Mauldon et al., 2001; Rohrbaugh et al., 

2002); topology sampling (characterising node types); and tracing out the fracture network (window sampling). These methods 

are variably good at capturing the impact of orientation, censoring or truncation bias; topology sampling (characterising node 

types; Manzocchi, 2002; Sanderson and Nixon, 2015, 2018); and tracing out the fracture network (window sampling;(Wu and 

D. Pollard, 1995)). These methods handle orientation, censoring or truncation biases (Mauldon et al., 2001; Zeeb et al., 2013), 15 

and heterogeneity in the fracture network (Watkins et al., 2015)). We also argue that the  with different degrees of success. 

Here, we explore how each of these methods also differ in the how are susceptible they are to subjective uncertainties and the 

scale of these related to observer biases. Furthermore, we characterise how much the degree of variability introduced by 

subjective uncertainties.  is dependent on the method of data collection. 

Uncertainties in geological data can be broadly split into objective and subjective uncertainty (Tannert et al., 2007). 20 

Objective uncertainty (also called external, aleatory inherent, structural, random, or stochastic uncertainty) refers to more 

traditional concepts of uncertainty, such as precision or processing error in a technique or a dataset, and so can be represented 

through error bounds. Subjective uncertainty (also called epistemic, knowledge, functional, or internal uncertainty) arises from 

the mind, that is, stems from biases that affect how individuals perceive, gather and interpret geological data (Bond et al., 

2015). Subjective uncertainty is common in geosciences where developing geological models typically relies on extrapolation 25 

of sparse data (Wood and Curtis, 2004), but it’sits magnitude and impact is difficult to quantify (Bond et al., 2015).  

The collection of fracture attributes will be affected by subjective biases. Depending on the aims of thea study (e.g.., 

determining the connectivity and permeability of the fracture network; determining strength of a fractured rock mass; 

understanding paleostresspaleo-stress conditions)), these attributes could include the number of fracture sets,; orientations, 

topology, trace lengths, degree of clustering, and aperture andof the fracture population in a set; and the topology and intensity 30 

of the network (Jolly and Cosgrove, 2003; Lei et al., 2017; Watkins et al., 2015). For example, the scale of observation chosen 

by the user will impact the minimum fracture trace length recorded for the fracture network. Nixon et al. (2012) showed that 

when studying strike slip faults using bathymetry, an increase in resolution increases the recorded connectivity of the fault 

network. Areas of poor exposure (e.g. due to preferential erosion) requires the geologist to interpret how the fracture network 

connects, enhancing the scope for subjective uncertaintyThe presence and amplitude of these biases may also be affected by 35 

the study medium. For example, previous work has investigated the operator, used here to describe the person undertaking the 

interpretation, variability extracting lineament or landform data from remote sensing (e.g. LANDSAT imagery or aerial 

photographs) (Burns et al., 1976; Burns and Brown, 1978; Huntington and Raiche, 1978); DEMs (Hillier et al., 2015) and 

LiDAR datasets (Scheiber et al., 2015). Differences in operator interpretations can occur due to: (a) technical factors in data 

acquisition, for example, band width for Landsat data, image quality for aerial photographs or illumination direction for 40 

LiDAR; (b) the scale of observation, for example, 1: 20,000 compared to 1: 5,000; and (c) inter-operator differences (i.e. 

human factors). Scheiber et al. (Scheiber et al., 2015) found inter-operator replicability to be poor for bedrock lineaments 

interpreted from airborne LiDAR by six operators’. Significant variability was observed in the number, trace-length and 
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orientation of the reported lineaments. Burns et al. (1976) attributes a difference of 8% in interpretations to ‘human factors’ 

for lineaments identified using aerial photography. While differences in inter-operator interpretation has been previously 

identified, the underlying human factors causing these differences remain unclear. It is also unclear how such factors affect 

the collection of fracture data either in the field or from field photographs.  

In this study, we investigate the magnitude and source of subjective uncertainty in fracture data collected by linear 5 

scanlines;, circular scanlines;, fracture topology and window sampling. Fracture data were collected from Carboniferous rocks 

cropping out near Whitley Bay, Northumberland (UK) in two phases: (1) in the field where 7 participants collected fracture 

data directly from outcrop,; and (2) two classroom workshops during which 29 participants with different levels of geological 

training and expertise collected fracture data from field photographs. In both the field and classroom, the participants collected 

fracture data individually and in small groups. We compare the values collected by individual participants for the same sample 10 

(scanline, circle, window sample etc). It is the values as reported by the participants rather than the underlying statistics of the 

measured fracture networks that is the focus of this work. We quantify and compare the scale of subjective uncertainty for 

each method we explore, and identify “problem areas” or factors whichthat amplify the subjective uncertainty. We consider 

the effect of the variationvariations due to subjective uncertainty on fracture statistics derived from the data collected, and 

propose a number of protocols to limit useroperator bias in collaborative work.  15 

2. Fracture data collection and analysis 

Linear scanlines are a quick and relatively simple way of systematically collecting fracture data (Agosta et al., 2010; 

Bigi et al., 2015; Chesnaux et al., 2009; Guerriero et al., 2011; Ortega et al., 2006; Tóth, 2010). This method was developed 

in rock engineering for a quantitative description of discontinuities in rock masses (Priest, 1993), and then adopted to describe 

natural fracture networks (Becker and Gross, 1996; Van Dijk et al., 2000; Newman, 2005; Peacock and Sanderson, 2018). The 20 

method involves laying out a tape measure on the outcrop and measuring both the number (N) and the attributes of fractures 

which intersect the scanline (e.g. orientation, spacing, length above and below the scanline, aperture, type of terminations, 

filling or mineralization) (Priest, 1993; Priest and Hudson, 1981). To fully represent all the fracture sets occurring insample a 

fracture network, multiple linear scanlines should be undertakencompleted with different orientations, and the Terzaghi 

correction should be applied to reduce orientation bias (Mauldon and Mauldon, 1997; Terzaghi, 1965). The main purposegoal 25 

is to collect enough data to obtain a statistical distribution for each of the main fracture parameters rather than a mean value 

(Table 1).. It has been suggestedrecommended that over 225 fractures should be capturedsampled by one or morethe population 

of linear scanlines for the method to fully characteriseestimate accurately the characteristic of a fracture network (Zeeb et al., 

2013).  

Circular scanlines provide estimates of fracture attributes based on the number of fractures intersecting a circular 30 

scanline, Ncn, and the number of fracture trace endpoints, m, within a circular window (Mauldon et al., 2001; Rohrbaugh et 

al., 2002). The fracture density, intensity, and an estimate of mean trace length for the scanline can be calculated from the n 

and m values (Mauldon et al., 2001). To be statistically valid, the number of fracture end points (m) should exceed 30 

(Rohrbaugh et al., 2002), however, values between 20 and 30 can also be considered reliable (Procter and Sanderson, 2017). 

This rule defines the radius of the scanline as a function of fracture density and limits the use of the technique in areas of poor 35 

exposure and low-density fracture networks. A circular scanline is a maximum likelihood estimator (Lyman, 2003) and does 

not suffer from the same orientation biases observed in linear scanlines (Mauldon et al., 2001). Circular scanlines are ideal for 

rock masses with evenly distributed fracture attributes, but may need to be combined with other methods to give a true 

representation of the heterogeneity of the fracture network (Watkins et al., 2015).  

Fracture topology describes a fault or fracture network as a series of branches and nodes (Manzocchi, 2002; Sanderson 40 

et al., 2018; Procter and Sanderson, 2017; Sanderson and Nixon, 2015; Laubach et al., 2018)Laubach et al., 2018). A branch 
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is a fracture trace with a node at each end that can be classified as terminating into rock at i-nodes (unconnected terminations), 

abutting against another fracture at a y-node, or crossing another branch at an x-node. Topology may be combined with circular 

scanlines by assessing the nodes present within the circular window and using the sum of i- and y- nodes as the number of 

trace end points (m-value) in the circle (Procter and Sanderson, 2017). The ratiorelative frequencies of different node types 

is(i, y and x) can be plotted on a triangular diagram for the purposes of characterizing and quantifying the connectivity of a 5 

fracture network (Manzocchi, 2002;  Sanderson and Nixon, 2015). 

Finally, window sampling is a technique where all fractures within a given sample area (window) are traced out either 

by hand, or on a computer, and the resulting traces used to calculate the fracture statistics (Pahl, 1981;  Priest, 1993; Wu and 

D. Pollard, 1995). This technique is often utilised to analyse remote-sampling data such as aerial photographs (Healy et al., 

2017), Unmanned Arial Vehicle (UAV) images (Salvini et al., 2017), bathymetry (Nixon et al., 2012), or satellite imagery 10 

(Koike et al., 1998), as well as in outcrop studies (Belayneh et al., 2009).(Belayneh et al., 2009). It has been suggested that a 

minimum of 110 fractures areneed to be sampled to be able to statistically describe the fracture network using window sampling 

(Zeeb et al., 2013).  

Using thethese four methods above, fracture parameters can be collected which then enable calculation ofto calculate key 

fracture statistics, for example, trace length (mean and distributions), fracture abundance (Intensity and Density), and 15 

connectivity (Summarised in Table 1).  

Trace length, and trace length distribution are key fracture parameters for DFN simulations (e.g.., in simulating 

fracture-hosted fluid flow. Trace lengths may be measured directly with the linear scanlines and widow sampling, or estimated 

using the circular scanline method.). Challenges into determining the determination of trace length forlengths of individual 

fractures include: the scale of observation used to collect the data (Zeeb et al., 2013); howclassification of fracture intersections 20 

are classified (Ortega and Marrett, 2000); and the fracture fill properties (Olson et al., 2009). Mean trace length is a commonly 

used fracture statistic and is useful where the fractures in a network are evenly distributed (Mauldon et al., 2001). However 

fracture modelling usuallytypically uses a statistical distribution representative of the fracture length population rather than the 

mean (Neuman, 1993). Trace length distribution, obtained from measuring individual fractures, should be used when 

investigating sub-surface fluid flow or characterising spatial variations in fracture trace length (Watkins et al., 2015). We 25 

investigate the impact of subjective bias on mean trace length (for all four methods) and, including the range of reported trace 

lengths for linear scanlines and window sampling and trace length distribution for window sampling. 

The characterisation of fracture networks and comparison of techniques is greatly confounded by inconsistencies in 

terminology: for completeness we lay these out here.. Because fractures may be sampled using techniques which are either 1-

dimensional (scan-linesscanlines, boreholes), 2 -dimensional (maps, surface exposure), or 3-dimensional (rock volumes), 30 

numerous different methodologies and terminology hashave arisen to characterise the abundance of fractures in a network. 

One of the most widely used methodmethods to characterise a network is to define the number of fractures (N) normalised to 

line length (L), sample area (A) or sample volume (V) depending on the dimension of sampling. In the literature, this statistic 

is either termed fracture intensity (I) or fracture frequency (f) (Sanderson and Nixon, 2015). For linear scanlines, fracture 

spacing can be regarded as the inverse of fracture intensity for a single set of sub-parallel fractures (Sanderson and Nixon, 35 

2015). Fracture abundance within a network may also be expressed as the total trace length per unit area (Dershowitz and 

Einstein, 1988; Rohrbaugh et al., 2002). This statistic is either termed fracture intensity (Sanderson and Nixon, 2015) or 

fracture density (Nixon et al., 2012; Zeeb et al., 2013). One attempt to simplify the use of terms is to use the Pxy terminology 

as defined by (Dershowitz and Einstein, 1988) where x denotes the dimension of the sampling region (1 = line, 2 = area, 3 = 

volume) and y donates the dimension of the feature (0 = number, 1 = length, 2 = area, 3 = volume). For the purposes of our 40 

study, we use the term fracture intensity (I) to refer to number of fractures per line length (P10, for linear scanlines) or fracture 

length per unit area (P21, for circular scanlines), and we use fracture density for number of fractures per unit area (P20) (Table 

1).  
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It is also important to understand how individual fractures relate to each other; particularly how the individual 

fractures connect, and hence contribute to the strength of, or fluid flow through, the rock mass. The number of connections on 

a fracture trace (CL) is a commonly used measure of connectivity (e.g. Manzocchi, 2002). However, a fracture network 

consisting of only y and x nodes could have different CL values depending on the fracture intensity (Sanderson and Nixon, 

2015). It has been suggested that it is better to either consider the average number of connections per branch (CB) (Ortega and 5 

Marrett, 2000)(Ortega and Marrett, 2000) or the proportion of connected nodes (Pc) (Sanderson and Nixon, 2015). In our 

study, we use the proportion of connected nodes for circular scanline and window sampling. To measure connectivity in linear 

scanlines, the proportionpercentage of connected fracture trace end points which are connected are considered. ends is reported 

(Table 1).  

3. Study methods 10 

3.1. Study area 

The field site is located in the Northumberland Basin, just north of Whitley Bay, NE England (Fig. 1). The 

Northumberland Basin is a 50 km wide, ENE-WSW trending half-graben formed during mid-late Carboniferous extensional 

reactivation of the underlying Iapetus Suture (Chadwick et al., 1995; Johnson, 1984). The stratigraphy consists of thinly (cm 

- dm) bedded sandstones, siltstones, shales, seat earth, and coals of the Middle Coal Measures (Westphalian B). At the field 15 

site the easily accessible and well exposed wave-cut platform clearly exhibits N-S strikingtwo sets of faults and joint sets cross 

cutting E-W trending faults and joint sets, and populations of sub-vertical joints (>75° dip). °) which trend E-W to NE-SW 

and N-S respectively.  

3.2 Fracture data collection procedure  

Six linear scanlines were set up by laying out a tape measure on sandstone beds, both in map and cliff section (Fig. 20 

1C). Participants were asked to identify for each fracture: a) the intersection distance along the tape and b) the length and 

termination (into rock, abutting against another fracture or not seen/obscured) of the fracture either side of the tape. Eight 

circular scanlines were drawn with chalk directly onto the sub-horizontal bedding planes of three separate, decimetre thick, 

medium grained sandstone beds (Fig. 1D). The location and radius for all circular scanlines, apart from C6, were selected by 

the lead author (Participant G/11) in order to represent what they believed to include a statistically significant number of 25 

fracture terminations (i.e. m <30; Table 2). C6 was selected by Participant F. 

A N-arrow and NS/EW lines were drawn onto the circle to aid observation. participantsParticipants counted the 

number of intersections with the circumference (Nc). n). Following the methodology of Procter and Sanderson (2017), 

participants were asked to identify the number of i-, y- and x- nodes within the circles. Finally, window sampling was 

conducted by tracing out the fracture networks on photographs of the circular scanlines in the workshops.  Our study did not 30 

aim to collect sufficient fractures to represent the fracture network at the field site, and the tested scanlines were not designed 

to be statistically representative.   

Fieldwork was undertaken by 7 participants (labelled A-G) in July 2018 with fracture data collected using field 

notebooks from 7 circular and 4 linear scanlines (Table 2). There was no particular guidance as to how the participants collected 

the scanline data, but no more than one person or one group collected fracture data from a scanline at any one time, so as to 35 

avoid influencing the data collected by other participants. For the same reason, participants did not annotate or disturb the rock 

or scanline. Orientation and aperture data were also measured in the field, but they are not included in this study because they 

generally are not included in circular scanline methods and cannot be measured from field photographs in the workshops. 

Three of the fieldwork participants also completed the workshop tasks (Participant C = Participant 8; Participant D = 

Participant 10; Participant G = Participant 11). 40 
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Workshop 1 (WS1) was held in September 2018 in Glasgow, with 11 participants (labelled P1-11). Workshop 2 

(WS2) was held in October 2018 in Rome with 18 participants (P12-29). Participants were recruited from the authors’ research 

groups (the Faults and Fluid Flow research group within the Centre for Ground Engineering & Energy Geosciences at the 

University of Strathclyde and the Tectonics and Fluid Chemistry Lab of Earth Science Dept. at Sapienza) as well as colleagues 

from their departments: participation was voluntary and all data were anonymised for analysis. Each 2-part workshop lasted 3 5 

hours: in. In the first part, participants worked individually to complete 3 circular and 1 linear scanline, and in the second part, 

worked in small groups to complete 2 circular and 1 linear scanline (Table 2). Participants were provided with A3 (29.7 x 

42.0cm) colour photographs of the scanlines. WS1 participants were encouraged to annotate these with the observed fracture 

intersections and interpreted termination type, whereas WS2 participants were specifically asked to trace out the interpreted 

fracture network (i.e. to undertake window sampling). Both workshops enableenabled us to investigate the impact of subjective 10 

bias, however, the fracture maps from WS2 enableenabled us to examine the impact on window sampling along with 

investigating the root cause of differences in how participants classifyfor participant classification of nodes.  

To examine the effect of geological experience on subjective uncertainty, participants were asked to indicate their 

level of geological training, familiarity with geological fieldwork, and their level of experience collecting fracture data 

(summarised in Table 3, questionnaire provided in Supplementary Information, S1). In the workshops, a small number of 15 

participants (Participants 2, 5, 24 and 28) consistently reported anomalously high Nc n-values compared to the node counts. 

Three of these participants (Participants 2, 5 and 28) had no formal geological training or experience in geological fieldwork 

and fracture data collection. It is possible that these participants only considered fractures that intersected the edge of the circle 

in their interpretation (, neglecting fractures within the circle that do not intersect the circumference),, and introducing a 

different source of subjective error.  20 

3.3 Post-workshop analysis 

For the workshop data, we digitised the interpreted fracture traces and node classification for all participants who 

traced the networks (see Table 2) using ArcGIS. Individual fracture trace lengths for all scanlines, and for linear scanlines the 

distance along the scanline that each fracture intersected linear scanlines were exported as ‘Arcmap unit’ lengths. These lengths 

were then scaled to the field to enable comparison of the fracture statistics. In some cases, the counts of Ncn or node types 25 

reported by participants differed from the count indicated on the worksheet (see S7). In these cases, to be consistent with field 

-data collection, we take the value reported by the participant. Digitised networks from Circle 8 were used as a case example 

to (a) construct heat maps of point density for Ncn, i, y-, x- nodes, and line density for fracture traces, and (b) identify areas 

within the circular scanline with the greatest variability in the identification and quantification of fracture interpretation 

(characteristics such as trace, node type, termination etc.)..  30 

Fracture statistics, which were derived using calculated for the data populations from the different fracture parameters 

collected as described above,characteristics that were measured or counted, and then were then investigated for as a function 

of the field and workshop participants. We report on the impact of subjective bias onfor the following fracture statistics;: 

fracture intensity (I), fracture density (d), the connectivity of the network (Pc & Pf), mean trace length (Tl), and trace length 

distributions (tl). Statistics are calculated using the equations outlined in tableTable 1. 35 

In theory, each of the scanlines have a ‘true’ value for each of the fracture parameters (number and type of fracture 

intersections and terminations, i.e. Ncn, Ni, Ny and Nx) and, consequently, the fracture statistics derived from these parameters 

(intensity, density, connectivity and mean trace length).). In this paper, we are not interested in defining that ‘true’ value, rather 

we wish to explore the ranges in reported values from different participants, showing the scale of subjective bias infor the 

fracture data collected data, and the factors that affect this range. In this studyTherefore, we wish to define the uncertainty, or 40 

level of variability, present in fracture data collection and the related statistics which are derived from this data. We therefore 

report as a function of the range and mean for the fracture data collected. First, we present the effect of subjective bias on the 
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‘raw’ fracture parameters, and explore the consequent uncertainties in the derived fracture statistics in Sect. 

4observers/operators.  

3.4 Analytical framework 

We describe the quantitative fracture data that the participants collected using the following approaches: 

 Spatial distribution and node triangle space: Several fracture attributes are determined by the spatial distribution 5 

of features, e.g. fracture traces, within a sample area. For linear scanlines, we visually determine the relative location of 

interpreted fracture traces from the digitised data. For circular scanlines, the spatial distribution of nodes is represented via 

point density heat maps, generated from digitised data in ArcGIS, and used to identify areas of uncertainty. We also visually 

compare the participants’ interpretation using node triangle plots. For example, for all circular scanlines, we compare the 

relative position of node data interpreted for each participant.  10 

 Range/variability: The spread of data is described using the range between the minimum and maximum value for a 

given parameter or statistic (e.g. fracture count), and the quartile-based coefficient of variance (QCV, Equation 1). 

QCV = 
𝑄3−𝑄1

𝑄2
       Eq. 1 

 

QCV is interpreted in a similar manner to the standard coefficient of variation (CV) and provides a dimensionless measure 15 

of variability which can be used to compare between scanlines and attributes. QCV is more appropriate than the standard CV 

for this study because much of the data do not display a normal distribution. Further, the median and IQR are less susceptible 

to being skewed by outliers. We describe variability using the following descriptors: very low (QCV = 0.00 to 0.10), low (QCV 

0.11 to 0.25), moderate (0.26 to 0.50), large/high (QCV = 0.51 to 0.70), very large/high (QVC = 0.71 to 1.00) and extreme 

(QCV >1.01).  20 

Co-variance: We describe the strength of the relationship between quantitative data (e.g. fracture count and time 

taken) using the linear coefficient of correlation (R2). Trends are described using the following descriptors: no (R2 <0.35), very 

weak (R2 0.35 to 0.50), weak (R2 0.51 to 0.70), moderate (R2 0.70 to 0.9) and strong (R2 >0.90).  

Consistency: Consistency can be used to describe two different aspects of the data. First, it can describe the rank 

position of participants for a specific reported (e.g. n-point count) or calculated (e.g. fracture intensity) value across all 25 

scanlines. In this case, high consistency would describe a participant that remains within 3 rank positions for a reported or 

calculated value for all circles. In contrast, low consistency would describe a participant who ranks highly in once scanline 

and low on another. Consistency uses descriptors depending on the range in rank position across scanlines as follows: no (> 

16 rank positions for individual and > 6 for group exercises), low (15 to 11 rank positions for individual and 4 to 6 for group 

exercises), moderate (7 to 10 rank positions for individual and 2 to 4 for group exercises) and high (< 7 rank positions for 30 

individual and < 2 for group exercises). Consistency is also used to describe the range/variability, quantitative data or visual 

assessments across all scanlines within a method.  

For qualitative data, such as the degree of experience of collecting fracture data, statistical interrogation is not 

appropriate, given the potential for ambiguity in the response categories; the categories are not necessarily linear, and 

participants may judge “high”, “moderate” and “low” differently. Instead, we visually interpret trends in qualitative data, and 35 

use numerical indicators, such as the range or median, to interpret trends across participant responses and their interpretation. 

4. Results 

34.1 Linear Scanlines 

There is a reasonable amount of consistency between participants’ reported number of fractures crossing each 

scanline, however the reported trace length data are much more variable (Table 4). This pattern is repeated between the field 40 
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and workshops. The minimum reported trace length is consistent, for example participants in Line 6 range from 0.02 to 0.23 

m (See S5). However, the maximum reported trace length is highly variable, e.g. for Line 6 it ranges from 0.25 to 0.72 m. It 

is clear that participants disagree in how each individual fracture terminates.The results of statistical analysis of fracture data 

collected from linear scanlines are shown in Table 4. The range in the number of fractures interpreted to intersect the scanline 

varied between participants and between scanlines both in the workshop and the field. For example, in the field, QCV ranges 5 

from 0.03 for Line 4 to 0.71 for Line 1 (Table 4). The variability in the trace length data depended on the scanline being 

sampled, more so than which participant was sampling, and could be as low as 0.15 (L1) or as high as 0.82 (L5, WS1). We 

find that there is greater variability in the minimum recorded trace length (high to extreme), than the maximum recorded trace 

length (moderate to high). For example, for Line 6, participants reported minimum trace length ranging from 0.02 to 0.23, and 

maximum trace lengths ranging from 0.25 to 0.72 m (See S5). It is clear that the interpretations by participants differed about 10 

individual fracture terminations. For example, for one fracture intersecting Line 3, Participants G + F interpreted that after 8.0 

meters the fracture terminated against another fracture, whereas Participants C + D felt that it terminated in an area of no 

exposure after 22.0 m (S5). NoThe correlation was observed between the number of fractures intersecting thea linear scanline 

and the range inof reported fracture trace lengths, either by participants for that scanline shows weak to no trend in the field 

or(e.g. R2 = 0.59 for Line 1) and no trend in the workshop (e.g. R2 = 0.24 for Line 1). That is, our results indicate that trace 15 

length is not correlated to the number of interpreted fractures. 

The fracture traces interpreted ondrawn onto photographs in the workshops helphelped us to understand the 

underlying controls on this subjective bias.differences in interpretation. We examined the fracture traces of Line 6 in detail 

and the interpreted fracture networks display considerable variabilitycan be considerably different (Fig. 2).  All participants 

identified two large fractures located roughly 1/3 and 2/3 of the way along the scanlineLine 6, however there were large 20 

differencesparticipants differed greatly in the way people interpretedtheir interpretations of the first third of the scanline: 

Participant 28 doesn’t does not identify any fractures, whereas Participants 10 and 14 interpretedidentified 3 and 10, fractures 

respectively. In this sectionSuch differences between participants’ observations could be a function of the site; the fractures 

are partly obscured by water and have a thin fracture tracetraces. These ‘hairline’ fractures are also present in other parts of 

the scanline and in all cases contribute to areas of uncertainty. Another section that led to uncertainty was theincrease the 25 

observation variation between participants. Also in Line 6, a feature trending at a low angle to the scanline half way along: 

was only identified by 14 out of the 29 (48%) participants interpreted. Where this as a fracture. This tracefeature is identified, 

it is also the longest visible fracture trace that transects the scanline, and so identifying this fracture affects the trace length 

statistics. Our analysis suggests that is reported on the scanline, with the other long fractures being censored by the edge of the 

picture. The main source of uncertainty in measuring for characterizing fractures along photographs of linear scanlines on a 30 

photograph is thereforescanline is the decision of how a fracture terminates, and hence how long to report the fracture trace. is 

interpreted to be. 

34.2 Circular Scanlines: Topological sampling and fracture mapping 

TheWe present the results of circular scanlines and topological scanlines have been reported together asbecause 

participants defined all nodes within the circle in sample circles for both the field and the workshops.sets of measurements. 35 

For the circular scanlines, the number of fracture terminations (m), although not explicitly discussed in this section, is 

equivalent to the total number of i- and y-nodes.  

The reported values for n-points and topological characterisation for circles undertaken in the field are presented in 

Figure 3. The number of fracture intersections with the edge of a circle (Nc) showed relativelyn) displayed very low to low 

variability between as recorded by the field participants in the field (Fig. 3).(QCV ranged from 0.05 to 0.19; S7). However, 40 

there is greater spread in the variability in number of reported nodes is greater, and is largest for y-nodes. This patternidentified 

within a circle. The scale of variance depends on the properties of the circle that is being sampled; variance ranged from very 
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low for Circle 1 (QCV = 0.03) to high for Circle 6 (QCV = 0.62). All node types (i-, y- and x-nodes) displayed a wide spread 

in variability, ranging from low to extreme across different circles. 

Similar reporting behaviour is repeatedobserved for thedata collected in workshops (Fig. , however, the workshop 

data is even more variable than field data (Fig. 4; Table 5). When high However, when particularly large variability was 

observed infor a particular topological parameter (e.g. y-nodes), it was not necessarily observed in replicated for the counts 5 

forof other parameters (e.g. Nc) in n-points) for the same circle.  For example, the number of y-nodes interpreted in the field 

were highly variable varied greatly for Circle 6 (7 to 27; QCV = 0.66), even though this circle had the lowestsmallest range in 

values for Ncn-points (6 to 9).; QCV = 0.19). In this case, clearly all the participants were observingsaw almost the same 

fractures intersectingfracture intersections with Circle 6 (i.e. subjective bias for Nc is low). Participantsn-points is small). At 

the same time, the participants differed though in how they then observed and classified fracturestheir observations and 10 

classifications of fracture characteristics within the circle, leading to a greater range in the number of fracture intersections 

there. The consistent observation, is that subjective bias affects node counts more than Ncn-point counts, but that the degree 

of variability is dependent on the circlesample site – i.e. the characteristics of the circle being sampled. 

No single circular scanline was particularly prone to subjective bias acrossfor all of the studied fracture parameters 

studied. For example, compared to other circular scanlines, the range in data collected from Circle 5 is small for Nc, i and y-15 

nodes, but is one of the most variable for x-nodes. In contrast, the rangevariability in data collected from Circle 3 is small for 

x-n-points and y-nodes, but is one of the most variable for i-nodes and Ncshows moderate variability for x-nodes. In contrast, 

the variability in data collected from Circle 7 is small for n-points, but displays high variability in y-nodes, very high in i-

nodes and extreme in x-nodes (Table 5). The trends are seen in both field and workshop data. 

Although individual circles displayed considerable variability between participants, many participants often remained 20 

internally consistent (Fig.consistant in their observations between different circles (Fig. 3 and 4). For example, Participants A 

and C, or Participant 2, tended to report lowerlesser counts for all circles than Participant G, or Participant 13. That said, when 

Participants C and D repeated the data collection exercise for the same scanline in the field, there was some discrepancywere 

differences within the repeat data (Fig. 3), although this isit was far lowerless than the discrepancy between participants. The 

level of consistency depends both on the participant and attribute being measured. For example, for circles undertaken in the 25 

workshops by individual participants, node count displays a high degree of consistency (6.6), whereas n-point count displays 

moderate consistency (9.7). When individual participants are inspected, the level of consistency between scanlines ranged 

from 1 (Participant’s 2, 3 and 13) to 19 (Participant 9). It is clear that some participants displayed a greater level of consistency 

(e.g. Participant 28), while other participants’ interpretations varied from one circle to another (e.g. Participant 9). The relative 

proportion of specific node classification (e.g. y-nodes) for both individual participants and groups also displayed consistency 30 

between remained consistent between circles (Fig. 5). For example, Participant 11 consistently recorded more y-nodes when 

compared to other participants, while Participants 5 and 21 tended to record more i- and x- nodes. The same trends are seen 

both in field data and workshop data collected as groups.  

In general, the scale of uncertainty (the range in reported values) in the workshop data is greater than field data as 

indicated by a wider range in reported values. and higher QCV. Overall, the number of fractures reported was higherlarger in 35 

the field data than the workshop data. For example, the reported number of fracture intersections in Circle 3 in the field (figFig. 

3) ranged from 19 (Participant C) to 30 (Participant B), whereas from the workshops ranged from 14 (Group 8) to 23 (Group 

6) (Fig. 4). Similarly, the number of y-nodes is generally highergreater in the field and the ragerange in valesvalues for each 

circle is less extreme – e.g. in the number of y-nodes for Circle 5 ranged from 28 (Participant C) to 47 (Participant D) in the 

field (QCV = 0.38; Fig. 3C), and from 4 (Participant, P2) to 41 (P13) in the workshops (QCV = 0.81; Fig 4). It is possible that 40 

in the field participants cancould observe fractures in more fracturesdetail (e.g. the hairline fractures in figFig. 2) resulting in 

more consistency in their reported values.  
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3In our data there was a clear discrepancy between the number of nodes or n-points reported by participants during 

the workshops and the number recorded in the paper copies of interpreted circular or linear scanlines. Participants tended to 

report a smaller number of nodes or n-points than they had drawn on their worksheets. While the magnitude of this error varied 

both between participants and between scanlines, the differences were consistently higher for data collected within an area 

(i.e. node counting) compared to that collected along a sample line (i.e. n-points). This counting error was much more 5 

pronounced within the circle than around the edge, suggesting that as data gatherers we are relatively good at counting when 

we follow a sample line (e.g. edge of a circle or linear scanline). However, when counting within a sample area the accuracy 

of results is reduced.  

4.3 Window sampling 

For circles where window sampling was used, the number of recorded fractures varied considerablydisplayed 10 

moderate to high variability (Table 6), with the maximumlargest variation in range within the occurring for Circle 5 (134 (11 

to 5629; QCV = 0.76). The maximum trace length reported by all participants remained fairly consistent. (QCV ranging from 

0.01 for Circle 8 to 0.29 for Circle 1). However, considerable variability in trace length distributions was observed between 

participants (Fig. 6), with the number of small fractures recorded across all scanlines displaying the most variability. For 

example, the number of fractures below 0.2 m recorded for Circle 8 ranged from 7 to 41, which represents 36.8% and 75.9% 15 

of the reported fractures for both participants. This is also seen in the minimum reported trace length data, which displayed 

very high to extreme variability (e.g. 0.02 to 0.11 m for Circle 4; QCV = 0.94). While the number of small fractures recorded 

by participants varies between circles, whether a participant records a high or low relative percentage of small fractures remains 

consistent. For Circles 8, 5 and 1, Participant 3 consistently recordrecorded a high percentage of small fractures and, whereas 

Participant 24 is consistently recordsrecorded a low percentage of small fractures (Fig. 6a). In short, Participantsparticipants 20 

either consistently record the presence of small fractures in a network, or consistently do not record the existence of small 

fractures in a network. For trace lengths longer than aroundabout 15-20% of the diameter of the circle, the shape of the 

distributions remains consistent across all participants, indicating that the larger scaletraces in the fracture network is well 

classified. are consistently identified independent of participant (Fig. 6).  

 25 

3.1.3 The effect of working in groups 

No clear differences can be seen between data collected individually or as groups for either circular scanlines or 

window sampling (Table 6; Fig. 6b). Although the group circles have lower y-counts and higher mean trace length values, the 

differences are not enough to be confident that this is due to working in groups rather than differences in the fracture network. 

That said, groups generally reported more complex fracture networks with a higher reported number of small fractures. When 30 

working as groups that included a naturally detailed and naturally less detailed participant, the results tended to be more 

detailed: compare participants 2 and 11’s recorded values when working individually or together as Group 3 (S7).  

Overall there is less scatter observed in data collected as a group, however, due to the difference in the number of 

data points between individual and group scanlines it is not possible to know if this is an effect of a limited data set or a true 

impact of working in groups. Similarly, to when working individually, groups remain internally consistent in the number of 35 

small fractures recorded (Fig. 5b) and the relative percentage of recorded node types (Fig. 4b). For example, Group 12 reported 

consistently higher i-node counts compared to Group 7, who instead reported more y-nodes. 

3.4.5 Areas of increased uncertainty: A case study using Circle 8 

To highlight potential causes of differences in interpretation, Fig. 7d compares differentthe interpretations of fracture 

tracetraces and nodes in three particular ‘problem areasareas’ (so called owing to how differently these parts were interpreted), 40 
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from end-member participantsParticipants 11, 18 and 21, who reported high, medium, and low node counts respectively. Area 

1 is well exposed and contains several intersecting fractures. The nature of the connections was interpreted differently by each 

participant. Participant 21 interpreted only the major fractures coming into the junction, and depicted the fractures interesting 

in a star-like formation. Participant 18 interpreted a standard x-node, with a second larger fracture terminating against the NE-

SW trending fracture (y-node), and also notes an E-W trending fracture linking the two major fractures and cutting the third 5 

(three x-nodes). Participant 11 differed from Participant 18 by interpreting the NE-SW fracture trace as being offset by the 

NW-SE fracture, such that the x-node interpreted by Participants 21 and 18, was instead interpreted as two y-nodes. Area 2 is 

a complex intersection of a number of NW-SE fractures with part of the photographed exposure obscured by shadow (a clear 

limitation of interpreting the scanline from photographs rather than in the field). Participant 21 did not interpret the fractures 

obscured by shadow, whereas Participant 18 did. Participant 11 depictsdepicted a number of smaller fractures which 10 

Participants 18 and 21 dodid not identify. Area 3 is an intersection of two large fractures which is obscured by a coarse sand 

infill. Both Participant 18 and11 interpreted the obscured connection as a simple x-node, whereas Participant 21 felt that the 

fracture bifurcated to frame the area of no exposure. Participant 18 and 21 interpreted the other fully exposed connections 

similarly (although Participant 21 does not depict a fracture to the south of the sand fill), whereas once again Participant 11 

identifies several additional smaller and complicated fractures and fracture connections, particularly y-nodes. In each case, it 15 

appears that participants effectively ‘self-censored’ their data according to their ‘preferred’ minimum trace length, and had 

different approaches to areas of shadow or obscured outcrop. The different geometry of the interpreted fracture intersections 

would result in significant differences in interpreted fracture development history. 

When analysing the node classifications and interpreted trace lengths for all circles it was found that in many cases 

the fracture networks depicted or interpreted were not viable: in other words, there were undefined nodes or intersections 20 

whichthat had a non-compatible number of branches entering the node (e.g. 4 nodes for a y-node or 5 for an x-node). 

Occurrences of these undefined or floating nodes were more common in WS1 than WS2, perhaps because WS2 participants 

were specifically asked to draw out the fracture network on their photographs. 

3.54.6 The effect of working in groups  

Large variability in the number of reported fractures in the field was also seen when linear scanlines were undertaken 25 

as pairs, for example for linear scanline 3 counts ranged from 21 (Participant C + D) up to 30 (Participant A + B). The groups 

are obviously made up of participants who have different ‘eye for detail’. When working individually, Participants C and D 

both recorded lowsmall fracture counts, while Participant B recorded the joint highest. There is a suggestion in the data that 

when working as pairs, groups tended towards the more detailed member, for example Participant F recorded the lowest 

fracture count when working individually, however, in a group with Participant G recorded a higher than average fracture 30 

count. This was also discussed in the discussion following workshop 1.  

Conversely, noNo clear differences can be seen between data collected individually or as groups for either circular 

scanlines (Table 5; Fig.4) or window sampling (Table 56; Fig. 5b6b). Although the group circles have lowersmaller y-counts 

and highergreater mean trace length values, the differences are not enough to be confident that this isthe effects are due to 

working in groups rather than differences in the fracture network. That said, groups generally reported more complex fracture 35 

networks with a higher reportedThis is due to the limited number of small fractures. However, similar to the linear scanlines, 

when working as groups circles completed, the fact no circles which were completed individually were completed as a group 

and that includedthere is a naturally detailed and naturally less detailed participant, the results tended to be more detailed: 

compare large spread in variability between participants observed between different circles. That said, groups generally 

reported more complex fracture networks with a higher reported number of small fractures. When working as groups that 40 

included a naturally detailed and naturally less detailed participant, the results tended to be more detailed: compare participants 

2 and 11’s recorded values when working individually or together as Group 3 (S7).  
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2 and 11’s recorded values There is also no difference in the level of variability for any particular parameter reported 

for either topological sampling within a circular scanline or window sampling (e.g. y-node count, number of fractures etc.). 

For example, node counts display QCV values of 0.48 to 1.00 for individual circles and 0.40 to 1.00 for group circles. This 

suggests that working as a group does not affect the level of subjective bias in the dataset. Similarly, to when working 

individually or together as Group 3 (S7)., the majority of groups show high levels of internal consistency in the number of 5 

reported fractures (7 out of 12 groups). Groups also displayed internal consistency in the relative percentage of small fractures 

(Fig. 5b) and node types (Fig. 4b) reported across different sample circles.  

Overall there is less variability observed in data collected as a group (Fig. 6), and groups remain internally consistent 

in the number of small fractures recorded (Fig. 5b) and the relative percentage of recorded node types (Fig. 4b). For example, 

Group 12 reported consistently higher i-node counts compared to Group 7, who instead reported more y-nodes. 10 

3.64.7 Time taken to collect data 

Participants were broadly internally consistent in the In the field, the time taken to complete their tasks (Fig. 3 & 

8).undertake counts of n-points and nodes varied not only as a function of participant, but also the circle being sampled. It was 

not clear if it took longer for participants to count more n-points or nodes, with the trend being non-existent to very weak for 

n-points (R2 ranging from 0.003 to 0.37) and non-existent to weak for nodes (R2 ranging from 0.04 to 0.70). For example, C 15 

and G tended to take longer than A or D in the field, and in workshop 2, Participant 29 consistently took longer than Participant 

25. 

In the field it generally took participants longer to count more nodes, however, the correlation is weak and dependent 

on both the circle and the participant (Fig. 8a). This was not the case in the workshops where no correlation data no trend was 

observed between the time taken to record, or the variability in, the number of reported fractures was observed (Fig. 8a). Both 20 

the time taken and magnitude of the variability was considerably highergreater in the workshops compared to the field. For 

example, Circle 5 took participants between 1 and 17 minutes in the workshop (QCV = 0.94), and 2 minutes 21 seconds to 4 

minutes 26 (QCV = 0.64) seconds in the field.   

Window sampling, which was undertaken in WS2, took longer than circular scanlines for the same circle in WS1, 

however, this difference is small. While it took 1.3 to 3.2 times as long to record Ncn values, the relative time taken to undertake 25 

topological sampling within the circle is comparable for circles completed both individualas individuals (0.85 to 1.6) and 

groupin groups (0.95 to 1.05) circles. This shows that). Thus, although circular scanlines are often suggested as a quick way 

of gathering fracture data, it does not take significantly longer to trace out the fracture network. This observation is important 

and suggests a similar amount of data could be collected using both methods.  

3.7While some participants took much longer than others, the participants were often (18 out of 29 Participants) 30 

internally consistent in the time taken to complete their tasks (Fig. 3 & 8). For example, C and G tended to take longer than A 

or D in the field, and in Workshop 2, Participant 29 consistently took longer than Participant 25. Although this was often 

observed, some participants displayed low to no consistency in time taken between scanlines. For example, Participant 25 

ranked 3rd quickest for Circle 8 and 28th quickest for Circle 1 in the time taken to count n-points. No correlation was found 

between average rank position and range in rank position for the time taken to either recorded n-point data (R2 = 0.025) or 35 

node data (R2 = 0.001).  

4.8 Experience  

The relationship between experience and the number of node counts has a large amount of scatter (Fig. 8b). Generally, 

participants with less experience undertaking geological field work or collecting fracture data counted fewer nodes than more 

experienced participants, however the trend is very weak. Perhaps counter-intuitively, experience does not reduce the time 40 

taken to collect fracture data (Fig. 8b). However, for node counts, the fastest experts are still notably slower than the fastest 



 

13 

 

inexperienced Participant. There is no indication thatAlso, more experienced participants do not appear to characterise with 

more detail than those with less geological training or experience. It is possible that Participantsparticipants with experience 

in fracture analysis will consider the connections they observe, whereas beginners will draw the traces that they see without 

considering the implications of those connections (i.e. implied cross-cutting relationships).  

45. Effect of subjective bias on the derived fracture statistics 5 

The variability in the collected fracture parameters will affect the derived fracture statistics in different ways. No 

particular equation for the calculated statistics (Table 1) has a statistically sensitive relationship which makes that statistic 

sensitive to subjective bias infor a particular fracture attribute. In order toTo identify which fracture statistics are most 

susceptible to subjective bias, we discuss and compare the results from all methods in terms of the relative ranges of values.  

The key observations and trends are summarised in Fig. 9.effect of subjective bias on mean trace length depends on 10 

the method that the statistic is being derived from. For linear scanlines the variability depends on the scanline being sampled. 

For example, small variability is seen for Line 2 where values range from 0.33 to 0.49 m (QCV = 0.17), compared to 0.89 to 

3.70 m (QCV = 0.61) in Line 4. For topological sampling within a circular scanline low to very high variability is observed 

between participants in the field, with QCV ranging from 0.13 for Circle 3 to 0.82 in Circle 7. Variability is higher in workshop 

data, where moderate to high QCV values are observed (0.34 to 0.72), with both group circles displaying moderate variability 15 

(0.34 and 0.38). Mean trace length derived from window sampling displays moderate variably across all Circles sampled (QCV 

0.26 to 0.47) and displayed lower variability compared to trace length derived for the same circle using topological sampling. 

Mean trace length derived from window sampling was consistently less than that derived from circular scanlines of the same 

circle. For example, mean trace length for Circle 5 derived from window sampling ranged from 0.19 to 0.46 m (S8). 

For linear scanlines, no correlation was observed between the number of observed fractures and fracture trace length 20 

was observed, e.g.. For example, Participants B and G both recorded 10 fractures intersecting Line 1, however, the derived 

mean trace lengths were 0.62 m and 0.25 m respectively.  (see, S5). This is in contrastoutcome contrasts with window sampling, 

where mean trace length decreases as fracture count increases (R2 = 0.79 for Circle 8, see S8), and circular scanlines where 

mean trace length is a function of the number of fractures intersecting and terminating within a circle. Mean trace length 

derived from window sampling was consistently lower that that derived from circular scanlines of the same circle, for example 25 

mean trace length for Circle 5 derived from window sampling ranged from 0.19 to 0.46 m (S8).  

Fracture density, which is calculated for circular scanlines and window sampling, was consistently the most  has 

moderate to high variability statistics between participants. A higher value for fracture density was obtained using window 

sampling compared to circular scanlines for the same circle, however, the range in values are large in For both. This is methods 

the level of variability depended on the circle being sampled, along with whether the analysis was undertaken in the field or 30 

in the workshops. For example, fracture density derived from circular scanlines ranged from 3.82 to 7.48 F/A for Circle 3 

(QCV = 0.13) up to 2.12 to 10.6 F/A for Circle 6 (QCV = 0.68) in the field and from 2.07 to 12.1 F/A for Circle 3 (QCV = 

0.34) up to 0.48 to 6.53 F/A for Circle 1 (QCV = 0.79). For window sampling participant’s statistics displayed moderate to 

very high variability within circles (QCV 0.44-0.76). A larger value for fracture density is obtained using window sampling is 

used for the same circle, as shown in Circle 8, where window sampling derived fracture density ranged from 22.9 to 68.8 F/A 35 

compared to 1.9 to 41.4 for circular scanlines. Variability between participants is lower for window sampling compared to 

circular scanlines when samples are undertaken individually, however, show more variability when undertaken as a group.  

Across all methods, fracture intensity has most consistently the smallest range in values, i.e. is the most certain 

statistic and displays the least variability for window sampling. If fracture spacingamount of variability between participants, 

however, differences are still observed between methods. When linear scanlines are used the amount of variability depends on 40 

the scanline being sampled. For example, Line 4 ranges from 0.93 to 0.98 f/m (QCV = 0.03) whereas Line 1 ranges from 2.31 
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to 7.69 f/m QCV = 0.71), with the majority of scanlines displaying low to moderate variability. When fracture spacing, instead 

of number of fracture reported, is used to calculate fracture intensity from linear scanlines considerablemore variability will 

be seen in values is observed, primarily due to the data. This derives from the fact that whilelarge difference in the minimum 

reported fracture spacing is consistently smallof participants across al scanlines, the values for the maximum spacing varies 

considerably.all circles. Unlike for linear scanlines, fracture intensity represents a robust statistic for both circular scanlines 5 

and window sampling. This is emphasised by the QCV values for circular scanlines, both in the field (QCV 0.03 to 0.21) and 

workshop (0.19 to 0.43), along with those for window sampling (0.11 to 0.21). Fracture intensity estimates using circular 

scanlines derived from field data generally provide a higher value than when the same circle is analysed in the workshop. For 

example, Circle 3 ranges from 4.75 to 7.5 f/m from field data and 3.5 to 5.75 from workshop data. Fracture intensity derived 

from window sampling is consistently lower than that derived from circular scanlines for the same circle.  10 

 The connectivity of the network (percentage of connected fractures, Pf) is highly variable for values derived from linear 

scanlines, however, gathered by participants using linear scanlines, with the magnitude of the variability dependent on the 

scanline being sampled. For circular scanlines and window sampling, where the percentage of connected branches (Pc) is used, 

connectivity represents a robust statistic with very low QCV values (e.g. 0.00 to 0.06 for topological sampling.  

field data). The overall trends, presented in Table 7, suggest that although subjective biasmaximum reported values 15 

for Pc remain the same when field and workshop data are compared, however, the lowest reported values are consistently 

lower in the workshops for any given circle.  

Subjective bias impacts all data collection methods, window sampling generally displays less variability in derived 

statistics and (Table 7). Window sampling appears to be is the method which is least effected. Fracture intensity represents 

the most robust statistics, with Mean by subjective bias. Out of the methods tested in the workshops, window sampling displays 20 

the lowest variability between participants for all of the parameters: intensity (low), density (moderate to high), mean trace 

length and fracture density both displaying considerable variability between participants.(moderate) and connectivity (very 

low). Additionally, because this method requires the network to be drawn out, it is possible to check for the existence of 

‘floating nodes’ and other irregularities in the recorded fracture network. Linear scanlines had the greatest variability between 

parameters.  25 

The different fracture statistics also display different degrees of subjective bias. Fracture intensity represents the most 

robust statistic as it shows the least variability in data collected by different participants for a given scanline. In contrast, mean 

trace length and fracture density both display considerable variability in the reported data, particularly when derived from 

workshop data. The connectivity of the network was found to be robust for topological sampling, however, displayed 

considerable variability when derivedexisted in the values reported from linear scanlines. In addition to the this we find that 30 

for workshop linear scanlines and window sampling, where fractures were. When participants traced out fractures while 

completing linear scanlines or window samples, it was possible for us to understandidentify the causes of the variability seen 

in thedifferences in participant observations; differences that affect the derived fracture statistics.  

56. Discussion 

Subjective bias in fracture data collection has implications for the validity or reliability of the models that the data 35 

informs, such as the derived fluid flow parameters, rock strength characteristiccharacteristics or paleostress conditions. Here, 

we explore these implications, and, drawing. Further, we draw on the participant’sparticipants’ discussions followingduring 

the workshop and field activities, explore to propose potential reasons for the observed differences and trendsin observations 

between participants. 
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46.1 The effect of user bias on scanlineScanline validity and appropriate data collection method 

As for all forms of sampling for data collection, scanlines must contain enough datapointsdata points to be statistically 

valid:, where the required number of datapointsdata points depends on which aspectsinvestigated characteristic of the fracture 

network that are being investigated. . However, our data demonstrate that in addition to the fracture network characteristics, 

the required scanline size (length of a linear scanline, circumference of a circular scanline or area of a window sample) is also 5 

dependent on the userwho is collecting the data.  

OurDifferent participants clearly observed different numbers of fractures in the same scanline (Table 6, Fig. 2), 

thereby affecting the size that a scanline would have needed to be to capture a representative sample of that network. As an 

example2). Zeeb et al. (2013) suggest that a minimum of 225 fractures are sampled for linear scanlines and 110 fractures for 

window sampling. If this is true, then for For Line 3 where participants reported between 1.4 and 2.5 fractures per metre. If 10 

we apply Zeeb’s recommendations, the cumulative length of scanline for the person who reported a lower number of fractures 

per metre would need to be between 90 and 160 m long.nearly twice the length (160m) of the representative scanline for the 

person reporting higher fracture numbers (90m). The number of fractures in Circle 5 reported for window sampling ranged 

from 13 to 56, which means between 2 and 9 circles of this size would need to be analysed to statistically represent the network. 

The innate variation between how participants view the fractures therefore results in significantly lengths of scanline or 15 

numbers of circles.  The variation between how participants view the fractures therefore results in significantly different lengths 

of scanline or numbers of circles to capture a representative sample of that network. Our data show that there is not a great 

degree of difference in the time taken by participants to characterise the same fractures network, albeit with different detail. 

However, the simple fact that one geoscientist needs to find over 4 times more locations to draw out circles of the same radius 

on a particular outcrop will likely mean that collecting equivalent datasets may take longer for a less detail-oriented participant. 20 

Where a detailed-orientated operator may fall down, however, is when a fracture network displays a degree of heterogeneity 

or clustering. In this case, although a detailed-orientated operator would report the required number of fractures according to 

Zeeb et al. (2013), they may fail to cover enough ground to understand the spatial distribution of fractures the way a less detail-

orientated operator would.  

The appropriate circle radius of the sample window is also dependent on the sampling characteristics of the person 25 

undertakingbehaviour of the workoperator. For circular scanlines it is widely agreed that a minimum of 20-30 fracture 

terminations within a circle is appropriate to derive fracture statistics or undertake topological sampling, and the circle radius 

must be adjusted to capture enough fractures or fracture terminations (Procter and Sanderson, 2017; Rohrbaugh et al., 2002). 

Figure 10 shows the proportions of valid (capturing >30 terminations) and invalid (capturing <20 terminations) results for the 

circular scanlines. in this study. Out of the 29 participants that collected data from Circle 8 in the workshops, 12 identified 30 

over 30 fractures and so report valid results, another 8 collected over 20 fractures and their results are potentially valid, whereas 

9 valid reported fewer than 20 fractures and so the statistics derived from their sample may not be unrepresentative. Since the 

number of fractures identified in the field is generally higher than in workshops, a greater proportion of field participants 

reported sufficient terminations within the circle to be statistically valid. For example, all field participants report valid data 

for Circle 4, whereas only 3 of the 9 groups in the workshops do.   35 

In this work, the location and radius of all scanlines except C6 were selected by Participant G/11, who tended to be 

more detailed than other participants. This participant recorded enough terminations to class their data as valid for all sampled 

circles studied. Therefore, this participant chose a circle radius appropriate to the level of detail to which they identify and 

characterise fractures, but which is not appropriate for other less detailed observers. TheThis effect is demonstrated in Fig. 11, 

which shows a synthetic fracture set which has been interpreted by aan operator who gathered less detailed participant (Adetail-40 

focused observations (Fig 11a) and aan operator who gathered more detailed participant (Binformation (Fig 11b). A 

statistically valid circular scanline (>30 fracture terminations) is drawn onto the interpreted network and the resulting 
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differences in the fracture topology and the fracture statistics shown (Table C inset). For this example, for the scanline to be 

statistically valid, its radius must be 3 times larger for Participant Aoperator (a) than Participant B.operator (b).  

How detailed a fracture network is interpreted to be by an operator therefore affects the derived fracture statistics 

(Fig. 11c).. The fracture network interpreted by Participant B The more detail focused interpretation (Fig 11b) has more y-

nodes, but similar counts of Ncn, i-nodes and x-nodes (Fig. .11c). As a result, the connectivity of Participant B’s network is 5 

higher (the interpreted network in part (b) is greater than that in part (a). The other values - fracture statistics (intensity, density 

and trace length -) are very different becausebetween different levels of interpretation detail. For example, the differences in 

density of fractures in part (b) is over 18 times larger than that of part (a) and mean trace length reduces from 1.71 m for part 

(a) to 0.47 m for part (b). This variability is primarily due to the required circle radius for a valid sample)., which is used to 

calculate fracture statistics using circular scanlines (Table 1), changed in order to capture the minimum number of fracture 10 

terminations. For our data, if invalid dataparticipants who recorded insufficient fracture terminations in their samples (i.e. less 

than 20) to be considered statistically valid are disqualified (i.e. removed from the dataset), the maximum trace length and 

density are more affected by subjective bias than the fracture intensity and connectivity. For example, the calculated maximum 

trace length for Circle 8 decreases from 2.88 to 0.92 m, and the maximum density for Circle 5 decreases from 46.5 to 12 f/A.  

4.2 Bringing together data sets 15 

It is clear from our data that participants have an inherent personality characteristic: end-members could be classified 

as either detail-oriented, e.g. picking up more small fractures and spending longer interpreting intersection geometry, or as 

focused on collecting a larger volume of data, e.g. covering larger areas and collecting more circles in the same amount of 

time.  The presence and scale of subjective bias and potential influence on fracture data means that caution must be taken when 

comparing data collected by different geologists, or using different methods. Differences in interpretation could occur if large 20 

areas are mapped by different people, with certain areas being classed as having a higher/lower fracture density and trace 

length purely based on subjective bias. This is also relevant when either using, or comparing collected field data with the 

published literature.  

4.2 Causes of subjective bias: fracture network characteristics 

Areas of limited exposure, where participants are required to make an interpretation of how the fracture network 25 

connects. In the qualitative discussions following WS1, several participants reflected that where exposure was limited or 

obscured, they did not attempt to interpret where the fracture went nor the type of fracture intersection. Other participants, 

however, did interpret the network despite these difficulties, which increased the number of nodes and decreased the number 

of illogical ‘floating’ nodes. Clearly some felt it was most appropriate to interpret in the face of great uncertainty, so as not to 

discount the node(s), while others felt that this would be over interpreting. Both have sound reasoning, but will result in very 30 

different outcomes in terms of fluid flow or rock strength.  

In some cases, uncertainties could easily be overcame in the field, for example where a fracture was obscured by 

shadow or seaweed. Some field participants described feeling for a fracture with fingers or pencils when obscured or 

extrapolating the exposed fracture traces, combined with other trends observed outside the unexposed area.  Such ‘exposure 

bias’ is recognised when studying fault zones; by their nature, the fault rocks are preferentially obscured and therefore good 35 

continuous exposure of fault zones is very rare (Shipton et al., n.d.).  

The scale of observation: In the workshops, participants were provided with a 2D ‘birds eye’ type view of the full 

circle. In the field, only the tallest geologists will be able to observe the full circle, with all others limited by to a smaller field 

of view. But, in the field, the participant can crouch down and get their eye in to the detail within a complex fracture network. 

This is most likely why for the same circular window, more nodes were counted in the field than in the workshop (Fig. 10). 40 

The impact of subjective bias on the required length of linear scanlines, radius of circular scanlines and area of sample windows 
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will have particular consequences in areas of limited exposure, where a data volume orientated user may not be able to collect 

enough data to statistically represent the fracture network.  

What features counts? Some participants focussed only on more pronounced fractures, ignoring, for example, 

smaller subsidiary fractures, closed or filled fractures, or thin ‘hairline’ fractures present in the scanline. This was particularly 

the case if there was a large or clear fracture. As one participant exclaimed “What do these tiny things matter if you have a 5 

massive fracture?”. However, this was not what all participants thought, with other participants raising the importance of the 

spatial distribution of small fractures. In some cases, and particularly in the workshop, it was not clear whether faint or fine 

features represent surface processes such as wear, weathering, or salt precipitate from seawater. Similarly, following group 

work, some participants reflected that there were differences in whether the participant classed a jog in the fracture as a 

termination, or a slight side step of a continuous fracture. During WS1 discussions is was suggested that data may be able to 10 

be compared is a cut off was applied to the data, however, no consensus could be agreed upon with participants believing the 

resulting network would be flawed because (i) it would not be an accurate representation for flow and/or rock strength and (ii) 

more attention would be paid to simpler, larger, and more isolated structures that could have almost no flow or mechanical 

significance.  

Field vs photograph: We suggest field work is preferable to field photographs due to being able to ground truth areas 15 

of uncertainty. As touched on already, in the field the participants can zoom in to more complex fractures, remove obstructing 

material, adjust so that something isn’t in shadow, physically feel for the fracture, check if a feature rubs off, or if it is 

continuous into another plane of the outcrop. With the advent of digital image analysis techniques and UAV technology, it can 

seem preferable to perform digital fracture mapping, however, issues around hairline fractures, or potential weathering 

features, vegetation obscuring the network can be easily remedied in the field. 20 

Group work: We find that working in groups increases the detail of observation, and so reduces the spread in results. 

The reported data tends towards the more detailed member of the group. A participant explained “[when we started working 

together] I very quickly …realised that [person X] cares about tiny features, so, together we cared about tiny features…but I 

was aware that if I was working on my own, I would have done it differently”. When working together, they explain “I didn’t 

find we were talking about ‘does this fracture count?’, instead we were discussing whether something was a Y-Y or an X, or 25 

where exactly a fracture goes or where it terminates and so on”. In addition to the actual process of working together, group 

work might also be effective because, as one participant articulated “the very knowledge that you are working with someone 

changes your approach. You want to engage together and so you need to defend or explain your choice, which makes you 

more alert to what you are doing and why”. The participants felt this slowed down the data collection process, however, this 

was only clearly observed in WS1, with the time taken for the group line and circles being comparable to those for individuals 30 

for WS2 (Fig. 3, Table 6). Not all groups discussed the interpretations together, instead opting to divvy up the window or 

scanline and work separately and combine results at the end, potentially losing some of the benefit of group work.  

4.3Different fracture data collection methods are chosen depending on the aims of the study, the way the fracture 

network is presented within the outcrop (or core) and the homogeneity of the fracture network. Our data suggest that window 

sampling is the least effected by subjective bias. In the process of drawing out the fracture network, the operator is required to 35 

consider the fracture geometries, evidence for fracture timing (e.g. cross-cutting mineral fill types), and the implications of 

this for the fracture statistics. There may be similarities with the findings of Macrae et al. (2016), who showed in a randomised 

controlled trial of industry experts that the quality of a seismic interpretation could be increased by explicitly requesting 

interpreters of seismic data to describe the temporal geologic evolution of their interpretation. 
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6.2 Causes of subjective bias: Differences in how people seeoperator bias and interpret fracture networksnetwork 

characteristics 

While there is considerable amount of variability in the data sets, we find that individuals showHuman factors: We 

observe considerable variability between participant’s interpretations, something which has also been observed by Peacock et 

al. (in press) in the reported values of joint intersections on a bedding plane, additionally our data shows individuals display a 5 

degree of internal consistency (Fig. 3 and 4). That is, individuals exhibited their personal characteristics or traits inthrough the 

data that they interpretgathered: they were either more detail focussed, or focussed on the volume of data collected. Thus-

orientated, or they were less detail-orientated.– allowing them to focus on gathering a larger volume of data. We suggest that 

this reflects an operator’s personal approach to data collection: variability in data that is collected by a single person may be 

reliably compared for changes in fracture statistics, however, careis likely to be internally consistent from one data-gathering 10 

exercise to the next. Care therefore needs to be taken when comparing results from different participants. Itoperators. Our data 

shows it is important to consider ifwhether you are working with a ‘detailed’ participantperson who will always likely pick 

upwish to include data on small fractures and subtle featuressmaller/more detailed structures, or if you are working with a 

geologist who is more likely to miss these features butperson who may be able to collectis more likely to focus on ‘the big 

picture’ and to gather a higher volume of data from a greater number of circlessample locations in the same amount of time.  15 

It is interesting to consider why people are different buttend to be internally consistent. Probably, in their data gathering 

approach, yet different from each other. It is likely that they consciously or subconsciously construct their own protocols 

around how the data should be collected, and what features should or should not be included. These protocols will be shaped 

by:  

(a) Practical and physical factors such as the quality of theiran operator’s eyesight, whether or not it is easy for them to 20 

repeatedly crouch down to get a closer view and stand up to move around, spatial co-ordination which will affectthat affects 

the ease with which they cover the scanline, and the time available to gather the data; (b) Inherent cognitive or personality-

related factors.  

(b) Cognitive factors such as their tendency to over interpret, or what they think matters; if smaller or filled fractures are 

perceived not to matter, they won’t be looking for them, and so won’t necessarily notice them. In this way, the 25 

participant’s mental model (Shipton et al n.d.) of the processes that they are measuring may in effect obscure or censor 

the network that they observe. The mental model may also be influenced also by the purpose of the survey and what 

kind of application the collected measures are intended for.  

4.4 Reducing subjective bias  

This paper highlights the contribution of personal bias in adding to uncertainties in the data that geologists collect. We 30 

encourage critique of the data collection process and potential uncertaintiesAs an example, some participants focussed only 

on more pronounced fractures, ignoring, for example, smaller subsidiary fractures, closed or filled fractures, or thin ‘hairline’ 

fractures intersecting the scanline. This behaviour was particularly common where a large or clear fracture is present; the 

participant reports only the dominant feature. As one participant exclaimed during group discussion “What do these tiny things 

matter - if you have a massive fracture?”. However, this viewpoint was not shared by all participants: others raised the 35 

importance of the spatial distribution of small fractures either as indicators of strain incompatibility, or as the locus of flow at 

fracture intersections. It is clear that decisions about “what feature counts” and whether a feature has geological origins are 

subjective judgements. Shipton et al. (in press) and Gibson et al. (2016) discuss the concept of Mental Models in the 

geosciences: a mental model is a simplified internal representations of some external event or process. We suggest that our 

participant’s mental model of the processes that they are measuring may guide their attention to particular features, and so 40 

obscure or censor the network that they record. The mental model, and therefore the features – or scale of features - observed, 
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may also be influenced also by the intended application for collected data (Shipton et al., in press), or the conceptual model 

that the participant is working to (Shipley and Tikoff, 2016).  

While one may expect mental models be shaped by the experience levels of operators, this is not observed in our dataset. 

Scheiber et al. (2015) studied different participants’ observations from a single LiDAR dataset, and found no correlation 

between experience and the reported number of bedrock lineaments. Similar to our work, Scheiber et al. (2015) found that 5 

participants who reported the largest number of lineaments observed the greatest number of small features, and these small 

features often did not follow the main orientation trends seen in the data. Biological studies also find no evidence for a 

relationship between level of experience and the detail or observations (e.g. Dickinson et al., 2010; Dunham et al., 2004).  

We suggest that the cognitive style of the participant is more important than experience in how a participant interprets 

the studied media; the fracture network. Cognitive style refers to how an individual perceives, thinks, solves problems, learns, 10 

makes decisions and interacts with others (Witkin and Goodenough, 1977). The work of Carl Jung (2016, original work 

published 1924), particularly the use of the Myers-Briggs Type Indicator (Myers, 1962) to assess cognitive style, underpins 

much of this field. Jung’s theory outlines three facets of cognitive style, each with end-member preferences (Myers et al., 

1998): Perception dictates whether a person is either meaning-oriented (intuitive) or detail-oriented (sensory); Judgement 

dictates whether a person makes decisions based on analytical and logical means (thinking) or through a set of personal values 15 

(feeling); and Environment dictates whether a person reacts to immediate and objective conditions (extrovert) or by looking 

inward to their internal and subjective reactions (introvert) when reacting to their environment. On top of these three facets, 

people often have an innate preference for either perception or judgement trains of thought such that a perception person has 

a tendency to use sensing and intuition orientated thought, while judgemental person uses a combination of thinking and 

feeling. It is well known that cognitive style can have an impact on how people both respond to stimuli and make decisions 20 

(Jung, 2016, original work published 1924). If a cognitive style is at odds with the task in hand, for example where an intuitive 

participant is required to undertake a detailed task which would be better suited to a sensory participant, a lower performance 

is to be expected (Chan, 1996). This has been reported in the case of auditors (Fuller and Kaplan, 2004) and air traffic 

controllers (Pounds and Bailey, 2001). A ‘cogitative culture’ is often observed in different professions and roles, where people 

aim to fit their cogitative style to the task or workplace environment (Armstrong et al., 2012). A misfit between cogitative style 25 

and the task tends to be associated with lower performance levels (Chilton et al., 2005). 

While cogitative styles may not be clear-cut (e.g. Peterson et al., 2009), it is useful to adopt end-member styles to 

consider how the cognitive style of the data collector could, in theory, affect the fracture data they collect. For example, a 

sensory participant should show a high attention to detail, often observing small fractures and subtle features of the fracture 

network that may tend to be missed by intuitive participants. Conversely, while an intuitive participant may not record small 30 

features, they should update their conceptual model more frequently in response to new observations (e.g. a specific orientation 

of fracture is consistently mineralised), leading them to develop a more robust conceptual model of the subsurface (Shipley 

and Tikoff, 2016). A thinking participant may collect more consistent or transparent data than participants with other cogitative 

styles, for example, by developing and applying a set of logical and analytical rules.  

The node data collected in our study is most consistently affected by cognitive biases (Figures 3, 4 & 6). Detailed-35 

orientated participants reported a greater number and percentage of y-nodes compared to i- and x-nodes. One of the underlying 

reasons for this was identified in the workshop discussions, where sensory-type participants described reporting the small 

fractures at fracture intersections, whereas intuitive-type participants reflected that they did not report these features, since 

they believed (i.e. interpreted) that they would not contribute to flow. Similarly, jogs in the fracture were classified 

systematically differently by different participants, where some considered jogs to be the termination a fracture and initiation 40 

of another fracture, whereas others considered jogs to be a slight side-step of an otherwise continuous fracture. This would 

have consistently affected the number of nodes reported. 
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Working in groups: We observed that behaviour varied considerably between groups, and that the behaviour of 

groups depended on the cogitative styles of individuals within that group (pairs, in most cases). For example, in one group a 

participant explained “[when we started working together] I very quickly …realised that [their partner] cares about tiny 

features, so, together we cared about tiny features…but I was aware that if I was working on my own, I would have done it 

differently”. This group evidently consisted of participants with different levels of detail-orientated behaviour, and the 5 

participant who individually displayed a less sensory cogitative style tended towards the level of their partner. This is perhaps 

an example of herding behaviour (c.f. reference), often herding towards a more detailed approach. Another participant reflected 

“I didn’t find we [their group] were talking about ‘does this fracture count?’. Instead, we were discussing whether something 

was a Y-Y or an X, or where exactly a fracture goes or where it terminates and so on”. This group appears to be made up of 

two in intuitive-type participants, and worked well together discussing the meaning behind the fracture network.  10 

The very knowledge that you are working together might be effective in itself. As one participant articulated “the 

very knowledge that you are working with someone changes your approach. You want to engage together and so you need to 

defend or explain your choice, which makes you more alert to what you are doing and why”. This suggests that for fracture 

analysis a group comprising of different cognitive styles could be advantageous in terms of capturing the range of perspectives 

and potential interpretation styles. Fracture network analysis is not simple; it requires not only the identification of fracture 15 

traces, but also a consideration of how these fractures traces from a network (Peacock and Sanderson, 2018). Parallels may be 

drawn to the findings of Cheng et al. (2003), who found that when participants were asked to complete a complex accounting 

task, groups comprised of different cogitative styles outperformed homogenous groups. That said, working in mixed groups 

can be a cause of conflict and introduce errors due to a negative effect on the ability to reach a consensus in the decision 

making process (Aggarwal and Woolley, 2013). In our study, some participants felt that working as a group slowed down the 20 

data collection process to a problematic degree. However, this was only observed in WS1; the sampling time was comparable 

for individuals and groups in WS2 (Fig. 3, Table 5). Interestingly, there are many different interpretations of what ‘working 

together’ means, or shapes that working together takes. While for many, this meant working through the scanline together, 

others elected to divvy-up the window or scanline, working separately and combining their results at the end, or for one person 

to be the data gatherer, and the other the data recorder (i.e. the scribe). For the latter two models of working, the potential 25 

benefits of discursive or deliberative group work (i.e. rationalising and laying bare thought processes) will not be leveraged.  

Projecting into areas of limited exposure. The effect of subjective bias on the required length of linear scanlines, 

radius of circular scanlines and area of sample windows will have particular consequences in areas of limited exposure, where 

a detail-orientated operator may not be able to collect enough data to statistically represent the fracture network. In the 

discussions following WS1, several participants reflected that where exposure was limited or obscured, they did not attempt 30 

to interpret where the fracture went, nor the type of fracture intersection, since this was straying too far from quantitative 

observation into more qualitative interpretation. Other participants, however, did interpret the network despite these 

difficulties, which increased the number of nodes that they reported and decreased the number of illogical ‘floating’ nodes. 

Clearly some felt it was most appropriate to interpret in the face of uncertainty, so as not to discount nodes that could be 

logically inferred, while others felt that this would be over-interpretation. Both viewpoints have internally consistant reasoning, 35 

but will produce very different outcomes in terms of fracture network characteristics to be applied to analyses of fluid flow or 

rock strength.  

In some cases, these uncertainties could easily be overcome in the field. For example, where a fracture was obscured 

by shadow or seaweed. Some field participants described ‘feeling’ for the trace of a fracture with fingers or pencils when 

obscured (e.g. by seaweed), or difficult to see. Some also describe inferring fracture trace by extrapolating from the exposed 40 

traces, triangulated by observing the general fracture trends. Such ‘exposure bias’ is recognised when studying fault zones, 

where, by their nature, the fault rocks are often preferentially obscured and therefore good continuous exposures of fault zones 

are very rare (Shipton et al., in press).  
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The scale of observation: In the workshops, participants were provided with a 2D ‘birds eye’ view of the full circle 

being sampled. In the field, only the tallest operator will be able to observe the full circle, while all others would have a more 

limited field of view. In the field, the participant can potentially crouch down and ‘get their eye in’ to the detail within a 

complex fracture network. The ability to adjust the scale of observation during data collection in the field is most likely the 

reason for more nodes reported in the field than in the workshop for the same circular window (Fig. 10). Similarly, it is 5 

important that the same scale of observation is maintained when using remote sensing methods. For example, it is important 

that an operator does not zoom into areas of interest, unless they do so systematically.  

Using pre-set data cut-offs: It is clear that a meaningful quantitative analysis of fractures requires a certain degree 

of consistency. This is particularly relevant for combining or comparing data collected by a number of individuals, including 

for meta-analyses. Participants in WS1 discussed whether their collected data could be more readily compared or combined if 10 

a minimum trace length cut-off was applied to the data. However, no consensus could be reached about the scale of or style of 

the cut-off to be applied because (i) it would not be an accurate representation for flow and/or rock strength; and (ii) more 

attention should not be paid to simpler, larger, and more isolated structures that could have almost no flow or mechanical 

significance. The use of size cut-offs has been used in scanline studies which investigate aperture size distribution (e.g. Hooker 

et al., 2014; Ortega et al., 2006). Fracture trace length however differs from aperture studies in that what you are measuring 15 

(the number of fractures) is not a clearly defined parameter (i.e. aperture size) but instead highly subjective. This stems from 

the fact that most opening mode fractures show evidence of growth through the linkage of several smaller fractures, and, due 

to the fractal nature of fractures, a single fracture tends to be comprised of several smaller fractures (e.g. Bonnet et al., 2001), 

and so the fracture count is dependent on the scale of observation. We observe similar effect in our dataset, where participants 

differ in their interpretations of where a fracture starts and ends, and whether fractures with jogs should be classified as one 20 

continuous feature or multiple fractures.   

Another knock-on effect of having no data cut-off is that the derived statistics for fracture intensity or fracture density 

from reported data can return wildly differing results (Ortega et al., 2006). From our findings, it is clear people ‘self-censor’ 

according to a minimum trace length, and this minimum cut-off is variable in scale. That said, we find that the range in reported 

values decreases towards 10 to 15% of the diameter of a circular scanlines or window sampling. For example, for Circle 8 data 25 

(S8), the range in the number of reported fractures is 36, however, when fractures <5 cm trace length are removed the range 

falls to 19. The range stabilises if only fractures >10 cm length are considered. This effect is amplified for fracture density, 

which is calculated using the number of reported fractures. The raw density statistics range by a factor of 3 (23 to 69 f/A), 

however, as you apply cut-off’s to the data the values decrease and converge so that when all fractures less than 10 cm length 

are removed, the difference between minimum and maximum values reduces to 1.3 (18 to 25 f/A). This suggests that it should 30 

be possible, depending on the aim of the study, to apply a cut-off to the minimum trace length included in the dataset, however, 

it is vital that this approach is reported, otherwise the data reported will not be replicable.  

6.3 Recommendations for reducing subjective bias  

We encourage reflective critique of the fracture data collection process, including identification of potential uncertainties 

when collecting new data, and when collating or comparing fracture statistics from different field studies. Drawing on our 35 

results, we propose the following approaches to assess, reduce, and report the potential subjective bias in the data that 

geoscientists collect. These recommendations are not only relevant to field geoscientists, but also to modellers who use their 

data and geologists who use fracture sets to infer paleostress conditions: 

1) Understand your style of data collection: It is vital that when collecting fracture data, either in the field or from 

photographs (or e.g. remote sensing), that the ‘go to’ style of data collection is understood; i.e. detail-orientated vs data volume 40 

orientated approaches. In relatively homogenous fracture networks a detailed operator will characterise a network quicker as 

less circle is required (i.e. detail-orientated will be preferable). In areas of regional heterogeneity, however, it is better to 
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undertake more circles covering larger fractures (i.e. be more data-orientated). Finally, but most importantly it is vital that we 

report our own biases and methods used to reduce bias in the field reports, to enable replicability and comparison of studies.  

o 2) Select your fracture data collection methods to limit subjective bias: While all methods of collecting fracture data are 

susceptible to subjective bias, we find that window sampling is the least effected. Further, theThe approach does not take 

much longer than topology sampling (<(the time taken is on par with topology sampling when working in groups, and 5 

<1.6 times as long as topology sampling when working individually and comparable as a group), thus,). Thus, we 

recommend that, where possible the, a window -sampling approach is adopted. to collect fracture data. In addition to this 

the fracture network should be traced out, regardless of which approach is adopted (circular, window, linear). This could 

be done), the fracture network should be traced out; either on a printed photograph/tablet or with chalk on the outcrop.  

When deciding the dimensions of your Doing so for at least some of the sample windows would allow participants to 10 

examine their own biases in how they classify fractures, and critique their collection approach. Since we find that the window 

radius, to some extent, governs the size of the fractures observed and reported by different individuals, we recommend that, if 

using circular scanlines, the radius of the circle is kept the same across a sample area since we find that the circle radius, to 

some extent, governs the size of the fractures observed and reported. However we recognise that this could be problematic in 

areas of drastically different fracture intensities where a ‘valid’ circle size for one sample location would not collect valid data 15 

at other locations.  

3) Define what fracture features to include early on: Prior to the collection of field data, or as the first step of field data 

collection, the sampling strategy should be reflected upon and agreed, in line with the goals of the study and the characteristics 

of the locality. For example, in fluid flow studies it is vital that information for all connected fractures are included in the 

dataset, in which case, the location of small fractures that contribute to the network becomes key: simply stating this may 20 

induce people to focus more on the small features (c.f. Macrae et al., 2016). The spatial distribution, not just the relative 

percentage, of fracture terminations within a network should be assessed and recorded when reporting fracture statistics. or 

scanline,In the case where small fractures may be important, then it is important that all the observed fractures are collected, 

however, sub-sets based on fracture trace length should be used when comparing data. One could take the approach that 

everything should be collected and only after collection should the data potentially be censored for the purpose of further 25 

analysis (e.g. to investigate the intensity of fractures above a certain trace length). However, not every sampling campaign 

necessarily needs the same level of detail, and so adopting this approach could lead to the collection of a large amount of 

unnecessary data as a function of campaign goals. If the level of detail collected is superfluous to the needs of the study, the 

overall data quality could suffer in terms of the extent of outcrop studied (i.e. the number of detailed sample windows 

completed over a given area is less than the number that would have been completed if the level of detail relevant to the study 30 

was collected). 

4) Agree how to address data collection in areas of limited exposure: We recommend that operators take steps to ensure 

that the fracture network they collect is complete (i.e. all node types have the correct number of branches and the counts of 

parameters are checked) and consistent with the network observed in areas of full exposure. This could be achieved though 

the extrapolation of trends from outside the sample area, or through ensuring the consistency of the network within the sample 35 

area (e.g. are EW trending joints consistently connected to NS joints by y-nodes?). It is important that areas of no exposure 

(see Fig. 7d) are interpreted as best possible, otherwise estimates of trace length and connectivity will be unrepresentative of 

the network. This approach is also important as it enables the operator to gain further insight into the development of the 

fracture network: for example, a better understanding of the age relationships between fracture traces (Procter and Sanderson, 

2017). If this is completed as the first step of fieldwork, sources of counting errors can be identified and minimised. Regardless, 40 

the sampling or counting error identified should be communicated as part of the data reporting.  
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5) Where possible, collecting fracture data from field exposures is preferable to interpreting field photographs: We 

find that there is less variability in fracture data collected by different participants when data is collected in the field, rather 

than collected from field photographs. Field-based observations have a number of advantages over photo-based approaches: 

the operator can change position and distance for more complex fractures, remove obstructing material, adjust so that 

something isn’t in shadow, physically feel for the fracture, check if a feature rubs off, or if it is continuous into another plane 5 

of the outcrop. A further advantage of collecting data in the field is the ability to look outside the sample area, to ensure that 

the fracture network within the sample area is consistent with the wider network, and to enable kinematic data to be collected. 

A caveat to this recommendation is that in the field the quality of observations can be negatively affected by environmental 

factors (e.g. rain, cold, heat etc.) which are not encountered during analysis undertaken in the office. Recording such factors 

and the likely effect on one’s field approach is good practice. 10 

6) Working as a group: Working as a group is preferable to working individually to collect fracture data, since we find 

less variability and fewer inconsistent nodes in data collected as groups. However, group work should be considered a 

collaborative and dialogic process, where participants discuss their rationale or reasoning before, during and after data 

gathering, as opposed to divvying up tasks to be completed individually in a team. In the former, working together allows for 

the identification and reconciliation of differences in interpretational approach, while improving the mechanics of the data 15 

gathering, thereby reducing the potential for subjective bias by increasing the detail of observations. The quality of the data 

collected will be more consistent as a result. In line with this, a group comprised of different cognitive types is preferable. In 

particular, sensory-type operators should be paired with intuitive-type operators, and encouraged to work collaboratively to 

tease out whether and how the detail observed by sensory participant is identified and interpreted. The level of geological 

experience is not relevant to consider when selecting groups, but the relationship dynamics within the group should be managed 20 

such that the less experienced individuals feel comfortable to actively discuss with those more experienced than them, rather 

than simply consent to their views or defer to their judgement.  

o If data are to be collected separately and then combined, then the sampling behaviour of members of the team should be 

assessed prior to data collection to establish if data from the individuals can indeed be meaningfully combined. The 

sampling strategy should be conceived such that the minimum number of moderate-scale, obvious, fractures should be 25 

captured (i.e. when using a circular approach, the radius should capture 20-30 terminations of the major fracture sets), 

with the small fractures still recorded. Because all fractures larger than 10 to 15% of the circle radius are typically well 

defined, all data above this can be confidently compared between geologists with different fracture judgements.  

o Consider what the data is for. For example, in fluid flow studies it is vital that information for all connected fractures are 

included in the data set, in which case, the location of small fractures that contribute to the network becomes key. However, 30 

our findings show that the inherent biases of the data gatherers determine if small fractures are collected. The spatial 

distribution, not just the relative percentage, of fracture terminations within a network should be assessed and recorded 

when reporting fracture statistics.  

If conducting collaborative fieldwork, whereby different individuals are collectingwhere operators are working 

individually to collect data from different areassampling sites, the team must first characterise their own biases, then agree on 35 

a unified approach and classification system, the process of determining sample location and dimensions, and what to do when, 

e.g. a particular fracture intersection is obscured. It is important to characterise the way participants differentiate fracture 

terminations and distribution of reported trace lengths. The data collected at this site suggest that the position on the node-

triangle is a factor of how detailed a user is, with detailed users tending to select a larger percentage of y-nodes compared to 

x- and i- nodes. This is likely due to the small fractures in this network being concentrated at fracture intersections and in the 40 

case where small fractures are isolated a detailed user would instead report a higher percentage of i-nodes. 
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7) Define a data cut-off: Because all fractures larger than 10 to 15% of the circle diameter are typically well defined by 

all data gatherers, all data above this size can be confidently compared between operators with different fracture judgements. 

The circle radius should be set and reported on prior to the start of the collection of field data. It is vital that the scanline is 

large enough to cover enough fractures for the least detailed-orientated member of a group to still collect sufficient number of 

fractures. We recommend that the scale of observation is kept consistent throughout the survey and if a minimum fracture trace 5 

length cut-off is chosen that it is clearly reported in field reports and publications.  

The procedure could be further improved, and tested through either (a) using a set of calibration scanlines prior to data 

collection to test personal biases and familiarise the operator with the technique or (b) have a scanline, or sample area which 

is used as a marker and completed regularly throughout data collection procedure to test replicability, as also advised by 

Peacock et al., (in press). While the above procedure outlined above is undoubtedly helpful and goes someway to providing 10 

consistency in fracture data collection, it also does not take into account that behaviours may change through time (e.g. 

Scheiber et al., (2015)). Such changes may be due to such things as experience of the data gathering procedure, experience of 

trends in the fracture network being classified, subsequent training (e.g. the introduction of minimum trace length cut-offs) or 

when undertaking fracture data collection with differing survey goals (e.g. paleo-stress analysis vs fluid flow studied). Due to 

this the procedure should be repeated regularly and assigned to ‘single events’ such as a day in the field or a single data 15 

collection session. 

8) Communicate the steps taken to manage bias in data collection: Steps one to seven should be communicated as part 

of data reporting and publication.  

6.4 Wider geoscientific implications  

While this work concentrates on a ‘field-based approach’, which uses several ‘data points’ (sampling areas) to collect 20 

data from outcrop, many of our findings are also relevant to the collection of data from broad scale approaches such as UAV 

or remote sensing derived maps. With the advent of digital-image analysis techniques and UAV technology, it can seem 

preferable to perform digital fracture mapping, however, uncertainties regarding, say, hairline fractures, potential weathering 

features, or vegetation obscuring the fracture network can be more easily explored by direct field observations. While one may 

expect marginal error, which is a function of the sample size, to be reduced by digital fracture mapping, since digital mapping 25 

allows for a much larger number of (and area of) fractures to be sampled in a given time. We instead suggest this to not be the 

casse because each participant is in effect using their own method to identify and classify features on the digital image being 

studied, many of the subjective biases that we observed in our work will be applicable to remote mapping methods. This 

corroborates work by Scheiber et al. (2015), who investigated the number of lineaments identified by six participants 

interpreting the same LiDAR dataset (at the same resolution). Extreme variability was observed between participants, who 30 

counted between 74 and 607 lineament traces (COV = 1.61). Indeed, concern about consistencies in image interpretation was 

raised in early work on remote imagery; Huntington and Raiche (1978) suggested that inter-operator variability in the 

interpretation of lineaments from LANDSAT imagery could be so significant that it may seem as if different scenes with 

different geologies had been interpreted.  

In this work, we have demonstrated, for the first time, the clear need for geoscientists to develop consistent and 35 

transparent protocols for collecting field data that is scientifically rigorous. We find that the type and scale of subjective biases 

that affect how we identify, classify, and report on fracture characteristics are independent of experience, and appear to be 

related to personal character traits. It is vital that the geoscientific community become more aware of the potential for subjective 

bias, the subsequent effect on scientific uncertainty, and options to manage biases. Indeed, we feel that these issues should be 

discussed openly from the very first time that students collect field data. Training schemes and procedures should be developed 40 

that not only consider the relative differences between methods (as in Watkins et al., 2015) but also the inherent human factors 

which effect data collection. These schemes will differ based on the specific aims of the study, however, approaches to manage 
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subjective uncertainty in data must be communicated openly so as to enable the study’s findings to be replicable, and to 

facilitate comparison with other field data.  

In fact, we propose that a series of reasoned recommendations or protocols derived from and adopted by the scientific 

community could prove valuable to streamline the data collection process and reduce the uncertainty in observation-based 

sciences. The recommendations for field-based fracture data collection may be different to those for remote sensing images. 5 

Any such workflow should not be so prescriptive as to be inhibitive, or to limit the scope of study, however, should be 

supportive enough such that the results obtained by the adopted method are replicable. Since the type and scale of subjective 

bias is independent of the level of experience or expertise, a suitable workflow should enable crowd sourcing or citizen science 

to be a useful medium for fracture data collection and analysis in such a way that is commonplace in ecological studies 

(Dickinson et al., 2010). Indeed, our work has implications beyond the geoscience discipline; for example, to garner maximum 10 

potential from Big Data, these subjective uncertainties and any protocols to manage them must be reported. However, our 

work also demonstrates the clear need for further work in this field, to test the effects of subjective or operator bias on the 

collection of fracture data, both in the field and using maps generated from remote sensing, in addition to investigating the role 

of subjective bias in other forms of geological data and beyond. 

7. Conclusions 15 

o When working in groups, confer out loud the rationale or reason rather than divvying up tasks. This allows for the 

identification and reconciliation of differences in interpretation, thereby reducing the potential for subjective bias.   

In Arthur Conan Doyle’s Silver Blaze (1892), Sherlock Homes states “I only saw it because I was looking for it”. We 

observe that this behaviour may be common in geoscience data collection and has the potential to impart subjective biases in 

the data collected, introducing uncertainty in the geological information derived from these data and potentially affecting the 20 

ability to replicate studies. We demonstrate that geologists’ own subjective biases influences the data they collect, and, as a 

result, different participants collect different fracture data from the same scanline or sample area. This has consequent effect 

on the fracture statistics that are derived from these data and that are used to inform geological models. Although we find that 

participants can collect a range of data, we observe internal consistency in the classification of and number of fractures gathered 

by each participant. This consistency is not related to geological expertise or experience, nor the time taken to complete the 25 

scanline, so we propose that the underlying control on the subjective bias relates to the individual’s personal characteristics 

(detailed vs pragmatic) and also the process that the data will inform (bulk fluid flow? Scale of relevant observation?). Major 

fracture sets tend to be captured by all participants, and so the subjective bias mostly affects the smaller-scale fracture features. 

We find that the effect of subjective bias on the fracture statistics derived from the observed fracture attributes can be large, 

and that trace length and fracture density are the parameters that are most susceptible to subjective bias. 30 

The subjective biases in how features are identified, classified, and reported have implications for how data should 

be collected and collated. Firstly, for the characteristics of a fracture network to be statistically valid, a circular scanline should 

aim to capture a minimum number of fractures in its area, and the radius adjusted to ensure that these conditions are met. 

However, to meet the necessary validity criteria, individuals who pay particular attention to small features could potentially 

use a circular scanline with much smaller radius (and consequently, can collect data from smaller outcrops) than individuals 35 

who tend to dismiss small fractures. Secondly, by comparing fracture data collected in the field and from field photographs, 

we find that if possible fracture data should be collected in the field, where the type of connections present can be examined 

in more detail.  

Drawing on the quantitative and qualitative data in this study, we propose a series of methods for managing subjective 

bias. As well as supporting individuals to understand – and so mitigate - their own biases, there are other practical steps that 40 

can be taken. For example, we suggest that the perceived fracture network should be drawn out, either onto printed field photos 
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or using a tablet computer, to minimise bias by prompting the operator to consider and report the trace length distribution and 

network topology. Doing so also recordsFinally, but most importantly it is vital that we report our own biases and methods 

used to reduce bias in the field reports, to enable replicability and comparison of studies.  

In principle, if these recommendations are followed, it would be possible to ‘correct’ networks captured by either ‘more 

detailed’ or ‘more scanline’ users to make them comparable. In the case where small fractures are vital for fluid flow or rock 5 

mass stability a large-scale fracture network collected by a less detailed user could be populated with small fractures typical 

of the network which are collected by a more detailed member of the group. Similarly, if small fractures are not important (e.g. 

if they are unconnected) then small fractures could be removed from the data sets of more detailed users and the large scale 

fracture networks compared. It is possible to assess the importance of the networks either through visually assessing the 

distribution of small fractures or comparing where different members of a group plot in node-triangle space. In a network 10 

where small fractures are evenly distributed and not necessarily connected to the network then a detailed participant will 

identify a higher percentage of i-nodes then a less detailed user. In the case where small fractures are concentrated at fracture 

intersections and contributing to the network a detailed participant would instead notice a larger number of y-nodes. Combining 

this information with the trace length distributions enables an assessment to be made as to what type of correction is required 

to make different users data comparable.  15 

5. Conclusions 

This work has found that subjective bias has a considerable impact on fracture data collected from the same scanline 

by multiple participants. Although considerable variability is observed between participants, a degree of internal consistency 

in the number of fractures and node classifications is observed for each participant. This variation in reported fracture 

parameters affects the manner by which the data needs to be collected. A detailed user can collect data using a smaller radius 20 

circular scanline and require a smaller outcrop to characterise a network compared to a user who does not record as many 

small fractures. The number and trace length of fractures reported, and hence derived fracture statistics, have no correlation to 

the level of experience or time taken to complete the scanline. We suggest instead that the underlying control is the individual’s 

personality or inherent level of detail. 

The impact that the variability of reported fracture attributes has on derived fracture statistics can be large, with trace 25 

length and fracture density the most susceptible to subjective bias. When possible, it is important that fracture data are collected 

in the field, where the type of connections present can be assessed. Because the major fracture sets are captured by all 

participants it is important to record not just the number of terminations and individual trace lengths, but also where in the 

scanline/are the values recorded. We suggest that the network is always drawn, either onto printed field photos or using a 

tablet, and the trace length distribution and network topology are both reported and considered. 30 

When working together, comparing collected fracture data to literature values, undertaking fracture analysis to 

understand the geological evolution of an area or using fracture data to populate DFN models, it is vital to have an appreciation 

of the level of detail used during fracture data collections. It is , and also important to understand the relative importance of 

small fractures to the network and the impact subject bias can have on capturing this. We show that the impact of subjective 

bias onmakes clearer the rationale behind the interpreted fractures. For similar reasons, we also propose that people should 35 

work collaboratively in (small) groups when gathering fracture data, and preferably with people who have different personal 

characteristics to them. A series of protocols could be developed to streamline fracture data collection can be extreme, however, 

using a number of recommendations provided in this study it should be possible to limit the effect for users of this data.and 

reduce uncertainties introduced by subjective biases, but, ultimately, the steps taken to manage bias in data collection should 

be communicated as standard during data reporting and publication.  40 
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This study is the first to quantitatively illuminate and discuss the scale of and potential causes of subjective bias in 

the collection of geological field data. As the implications of our findings has relevance for a range of observation-based 

sciences beyond geoscience, from digital mapping to Big Data, our study is, ultimately, a call for further work in this area. 
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Tables 

 

Fracture 
statistic 

Notation Definition (unit) 

Input parameters and calculation 

Linear  Circular scanline Window sampling 

Density (D) Areal (P20)  
Number of fractures 
per unit area (m–2) 

- 𝐷 =  
(𝑁𝑖+𝑁𝑦)

2𝜋𝑟2
   𝐷 =  

𝑁

𝐴
 

Intensity (I) 

Linear (P10) 
Number of fractures 
per unit length (m–1) 

𝐼 =  
𝑁𝑐

𝐿

𝑛

𝐿
=

1

𝑆
  - 𝐼 =  

𝑛

4𝑟
  - 

Areal (P21) 
Fracture length per 
unit area (m x m–2) 

- 𝐼 =  
𝑁𝑐

4𝑟
 - 𝐼 =  

∑ 𝑡𝑙

𝐴
 

Spacing (S) Linear 
Spacing between 
fractures (m) 

𝑆 =  
∑ 𝑠

(𝑁−1)
=

1

𝐼
  - - 

Mean trace 
length (Tl) 

Tl 
Mean fracture length 
(m) 

𝑇𝑙 =  
∑ 𝑙

𝑁
  

𝑇𝑙 =

 
𝑁𝑐

(𝑁𝑖+𝑁𝑦)

𝑛

(𝑁𝑖+𝑁𝑦)
×

𝜋𝑟

2
  𝑇𝑙 =  

∑ 𝑙

𝑁
 

Network 
topology 

Topological 
sampling 

Defining fracture nodes 
as I, y and x. 

- Yes Yes 

Connectivity 

Using node 
topology (Pc) 

Percentage of 
connected branches 

- 𝑃𝑐 =
3𝑁𝑦 + 4𝑁𝑥

𝑁𝑖 + 𝑁𝑦 + 𝑁𝑥
 𝑃𝑐 =

3𝑁𝑦 + 4𝑁𝑥

𝑁𝑖 + 𝑁𝑦 + 𝑁𝑥
 

Using trace end 
classification 
(Pf) 

Percentage of 
connected fractures 

𝑃𝑓 =
𝐹

𝑅 + 𝐹
 × 100 - - 

Trace length 
distribution 

Tl distribution 
(tl) 

Distribution of 
individual fracture 
trace lengths 

Yes - Yes 

 

Table 1: Summary and definition of fracture statistics that can be derived from methods used in this work. Table adapted from Zeeb 

et al. (2013). Ni = number of i-nodes, Ny = number of y-nodes, Nx = number of x-nodes, r = radius of circular scanline, N = number 5 
of fractures, A = Area, Ncn = number of fracture intersections with the scanline (either linear or circular), L = length of scanline, s 

= spacing between adjacent fracture traces on the scanline, tl = individual fracture trace length, F = fracture abuts against another 

fracture, R = fracture terminates into rock (n.b. some authors also distinguish stratabound fracture terminations), ‘Yes’ for trace 

length distribution & network topology indicates you can use that method to carry out the technique.  
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Method 
Field Workshop Length or 

radius/m Completed? i g Completed? i g Order 

C
ir

cu
la

r 

C1 ✓ ✓  ✓ (WS1&2) ✓  3 1.0 

C2 ✓ ✓  ✗    1.0 

C3 ✓ ✓  ✓(WS1&2)  ✓ 5 1.0 

C4 ✓ ✓  ✓(WS1&2)  ✓ 4 1.0 

C5 ✓ ✓  ✓(WS1&2) ✓  2 1.0 

C6 ✓ ✓  ✗    0.73 

C7 ✓ ✓  ✗    1.21 

C8 ✗   ✓(WS1&2) ✓  1 0.5 

Li
n

ea
r 

L1 ✓ ✓  ✗    1.0 

L2 ✓  ✓ ✗    1.0 

L3 ✓  ✓ ✗    15.0 

L4 ✓  ✓ ✗    7.5 

L5 ✗   ✓(WS1&2)  ✓  6.55 

L6 ✗   ✓(WS1&2) ✓   1.45 

W
in

d
o

w
 

sa
m

p
lin

g
 C1    ✓P1,3,11 & WS2 ✓  3 0.5 

C3    WS2  ✓ 5 1.0 

C4    WS2  ✓ 4 1.0 

C5    ✓P1,3,11 & WS2 ✓  2 0.5 

C8    ✓P1,3,11 & WS2 ✓  1 0.5 

 

Table 2: Summary of circular (C) and linear (L) scanlines completed in the field and workshops (WS1 & WS2). Whether these were 

completed individually (i) or in groups (g) is noted. ‘Order’ refers to the order the scanlines were completed in the workshops. Four 

of the circular scanlines (C2,3,4,5) were completed both in the field and in the workshop, but none of the linear scanlines were 5 
completed in both, due to workshop time constraints. Window sampling, whereby participants drew out the interpreted fractures 

as well as completing topological sampling, was only completed by Participants 1, 3, 11 and all of Workshop 2 (WS2). The workbooks 

used in this study are supplied in the supplementary information (S3 & S4). 
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G
ro

u
p

 

N
# 

p
ar

ti
ci

p
a

n
ts

 

Geological training 
Familiarity with geological 

fieldwork 
Familiarity with collecting 

fracture data 

  

N
o

n
e

 

Lo
w

 

M
e

d
iu

m
 

H
ig

h
 

(O
th

e
r)

 

N
o

n
e

 

Lo
w

 

M
e

d
iu

m
 

H
ig

h
 

(O
th

e
r)

 

N
o

n
e

 

Lo
w

 

M
e

d
iu

m
 

H
ig

h
 

(O
th

e
r)

 

Field 7 1 0 3 3 0 1 0 3 3 0 1 0 3 3 0 

WS1 11 2 2 3 2 2 2 1 5 1 2 3 2 5 1 0 

WS2 18 3 0 6 9 0 3 6 3 6 0 6 5 5 2 0 

 

Table 3. Summary of the level of geological training, and experience in geological fieldwork and fracture data collection, reported 

by field and workshop (WS) participants. Individual participant responses are provided in the Supplementary Information (S2). 
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Sc
an

lin
e

 

 

In
d

iv
id

u
al

/ 

G
ro

u
p

 

n# 

Fracture count Trace length (m) Time (minutes) 

M
in

 

M
ax

  

M
e

an M
e

d
ia

n
 

Q
C

V
 

M
in

 

M
ax

 

M
e

an
 

Q
C

V
 

M
e

d
ia

n
 

Q
C

V
 

M
in

 

M
ax

 

M
e

an M
e

d
ia

n
 

Q
C

V
 

L1 Field i 6 3 10 
6.87.
0 

0.71 0.03 2.22 
0.55
58 

0.36 0.40 0.15 5:32* 9:00* 7:16* 0.24 

L2 Field G 3 7 14 
1112
.0 

0.29 0.01 1.78 
0.41
43 

-
0.17 

-
0.26 

-
0.21 

- - - - 

L3 Field G 3 21 38 
28.3
26.0 

0.33 0.04 23.08 
1.22
1 

0.69 0.54 0.18 10:00 13:00 
1110:
00 

0.15 

L4 Field G 2 18 19 18.5 0.03 0.05 14.4 
2.32
9 

-
0.61 

-
1.17 

-
0.69 

- - - - 

L6 
WS1 i 11 10 23 

15.6
14 

0.39 0.02 0.61 0.21 0.39 0.19 0.43 2:17 8:40 
4:565
8** 

0.33 

WS2 i 18 9 25 
18.8
21 

0.38 0.03 0.72 0.24 0.28 0.23 0.27 1:51 24:00 
7:426:
12*** 

0.66 

L5 
WS1 G 5 22 31 

24.8
22 

0.23 0.12 2.72 0.86 0.73 0.70 0.82 5:57 9:35 
7:343
3 

0.24 

WS2 G 7 15 28 2120 0.40 0.14 2.43 0.96 0.21 0.86 0.47 5:00 13:00 
8:231
7 

0.57 

 

Table 4: Summary table of raw linear scanline results where i = individual, G = groups, n# = number of participants/groups. *only 

two participants recorded time for this scanline **P10 did not record time taken to count nodes ***P23 did not trace fractures so 

only have spacing and time information. 5 
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   Ncn-point Node Count 

   Ncn  t (sec)  i-node  y-node  x-node  t (sec)  
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R
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n
 

Q
C

V
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e
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ia

n
 

Q
C

V
 

C
1

 

Fiel
d 

i 
15-
21 

17.
5 

0.1
6 

19-
42 

29.
5 

0.3
9 0-3 

1.
0.
5 

3.5 
12-
21 

17.
719 

0.2
2 

6-
14 

8.5
7 

0.3
2 

137-
230 

17
81
72 

0.33 

WS
1 

i 
14-
23 

18.
1 

0.2
2 

36-
99 

596
8 

0.8
7 0-12 1 

2.1
0 1-38 

19.
7 

0.7
4 

4-
11 

7 
0.4
3 

119-
447 

24
72
40 

0.77 

WS
2 

i 
11-
25 

18.
15 

0.3
0 

15-
29
5 

111
82 

1.4
1 

0-6 
1.
7 

2 

4-34 
18.
2 

0.8
1 4-

14 
7.8
5 

0.5 
82-
114
0 

38
22
89.
5 

1.11 

C
5

 

Fiel
d 

i 
14-
19 

15.
75 

0.1
6 14-

43 
262
1 

0.6
4 

4-8 
5.
8 

0.4
5 28-

47 

35.
734
.5 

0.3
8 

2-8 
4.2
3.5 

1.0
7 127-

245 

17
11
65.
5 

0.32 

WS
1 

i 7-18 
12.
4 

0.2
5 

20-
12
0 

524
7 

0.7
8 3-14 

6.
45 

0.9 
4-34 

19.
820 

0.5
3 1-6 2.3 

0.7
5 

150-
117
7 

35
73
17 

0.46 

WS
2 

i 9-18 
12.
6 

0.0
8 

20-
29
8 

896
7.5 

0.9
9 0-32 

6.
84
.5 

1.3
9 7-41 

16.
714 

0.5 
0-
11 

2.6
1.5 

1.1
7 

60-
105
0 

37
72
81 

1.09 

C
8

 

WS
1 

i 
10-
25 

20.
923 

0.1
7 

29-
18
0 

807
8 

0.7
7 2-11 

4.
75 

0.5 
1-60 26 

250
.5 

2-
22 

10.
5 

0.3 
150-
780 

39
03
78 

0.8 

WS
2 

i 
16-
32 

23.
224 

0.2
2 

45-
24
0 

113
107 

0.4
8 1-16 4 

0.5.
2 5-45 

19.
45 

0.9
2 

5-
18 

10.
95 

0.4
8 

30-
144
0 

62
75
99 

0.64 

C
4

 

Fiel
d (i) 

i 
12-
20 

14.
815 

0.1
3 

24-
50 

394
1 

0.4
1 5-19 13 

0.3
1 

20-
34 

28.
829 

0.1
7 0-4 0.8 

- 
147-
215 

17
81
67 

0.35 

WS
1 

g 
11-
18 

14.
8 

0.3
6 

60-
33
0 

132
97 

0.4
9 7-19 

11
9 

0.2
2 6-27 

141
1 

0.7
3 1-4 

2.8
3 

0.6
7 

324-
521 

40
5 

0.16 

WS
2 

g 
10-
18 

14.
4 

0.3
9 

64-
32
3 

177
129 

0.9
6 5-23 5 

80.
9 5-27 

12.
311 

0.5
0 0-3 1 

1.6
5 

115-
720 

34
72
90 

1.35 

C
3

 

Fiel
d 

i 
19-
30 

232
2 

0.0
5 

24-
58 

433
8.5 

0.6
8 3-15 

9.
27 

1.0 
21-
33 

28.
429 

0.2
4 

6-
16 

9.6
8 

0.5 
162-
282 

24
42
61 

0.15 

WS
1 

g 
18-
22 

19.
85 

0.1
7 

55-
90 

757
7.5 

0.2 
4-20 

8.
85
.5 

0.8
6 

19-
24 

22.
223 

0.0
5 

5-
11 

6.8
5.5 

0.4
1 

208-
521 

34
33
22 

0.29 

WS
2 

g 
14-
23 

17.
216 

0.1
3 

52-
71
3 

242
129 

1.7
7 

2- 
54 

13
.9
7 

1.4
3 

11-
22 

17.
918 

0.3
9 

3-
10 

4.9 
0.3
8 

143-
600 

32
93
60 

0.63 

                     

 

Table 5: Summary of fracture data and time taken for circular scanlines 1, 5 and 8, in the field and workshop, either working 

individually (i) or in groups (g). The data are presented in the order scanlines were completed in the workshops. 
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Circle Number of participants Number of fractures  Trace length (m)    

Range MeanMedian QCV Min Max Mean QCV Median QCV 

8 (i) 20 18-54 34.430.5 0.49 0.01-0.10 0.70-0.98 0.27 0.31 0.17 0.43 

5 (i) 20 13-56 24.922.5 0.48 0.02-0.12 0.68-1.05 0.33 0.40 0.24 0.39 

1 (i) 20 9-40 23.65 0.44 0.01-0.40 0.67-1.03 0.37 0.37 0.30 0.95 

4 (g) 7 11-29 19.917 0.76 0.02-0.11 1.89-1.95 0.69 0.47 0.52 0.60 

3 (g) 7 18-50 27.425 0.46 0.04-0.22 1.82-2.01 0.61 0.26 0.38 0.26 

 

Table 6: Summary of fracture parameters reported for window sampling. Data is presented in the order the scanlines were 

undertaken within the workshops. (i) and (g) denote whether the scanline was undertaken individually or as a group. 
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Table 7: Summary of the broad trends in fracture statistics derived from the three methods we explored, presented in Fig. 9. 

 

 5 

  

Statistic Circular Scanline – topology Circular Scanline - Window Linear Scanline 

Intensity 

Moderate spread, varies between 
circles.Very low to low variability 
when derived from field data and 
low to moderate when workshop 
data is used. For Circle 1, 4 and 5 the 
calculated intensity from workshop 
and field data were very similar, 
however, the calculated intensity for 
Circle 3 was much lower in the 
workshop. In all cases ranges are 
greater when workshop data is used, 
particularly for Circles 1 and 5.  

LimitedLow spread between 
participants within circles. In all 
cases, apart from Circle 4, intensity 
calculated using window sampling is 
lower than that derived for node 
counting for a given circle.  

Moderate spread, more for 
someVariability, which ranged from 
very low to high, depends on the 
scanline being sampled. For 
example, Lines (Line 1, Line 6) than 
others (Lines 3 - 5, all low intensity, 
have small range).   

Density / 
Spacing 

ModerateLow to high spread. 
Generally higher spread observed in 
when derived from field data and 
moderate to very high when 
workshop data, particularly in Circle 
1 is used. Density calculated from 
workshop in all cases apart from 
Circle 1 is lower than when 
calculated from field data. 

Moderate to high spread. Values 
consistently higher in workshop data 
when window sampling data is used 
compared to node counting, 
particularly Circle 8. Can be both 
comparable to field density (Circle 4) 
or considerably higher (Circle 1)). 

ModerateVariability in mean 
spacing values depends on the 
scanline being sampled, ranging 
from very low to largevery high. 
Maximum reported spacing had low 
spread., whereas, minimum spacing 
ranged from low to extreme 
variability depending on the scanline 
being sampled. Equally large range 
in workshops and field. Minimum 
fracture spacing was consistently 
small. 

Mean trace 
length 

GreatestLow to moderate spread. 
Particularly large spread in values  
when derived from field data and 
moderate to high when workshop 
data is used. How similar the range 
isin reported values are between 
workshop and field data varies for 
different circles. 

Moderate spread across all circles. 
The extremes in the ranges observed 
in mean trace length estimates are 
considerable lower than for node 
counting. Of all methods window 
sampling provides the smallest 
estimate for mean trace length. 

Moderate to Highly variable for 
most scanlines. Equally large range 
in workshops and field. Maximum 
reported trace lengths generally 
much larger than for other methods, 
due to the different scale of 
observation. 

Connectivity  

LeastVery low spread, both between 
circles, between methods, and 
settings (field vs workshop). 

Not assessed separately from node 
classifications.  

HighlySpread depends on the 
scanline being sampled and ranges 
from very low to extremely variable 
for most scanlines.. Equally large 
range in workshops and field. 
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Figures 

 

 

 

Figure 1: Location map highlighting (a) the local geology and (b) the location of the study area, located near Whitley Bay, 5 
Northumberland (UK). Grid lines are annotated with UK national grid numbers. Field photographs of both linear (c) and circular 

(d) scanline methods are also shown (L3 [NZ34717545] and C8 [NZ34377609] respectively). The geological map is modified from 

Geological Map Data BGS © UKRI (2018), where stratigraphy is as follows: PLCM-SDST = Pennine Lower Coal Measures – 

Sandstone; PLCM-MDSS = Pennine Lower Coal Measures – Mudstone, siltstone and Sandstone; Pennine Middle Coal Measures – 

Sandstone; PLCM-MDSS = Pennine Middle Coal Measures – Mudstone, siltstone and Sandstone.  10 
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Figure 2: The interpreted fracture traces for Line 6 (length 1.45 m). (a) The digitised fracture networks for all workshop participants. 

(b) Field photograph of Line 6. (c) Fracture trace length histograms (bin = 0.1 m) for participants who recorded a low to high number 

of fractures.  The corresponding digitised fracture trace is also highlighted in the appropriate colour. Key differences in the 

interpreted fracture networks are highlighted using participants who selected a low (Participant 28, 9 fractures), medium 5 
(Participant 10, 17 fractures) and high (Participant 14, 25 fractures) number of fractures. 
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Figure 3: Results of the fracture data from circular scanlines (C1-7) collected in the field by 7 participants (labelled A-G, though A, 

E and F did not complete all of the scanlines). (a) the number of fractures that intersected the circular scanlines (Ncn). (b) fractures 5 
that terminated in rock (i-nodes). (c) fractures that terminated against another fracture (y-nodes). (d) fractures that intersect another 

fracture (x-nodes). Participants C and D repeated some of their measurements for selected circles and this is indicated by two bars 

in their column for that circle. 
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Figure 4: Recorded fracture data (Ncn, and node counts) and the time taken to undertake Ncn and node counts for workshop 

(WS) participants (P) and groups (G). The data for each attribute has been colour-coded according to where the reported value for 

the parameter ranked for that circle. Data are presented in the order that they were completed in the workshop. 
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Figure 5: Node triangles for workshop participants and groups. For individual circles (a), Participants 5, 21, and 11 were highlighted 

to show the consistency the way participants classified nodes. Participants were selected according the whether they reported a low 

(P5), medium (P21) or high (P11) node count. Similarly, for group circles (b) Groups 7 and 12 were highlighted as groups who 

recorded a high and low node count.   5 
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Figure 6: Fracture trace length distributions for (a) individual and (b) group window sampling data. The results are presented as both 
histograms and normalised cumulative frequency curves of fracture trace length with bin widths of 0.05 m for individual and 0.1 m for 
group window sampling data. The range in the relative percentage of small fractures observed in the data is highlighted using 
Participants and groups who consistently observed a high and low percentage of small fractures (Participant’s 3 and 24 and Groups 12 5 
and 11 respectively).  
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Figure 7: A detailed study of the areas which cause increased uncertainty in Circle 8. The figure comprises of clean field photographs 

of Circle 8 with the (a) heat map of y-node point density, (b) heat map of fracture trace density and (c) areas identified as problem 5 
areas. In panel (d) the close up of areas 1, 2 and 3 along with the features recorded by Participants 11, 18 and 21 are shown. See text 

for full description.   
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Figure 8: The impact of participant experience on the collection of fracture data. (a) The time taken in seconds to record fracture 

data (Ncn and node counts) from circular scanlines both in the field and workshops. (b) The impact of experience on the recorded 

y-count and number of fractures in individual scanlines and the time taken to complete the workshop tasks.  
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Figure 9: Topological sampling results for individuals and groups for circular scanlines 1, 3, 4, 5 and 8. Each histogram reports the 

results for all workshop participants. The statistics have been derived from the data for each participant. Data is presented as both 

bar charts and shaded histograms with the bin width, b, indicated on the chart. (please note the bin width varies between circles as 

a function of the range in reported or calculated values). In all cases the y-axis represents frequency and is scaled so the shape of the 5 
distributions can be assessed.  
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Figure 10: The effect of subject bias on the validity of circular 

scanlines. The number of terminations recorded by 

individuals or groups is displayed for each circle and colour 

coded depending on where a valid (>30, green), possibly valid 5 
(20-30, yellow) or invalid (<20, red) number of terminations 

were recorded.  
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Figure 11: The impact of interpreter style on fracture statistics of a synthetic fracture network. (a) statistically valid topological 

sampling within a circular scanline for a fracture network which only considers the large scale fracture network. (b) statistically 

valid topological sampling within a circular scanline for the same large scale fracture network as (a), however, also capturing small 

scale fractures at fracture intersections. (c) The topology attributes (Ncn, i-, y- and x-nodes), derived fracture statistics and node 5 
triangle of the different interpretations of the fracture network. 

 


