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Abstract14 

The Lower Jurassic platform and basinal deposits exposed in the Montagna dei Fiori 15 

Anticline (Central Apennines, Italy) are pervasively affected by dolomitization. Based on the 16 

integration of field work, petrography, and geochemistry, two fault-related dolomitization events17 

were recognized and interpreted as occurred before and during the Apenninic orogeny,18 

respectively. Fluid inclusion analysis indicates moderate to elevated salinity values of 3.5 to 20.519 

and 12.8 to 18.6 eq. wt. % NaCl, in the first and the second event, respectively. The estimated 20 

salinities, in combination with 18O values and 87Sr/86Sr ratios, suggest significant involvement 21 

of evaporitic fluids in both events, most likely derived from the underlying Upper Triassic 22 

Burano Formation. In addition, the 87Sr/86Sr ratios up to 0.70963 suggest the circulation of deep-23 

sourced fluids that interacted with siliciclastics and/or the crystalline basement during the24 

dolomitization events. The first dolomitization event which is also considered as the most 25 

pervasive one started prior to the significant burial conditions, as reflected in homogenization 26 

temperatures of their fluid inclusions being mostly below about 40-50°C. Two major dolomite27 

types (D1 and D2) were recognized as pertaining to this event, both postdated by high amplitude 28 

bed-parallel stylolites. This relationship supports a syn-burial, pre layer-parallel shortening 29 

dolomitization, interpreted as controlled by the extensional fault pattern affecting the carbonate 30 

succession before its involvement in the Apenninic thrust wedge. A possible geodynamic 31 
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framework for this dolomitization event is Early to Late Jurassic rift-related extensional 32 

tectonism.33 

The second dolomitization event initiated with a dolomite type (D3) characterized by a slight 34 

temperature upturn (up to 73°C), followed by a second type (D4) with markedly higher 35 

homogenization temperatures (up to 105°C), interpreted as associated with the inflow of 36 

hydrothermal fluids, possibly related to major changes in the permeability architecture of faults 37 

during early- to syn-thrusting and folding activity. Eventually, D4 was overprinted by a late 38 

generation of dolomite veins (D5) interpreted as associated with late orogenic extensional39 

faulting in the backlimb of the Montagna dei Fiori Anticline. Based on the timing of deformation 40 

in the Montagna dei Fiori Anticline, D3 to D5 dolomitization likely occurred in Late Miocene to 41 

Pliocene times. The findings regarding characteristics and timing of dolomitization here42 

illustrates the long-term controlling role of the eveporitic detachments in dolomitization process. 43 

Our data shows the Mg-rich fluids most likely derived from these evaporites may prime the 44 

tectonically involved successions for repeated dolomitization, and formation of potential 45 

reservoirs in sequential tectonic modifications (extensional vs. compressional).46 

1 Introduction47 

Fault-controlled dolomitization has been the focus of attention in many studies during the last 48 

decades due to its influential role in modifying the petrophysical properties of rocks and, hence,49 

anisotropy in fluid migration pathways, and, ultimately on reservoir quality (e.g. Purser et al., 50 

1994; Montanez, 1994; Zempolich and Hardie, 1997; Vandeginste et al., 2005; Davies and 51 

Smith, 2006; Sharp et al. 2010). The mechanical and hydrological behaviour of fault zones are in 52 

turn influenced by fluid-rock interactions and diagenetic modifications (e.g. Gale et al., 2004; 53 

Laubach et al., 2010; Clemenzi et al., 2015). It follows that the mutual interplay between fault 54 

activity and fluid-driven rock-fluid interaction can trigger dolomitization of carbonates and,55 

consequently, variations in physico-chemical properties of fluids through time and space. 56 

Leaking or sealing behaviours of fault zones during deformation are key controls for fault-related 57 

fluid circulation. A detailed understanding of such an interplay is thus necessary to improve our 58 

capability of making reliable predictions of fault-related dolomitization in carbonate reservoirs. 59 

Studying outcrop analogues provides fundamental support to meet this requirement (e.g. 60 

Swennen et al., 2012; Dewit et al., 2014; Bistacchi et al., 2015).61 
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The Lower Jurassic to Lower Cretaceous Umbria-Marche passive margin carbonate62 

succession, in the Central Apennines (Italy), is intensely affected by localized dolomitization63 

both in the onshore fold-and-thrust belt and in offshore foredeep and foreland areas (e.g. Murgia64 

et al., 2004; Pierantoni et al., 2013). The dolomitized intervals are well-exposed in the core of the 65 

Montagna dei Fiori Anticline (e.g. Ronchi et al., 2003), where the dolomitized Lower Jurassic 66 

intervals (Calcare Massiccio, Bugarone and Corniola Formations) and their relationships with 67 

fault zones allow to study the mutual influence between deformation structures and dolomitized 68 

intervals (Fig. 1). These intervals, known as the Castel Manfrino Dolostones (Crescenti, 1969;69 

Mattei, 1987; Koopman, 1983), have been previously studied by Ronchi et al. (2003) at its 70 

reference section, the Castel Manfrino location, in the central sector of the Montagna dei Fiori 71 

Anticline (Fig. 2). A fault-controlled dolomitization model and the relative timing of 72 

dolomitization were proposed by Ronchi (2003). Recent re-evaluation of dolostone distribution 73 

in the Montagna dei Fiori Anticline (Storti et al., 2017a), showed that the dimension of the 74 

dolomitized geobodies (Fig. 2) is much more significant than what was previously mapped by 75 

Mattei (1987). Dolostones are distributed within fault damage zones and in the laterally adjacent76 

carbonate rocks, and in intersection areas between fault sets, for a total area in map view of more 77 

than 1.5 km2 (Storti et al., 2017a).78 

The structural pattern of the Montagna dei Fiori Anticline documents the overprinting of 79 

extensional and contractional deformation along major fault zones. Although challenging, the 80 

preserved structural framework in this anticline provides an opportunity to study the direct but 81 

complex regional tectonic controls on dolomitization in carbonate successions undergoing 82 

multiple deformation events, from rifting to folding and thrusting. This contribution integrates83 

field mapping, new petrographic, geochemical, and microthermometric analyses, with structural 84 

studies to characterize the temporal record of fault-controlled diagenetic phases and, more 85 

specifically, dolomitization in the carbonatic succession outcropping in the Montagna dei Fiori 86 

Anticline. Therefore provides insights into the structural controls on regional fluid flow and their 87 

chemical evolution through time. These findings might be of relevance for exploration and 88 

reservoir quality prediction onshore and offshore the Apennines and Southern Alps. Moreover,89 

this work provides additional evidence of the potential influence of fluids derived from 90 

evaporitic detachment levels in modifications of geochemical trends and petrophysical properties 91 

of the overlying carbonate rocks.92 
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2 Geological setting93 

The Montagna dei Fiori Anticline is a NNW-SSE striking, thrust-related fold located at 94 

the mountain front of the Central Apennines (Fig. 1). The geodynamic evolution of the 95 

Apennines is generally known to be the result of the superposition of NE-SW compression (in 96 

present-day geographic coordinates), related to the convergence between Eurasia and Africa 97 

plates since Late Cretaceous times (Elter et al., 1975; Dewey et al., 1989; Patacca et al., 1992), 98 

on a rifting-related tectono-sedimentary architecture produced by Early Jurassic extension (e.g., 99 

Centamore et al., 1971). In such a framework, the Central Apennines developed during Miocene 100 

to Plio-Pleistocene times (e.g. Parotto and Praturlon, 1975; Barchi et al., 1998; Mazzoli et al., 101 

2002; Bollati et al., 2012).102 

The Central Apennines involves the Umbria-Marche succession, which essentially 103 

includes Triassic to Miocene carbonates and marls, covered by Miocene to Pliocene syn-104 

orogenic clastic sediments (Fig. 1). The pre-orogenic succession, from bottom to top, includes 105 

Late Triassic evaporites, dolomites and limestones (Burano Formation), Early to Late Jurassic 106 

platform and basinal limestones and dolostones (Calcare Massiccio, Corniola, Rosso 107 

Ammonitico, Calcari a Posidonia and Calcari ad Aptici Formations), and Cretaceous to Early 108 

Miocene basinal carbonates (Maiolica, Marne a Fucoidi, Scaglia and Biscaro Formations). In 109 

general, the lower part of Burano Formation is overlaid by the fluvio-deltaic siliciclastics of the 110 

Verrucano Formation (Middle-Late Triassic) (Tongiorgi et al., 1977; Ghisetti and Vezzani, 2000; 111 

Tavani et al., 2008). Nevertheless, the existence of these siliciclastics in the Montagna dei Fiori 112 

area is not yet proved. Syn-orogenic deposits include Miocene marls and turbiditic sandstones 113 

(Marne con Cerrogna and Laga Formations) (Artoni, 2013 and references therein).114 

The deposition of the Calcare Massiccio Formation, dated as Hettangian-Sinemurian and 115 

with a total thickness varying between 300 to 700 m (Pialli, 1971), records an important 116 

extension pulse in the evolution of Tethyan rifting. The following facies are observed in the 117 

lower part of the Calcare Massiccio Formation: oncoid-rich peloidal pack- to grainstones in 118 

alternation with peloidal wacke- to packstones including horizons of algal bindstones (Calcare 119 

Massiccio A; Brandano et al., 2016). The upper part is made up of beds of skeletal and coated 120 

grain wacke- to grainstones including microoncoids, echinoderms, calcareous and siliceous 121 

sponges, bivalves, gastropods and ammonites (Calcare Massiccio B; Brandano et al., 2016). The 122 

lower part has been interpreted as having been deposited in a peritidal environment, while the 123 
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upper part corresponds to lower to middle shelf depositional environments, characterized by a 124 

general deepening upward trend associated with extensional faulting and drowning of the 125 

platform, coupled with subsidence and deposition of the overlying Corniola Formation in the 126 

pelagic areas (Sinemurian-Toarcian; Colacicchi et al., 1975; Morettini et al., 2002; Bosence et 127 

al., 2009; Marino and Santantonio, 2010; Brandano et al., 2016). Overall, the Early Jurassic 128 

rifting led to the growth of the Calcare Massiccio Formation in a carbonate platform setting, 129 

followed by faulting and drowning, and development of pelagic intrabasins filled by syn-rift 130 

sediments (Fig. 1c; Bernoulli et al. 1979; Santantonio and Carminati, 2011). Condensed pelagic 131 

limestones of the Bugarone Formation (Lower Pliensbachian-Lower Tithonian; Bugarone Group 132 

in Pierantoni et al., 2013) occur at the top of the Calcare Massiccio Formation where it formed 133 

fault-controlled highs marking the regional drowning of the carbonate platform (Santantonio and 134 

Carminati, 2011). In the Montagna dei Fiori, the geologic framework of the outcropping Calcare 135 

Massiccio Formation is still a matter of debate between a fault-related tectonosedimentary 136 

pattern (Mattei, 1987; Storti et al., 2017b), and a gravity-driven, olistolith hypothesis (Di 137 

Francesco et al, 2010; Santantonio et al., 2017). However, recent detailed work in the Salinello 138 

valley (Storti et al., 2017a; 2018) documented that major outcrops of Calcare Massiccio are 139 

bounded by mostly ~ E-W and ~ N-S striking fault zones showing extensional kinematics and 140 

dominantly affecting the Jurassic rocks older than the Maiolica Formation (Fig. 2A, e.g. sites 1 141 

to 4). Overprinting relations indicate that ~ E-W deformation structures are systematically 142 

younger than the ~ N-S ones. Similar trends were observed in syn-rift fault zones in other 143 

anticlines of the Central Apennines (e.g. Cooper and Burbi, 1986; Alvarez, 1989; Chilovi et al.,144 

2002).145 

Such a tectonosedimentary inheritance was involved in the growth of the Montagna dei 146 

Fiori Anticline, which initiated during the Late Miocene (Mazzoli et al., 2002; Artoni, 2003) and 147 

progressively evolved into the upper thrust sheet of a well-developed antiformal stack until Plio-148 

Pleistocene times (e.g. Ghisetti et al., 1993; Calamita et al., 1994; Artoni, 2013). A major 149 

structural feature trending parallel to the Montagna dei Fiori Anticline and dissecting it is the 150 

Montagna dei Fiori Fault, a NNW-SSE striking extensional fault system cutting at high angle151 

through the folded footwall rocks, typically at the forelimb-crest transition (Figs. 1, 2). This fault 152 

system juxtaposes intensely deformed Late Miocene sediments in the hanging wall, against 153 

dolomitized and undolomitized Lower Jurassic and Cretaceous limestones in the footwall (Figs. 154 
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1 and 2). The development of the Montagna dei Fiori Fault has been alternatively interpreted as 155 

either a pre- (e.g. Calamita et al., 1994, Mazzoli, 2002; Scisciani et al., 2002) or late-folding 156 

(Ghisetti and Vezzani, 2000) feature. More recently, the origin of the Montagna dei Fiori Fault 157 

has been ascribed to the mutual interaction between horizontal shortening and uplift, and 158 

episodic gravitational re-equilibration during antiformal stacking underneath the anticline during 159 

Plio-Pleistocene times (Storti et al., 2018).160 

3 Methodology161 

The stratigraphic and deformational features of dolostones were analyzed in more than 60 162 

outcrops. The distribution of dolomitized intervals as well as their cross-cutting relationships 163 

with bedding planes, stylolites, veins and structures were ground-truthed and sampled. For 164 

petrographic analyses, 130 polished thin sections were studied with standard petrographic 165 

methods (transmitted and UV-fluorescent light microscopy). Dolomite crystal morphology and 166 

texture is based on the classification proposed by Sibley and Gregg (1987).167 

The rock slabs and thin sections were stained using Alizarine Red S and potassium 168 

ferricyanide (Dickson, 1966) to discriminate dolomite from calcite and evaluate their iron 169 

content. Cold cathodoluminescence microscopy (CL) was carried out on representative thin 170 

sections (n = 80) at KU Leuven University (Belgium) using a Technosyn cathodoluminescence 171 

device (8-15 kV, 200-172 
13 18O analysis were carried out on 117 samples. Powder samples (150 - 200 μg)173 

were obtained by applying a New Wave Research micromilling device and a dental drill at KU 174 

Leuven University (Belgium). The analysis was conducted at Parma University (Italy) and the 175 

Friedrich-Alexander-Universität (Erlangen-Nürnberg, Germany) laboratories using Finnigan 176 

DeltaPlus V and ThermoFinnigan 252 mass spectrometers, respectively. The carbonate powders 177 

were reacted with 100% phosphoric acid at constant temperature of 75°C. Several additional CO2 178 

reference gases (NBS18, NBS19, MAB99, and a pure Carrara marble) with known isotopic ratio179 

were analyzed during the measurements 13 18O values of the sample. 180 

Reproducibility was checked by replicate analysis of laboratory standards and was better than 181 
13 18O at Parma University and ±0.04 13C and ±0.05‰ for 182 

18O at Friedrich-Alexander-Universität. Oxygen isotope composition of dolomites was183 

corrected using the acid fractionation factors given by Rosenbaum and Sheppard (1986).184 

Duplicate homogeneous samples measured in both labs for inter-laboratory reproducibility show 185 
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13 18O values within the acceptable range of error deviation (±0.1‰) 13C and 186 
18O. All carbon and oxygen values are reported in per mil, relative to the “Vienna PDB scale” 187 

(V-PDB).188 

A total number of 21 samples were analyzed for their 87Sr/86Sr ratios. The analyses were 189 

conducted at the Department of Analytical Chemistry, Ghent University (Belgium) and at the 190 

Vrije Universiteit Amsterdam (the Netherlands). NIST SRM 987 was used as the international Sr 191 

standard in both labs. At Ghent University, 15 sample powders (20 mg) were collected using a 192 

dental drill device. The 87Sr/86Sr ratio measurements were performed using a Thermo Scientific 193 

Neptune Multi-collector Inductively Coupled Plasma Mass Spectrometer (MC-ICP-MS) 194 

instrument. Within the external precision, repeated analyses of the international Sr standard 195 

yielded an average 87Sr/86Sr ratio of 0.710271 ± 0.000023 (2SD, n = 43), in agreement with the 196 

accepted 87Sr/86Sr ratio of 0.710248 for this reference sample (Thirlwall, 1991). At Vrije 197 

Universiteit Amsterdam, 6 sample powders (2 - 3 mg) were collected using a New Wave 198 

Research micromilling device. Analyses were performed using a ThermoElectron Triton plus 199 

TIMS instrument. In order to monitor and document the system’s performance, repeated analyses200 

of the international Sr standard (n = 58) were carried out on load sizes of 10 ng and 100 ng which 201 

yielded average 87Sr/86Sr ratios of 0.710245±0.000022 (2SD) and 0.710242±0.000008 (2SD),202 

respectively. In both labs mass discrimination correction was performed via internal 203 

normalization using Russell’s exponential law and the accepted value (0.1194; Steiger and Jager, 204 

1977) of the invariant 86Sr/88Sr ratio.205 

Fluid inclusion microthermometry analysis was performed on 11 doubly polished wafers206 

(80- in thickness). Measurements were carried out at Parma University (Italy) using 207 

Linkam THMSG-600 and Linkam MDS-600 heating-cooling stages coupled with a Leica DM 208 

2500 microscope. The stages were calibrated by synthetic Syn FlincTM fluid inclusion standards. 209 

A 100x objective was used during the microthermometry runs of the small inclusions. The 210 

microthermometry data were collected following the Fluid Inclusion Assemblage (FIA) approach 211 

described in Goldstein and Reynolds (1994) for carbonate minerals. The salinities are reported in 212 

equivalent weight percent NaCl (eq. wt. % NaCl) and were calculated based on the equation of 213 

Bodnar (1993).214 

In order to perform a high resolution petrography, Scanning Electron Microscope (SEM) 215 

and Back-scattered Scanning Electron Microscope (BSEM) analyses were conducted using a216 
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Jeol 6400 Scanning Electron Microscope (SEM) equipped with an Oxford EDS (Energy 217 

Dispersive System). Operating conditions were 15 kV and 1.2218 

diameter and 100 s counting time; errors are ±2-5% for major elements and ±5-10% for minor 219 

components. The analysis focused mainly on detecting possible dolomite crystals inside the bed 220 

perpendicular stylolites affecting the Cretaceous Scaglia Formation.221 

4 Results222 

4.1 Field observation and distribution of the dolomitized bodies223 

Dolomitization affected the Calcare Massiccio, Bugarone and Corniola Formations.224 

There is no evidences of dolomitization in the overlying and immediate surrounding successions 225 

(e.g. Maiolica and Scaglia Formations), though the base of Maiolica Formation is reported as226 

dolomitized in the Central Apennines onshore (e.g. Pierantoni et al., 2013) and offshore areas227 

(Murgia et al., 2004). Dolomitized intervals are folded in the forelimb of the Montagna dei Fiori 228 

Anticline and are abruptly truncated by the Montagna dei Fiori Fault, which juxtaposes them 229 

against intensely foliated Scaglia, Bisciaro and Marne con Cerrogna Formations (Figs. 2 and 3).230 

The distribution of dolomitized intervals is wider in the Salinello valley (Figs. 1B, 2A). In the231 

Corano Quarry location, dolomitization occur in the Calcare Massiccio and Bugarone 232 

Formations only as meter-sized dolostone geobodies in the footwall of the Montagna dei Fiori 233 

Fault (Fig. 4). 234 

Dolostone breccias in fault cores is typically clast-supported, with angular and 235 

millimeter- to centimeter-sized fragments (Fig. 3C), changing to crackle breccia (Woodcock and 236 

Mort, 2008) away from the master slip surface. In the proximity of the master slip surface, 237 

dolostone fragments are sporadically overprinted by millimeter-sized dolomite veins. The 238 

breccia fragments, where cemented, are commonly surrounded by calcite.239 

Dolomitization does not follow a systematic pattern. In some outcrops, dolomitization 240 

fronts show irregular outlines following, but also cross-cutting, the bedding surfaces (Fig. 5).241 

Dolomitized intervals vary in thickness from few meters to hundred meters affecting the totality 242 

of the exposed Calcare Massiccio and only the lower part of Corniola Formation, where no clay 243 

interlayers are present. Dolomitized intervals in the Corniola Formation have a darker color 244 

relative to the host rock and are systematically more fractured than the hosting limestone. High 245 

amplitude (> 1 mm) bed-parallel stylolites are clearly visible in both limestones and dolostones246 

8 
 

Solid Earth Discuss., https://doi.org/10.5194/se-2018-136
Manuscript under review for journal Solid Earth
Discussion started: 3 January 2019
c© Author(s) 2019. CC BY 4.0 License.



 
 

(Fig. 5). However, in some dolostones only ghosts of stylolite traces can be seen. The dolostones247 

locally contain porosity, appearing as millimetre- to centimetre-sized pores.248 

4.2 Petrography249 

4.2.1 Early calcite cementation250 

The early diagenetic products in the studied intervals are generally non-ferroan calcite 251 

cements. The first calcite cements precipitated following a phase of bioclast micritization (sensu252 

Bathurst, 1975) in grain supported intervals. In chronological order, they include: 1) fibrous 253 

cements (FC) riming the bioclasts, mostly in the peloidal facies of the Calcare Massiccio 254 

Formation (Fig. 6A). These cements are dull to non-luminescent under cathodoluminescence; 2)255 

mosaic cements (MC), commonly fill the intergranular pore spaces (Fig. 6B), and also occur as 256 

syntaxial overgrowths on echinoderm fragments. These cements exhibit deformation twining and 257 

show well-developed dull and orange concentrically-zoned cathodoluminescence pattern (Figs.258 

6C and D). They contain only mono-phase all-liquid inclusions. All of these cements are 259 

postdated by high amplitude bed-parallel stylolites.260 

4.2.2 Dolomitization261 

All the dolomite types are non-ferroan and dominantly fabric destructive. The two first 262 

dolomite types (D1 and D2) are the dominant dolomite types in the studied outcrops. These 263 

dolomites are distributed within the damage zones of the ~ N-S and E-W Jurassic rift-related 264 

extensional faults and, in places, displaced by them (Fig. 2A, site 1). The third and fourth265 

dolomite types (D3 and D4) are mainly observed within the damage zone of the Montagna dei 266 

Fiori Fault (NNW-SSE), and appear only as dolomitic pockets overprinting D1 and D2 at the 267 

proximity of the ~ N-S and E-W extensional faults. The fifth dolomite type (D5) is found only 268 

within the brecciated zones associated with the Montagna dei Fiori Fault damage zone. The269 

distinctive petrographic features of the recognized dolomite types are summarized below:270 

Dolomite 1 (D1) is a replacive dolomite which commonly appears as dispersed rhombs and 271 

aggregates, and locally rims fracture walls cemented by calcite (CV1) (Figs. 6E and F). D1272 

postdates the micritic envelopes and early calcite cements, and predates high amplitude bed-273 

parallel stylolites (Figs. 6G and H). The crystals are fine to medium sized (< 350 μm) and 274 

consists of relatively turbid, solid-inclusion rich, well-developed euhedral to subhedral crystals,275 

with red luminescence, occasionally developing a concentrical zonation.276 
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Dolomite 2 (D2) is a replacive dolomite (Figs. 7A and B), infrequently occluding existing pore 277 

spaces. Like D1, it also frequently predates high amplitude bed-parallel stylolites (Figs. 6G and 278 

H. D2 generally exhibits a tightly packed texture with no or little intercrystalline porosity. The 279 

crystals are 500 μm) including a turbid core followed by a transparent280 

subhedral to anhedral rim and trace quantities of saddle dolomite developing swiping extinction.281 

In some crystals one additional turbid zone rich in solid and fluid inclusions is present. 282 

Cathodoluminescence observations enabled to recognize the presence of D1 in their turbid cores.283 

D2 crystals are characterized by zones of bright red-pink luminescence separated by purple 284 

luminescence zones.285 

Dolomite 3 (D3) is present as small localized bodies in the Calcare Massiccio (at the Castel 286 

Manfrino reference section), in the Corniola Formation (at the Osso Caprino Road), and in the 287 

Calcare Massiccio and Bugarone Formations (at the Corano Quarry). In the Corano Quarry the 288 

dolomitized Bugarone and Calcare Massiccio Formations are in the footwall of the Montagna dei 289 

Fiori Fault; and juxtaposed to the undolomitezed, intensely foliated Scaglia Formation (the 290 

hanging wall). Within the Bugarone Formation in this fault damage zone, D3 locally cements the 291 

millimeter-sized angular breccias that are in turn affected by fault parallel stylolites (Figs. 7C 292 

and D). The SEM and BSEM analysis performed on the samples from the immediate adjacent 293 

Scaglia Formation within the aforementioned fault damage zone did not indicate the presence of 294 

any dolomite in this formation. D3 crystals are mostly transparent euhedral to anhedral (< 300 295 

μm), with minor development of saddle morphologies in larger crystals (> 500 μm) (Figs. 7E to 296 

H). The euhedral to anhedral crystals are generally replacive, displaying a faint core, which 297 

compared to previous dolomite types has fewer solid inclusions. The saddle crystals are298 

occasionally replacive but majorly appear as cement in fractures. They display typical curved 299 

and slightly serrated crystal terminations with swiping extinction. These saddle dolomites were 300 

only observed in the Castel Manfrino reference section. D3 generally exhibit a dull purple color301 

with bright orange zones and subzones in core and/or rims when viewed under 302 

cathodoluminescence (Figs. 7E to H).303 

Dolomite 4 (D4) appears as a matrix replacive and dolomite cement surrounding porosity and 304 

locally recrystallizing D1 and D2 (Figs. 8A to F). D4 also occludes bed parallel shear fractures305 

and appears along the bed parallel stylolites (Figs. 9A to D). In the Castel Manfrino reference 306 

section, some intercrystalline vuggy porosity is filled with fine dolomite rhombs including D4 307 
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with relics of D2 within their core (Figs. 8E and F). The porosity may be preserved or partially to 308 

completely filled by CV4. D4 crystals have a turbid, solid-inclusion rich core and transparent309 

rim. They are fine to medium sized (< 200-350 μm), presenting subhedral to infrequent euhedral 310 

crystals. D4 exhibits a distinct luminescence pattern including a purple zone and an irregular 311 

green subzone.312 

Dolomite 5 (D5) occurs as crystals cementing micro-veins that cross-cut precursor dolomite 313 

types including dolomitic breccia fragments. In cemented breccias, D5 is postdated by CV3. D5314 

is transparent, anhedral and is characterized by a bright red luminescence (Figs. 9E and F).315 

4.2.3 Late calcite cementation316 

Four generations of calcite veins postdating dolomitization have been identified (Figs. 10317 

and 11): 1) Calcite vein 1 (CV1) occurs only in Calcare Massicio limestones and is represented 318 

as centimeter-sized, strata-bound, bedding-perpendicular veins with irregular fracture walls, 319 

exhibiting white color in the outcrops. They postdate the first dolomite type (D1) riming the 320 

same fractures that abut the high amplitude bed parallel stylolites. CV1 often show blocky to 321 

elongated crystal morphologies and displays well-developed deformation twinning planes (Type322 

II of Burkhard, 1993). This calcite exhibits concentrical zonation and dull zones alternate with 323 

orange luminescence zones (Figs. 11A and B). 2) Calcite vein 2 (CV2) exclusively occurs in the 324 

intensely deformed Scaglia Formation within the fault damage zones and correspond to tension 325 

gashes associated with stylolites (sensu Nelson, 1981). CV2 veins are mostly recorded in foliated 326 

shear deformation zones with well-defined S-C fabrics, exhibiting blocky, elongated to fibrous 327 

shapes with strongly developed tightly spaced deformation twinning planes (Type II of 328 

Burkhard, 1993). CV2 displays yellow to orange luminescence with locally darker sector zones.329 

The yellow to orange luminescence characteristic of CV2 is comparable with those of encasing 330 

Scaglia host rocks (Figs. 11C and D). 3) Calcite vein 3 (CV3) occurs as cement, filling the 331 

extensional faults master plane and isolated veins within the extesional fault damage zones. CV3332 

cements the brecciated fault-infillings containing angular fragments of host rock limestones, 333 

dolostones and earlier calcites. In the brecciated zones at the backlimb of the anticline 334 

(Montagna dei Fiori Fault), CV3 postdates the last dolomitization phase (D5) with no evidence 335 

of physical disruption. CV3 exhibits a white to translucent color in hand specimen. The crystals 336 

are blocky with no or weakly developed deformation twinning planes, and are characterized by a 337 

dark orange to brown luminescence with distinct darker sector zones (Figs. 11E and F). 4) 338 
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Calcite vein 4 (CV4) exists as isolated veins, pore-filling as well as breccia cements postdating 339 

all the preceding dolomites and calcites. The breccia fragments are more often dolostones. CV4 340 

has a white to translucent white color in hand specimen with blocky crystal morphology and no 341 

evidence of subsequent deformation (e.g. deformation twining planes), and is characterized by 342 

distinct concentrical zonation (Figs. 11G and H).343 

4.3 Geochemistry344 

4.3.1 Carbon and oxygen stable isotopes345 

The carbon and oxygen stable isotopic data ( 13 18O) of host rocks, dolomites and 346 

calcites are given in Table 1 and shown in Figures 12A and B. The marine stable isotopic 347 

compositions reported by Veizer et al. (1999) were used as marine reference values.348 

Accordingly, Lower Jurassic marine limestones 13C values of -0.5 to 349 

+4.5 18O values of -2.5 to +1.0‰ V-PDB. T 18O values of the marine dolomites are 350 

known to be 3-4‰ V-PDB more enriched than those of co-genetic marine limestones (Land, 351 

1980; Major et al., 1992; Horita, 2014). 13 18O values of the host rocks are within 352 

the expected range of the Lower Jurassic marine limestones but the Corniola host rocks show 353 

slightly lower values comparing to those of Calcare Massiccio. In the Calcare Massiccio host 354 

rocks 13C values plot bet 18O values are within the range of -1.6355 

and 0.0‰ V- 13C values in the Corniola host rocks are +2.0 and +2.5‰ while the 356 
18O values are -3.1 to -1.4‰ V-PDB. 13 18O values of the Scaglia host rocks range 357 

between +1.0 to +3.3 13C and -2.2 to -1.0‰ V- 18O. The obtained values are 358 

characterized in the mean range of Upper Cretaceous to Paleogene marine limestones (Veizer et 359 

al., 1999; 13C and -4.0 to +2.0‰ V- 18O).360 
13C values of CV1 are between +1.6 and +2.1‰ which plot within the range of 361 

reference values (Jurassic) but are slightly lower than the surrounding 18O362 

values are between -4.7 and -2.7‰ V-PDB which are lower than those of reference and host rock 363 

values.364 
13C values of all dolomite types (+0.6 to +3.4‰) fall within the range of host rocks 365 

and Jurassic marine limestones (Veizer et al., 1999). T 18O shows a wider range of values,366 

somehow overlapping but also lower than those of host rocks (-4.5 to -0.9‰ V-PDB) and the 367 

presumable Lower Jurassic marine dolomites. The majority of values plot between -3.5368 

and -1.5‰ V-PDB. The small size and overgrowth nature of certain dolomite types (e.g. D2 and 369 
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D5) limits their proper isolation for geochemical analyses. Only one sample from D1 dolomite 370 
13 18O values, showing +2.5 and -1.9‰ V-PDB, respectively. The 371 

13 18O values of D3 dolomite range from +2.0 to +2.6‰ and -2.8 to -1.9‰ V-PDB, 372 

respectively, with values lower than those of the host rock.373 

D4 dolomite has 13C values between +2.4 and +2.5 18O values of -3.0 to -2.5‰374 

V-PDB. 13 18O values of CV2 are +1.2 to +3.1‰ and -1.7 to -1.7‰ V-PDB, 375 

respectively. 13C values of CV3 are 18O values cover a 376 

range of -2.2 to 0.0‰ V-PDB. The 13 18O values of CV4 are +3.8 to +4.9‰ and -9.4377 

to -9.1‰ V- 13 18O values are 378 

considerably lower compared to preceding calcite generations and the measured values from host 379 

rocks.380 

4.3.2 87Sr/ 86Sr ratios381 

Samples from host rocks (i.e. Calcare Massiccio and Corniola Formations), dolomites 382 

(D1, D3 and D4) and the Scaglia Formation in juxtaposition with the dolostones were analyzed 383 

for their 87Sr/86Sr isotopic ratios. 18O values of the analyzed samples 384 

are shown in Fig. 12C. The 87Sr/86Sr ratios obtained from the Calcare Massiccio and Corniola 385 

limestones are 0.70766 and 0.70725 (n = 2), respectively, which is in agreement with the values386 

of the Lower Jurassic marine carbonates (0.70704-0.70768) reported by McArthur et al. (2012).387 

CV1 show a value equal to 0.70773.388 

All the dolomite types display higher 87Sr/86Sr ratios when compared to the host rocks 389 

and reference values of the Lower Jurassic marine carbonates. D1 (replacive) and D4 cements 390 

show a comparable narrow range with values between 0.70784 and 0.70790, respectively. While, 391 

the two D3 samples (replacive and cement) display higher 87Sr/86Sr ratios (0.70858 and 0.70963,392 

respectively). The 87Sr/86Sr ratios obtained for dolomites do not show co-variation with 393 
18O values. The radiogenic Sr analysis was not performed on D2 and D5 since 394 

the physical mixing with other dolomite types could not be avoided.395 

The 87Sr/86Sr ratios of the two samples of Scaglia Formation are 0.70784 to 0.70790. The 396 

CV2 veins in Scaglia Formation show comparable ratios of 0.70779 and 0.70787. These values 397 

fit within the limits of values assigned by McArthur et al. (2012) for the Cenomanian-Bartonian 398 

(Scaglia age) marine carbonates (0.70730-0.70790).399 

13 
 

Solid Earth Discuss., https://doi.org/10.5194/se-2018-136
Manuscript under review for journal Solid Earth
Discussion started: 3 January 2019
c© Author(s) 2019. CC BY 4.0 License.



 
 

4.4 Fluid inclusion microthermometry400 

The overview of microthermometry measurements is given in Table 1 and Figs. 13A to 401 

C. On the basis of optical microscopy analysis of wafers, D1 contain dominantly mono-phase 402 

aqueous inclusions with sizes greater than 5 μm. It is common for small inclusions (< 3 μm) to 403 

remain mono-phase all liquid at room temperature due to their metastability (Goldstein and 404 

Reynolds, 1994). Thus, to eliminate the possible role of metastability, the samples were placed in 405 

a freezer for several days following the procedures described in detail by Goldstein and Reynolds 406 

(1994). All liquid inclusions remained unchanged and no vapor bubble was developed within 407 

them, which discards the metastability effect.408 

In order to properly observe the phase transitions in the all liquid inclusions, they were 409 

rapidly heated up to ~ 200°C to stretch and nucleate a bubble at room temperature (Goldstein, 410 

1990). All the inclusions froze at -65 to -49°C. The first melting (Te) was detected between -22 411 

to -19.3°C. The final ice melting (Tm) appeared at temperatures between -7.7 and -2°C.412 

Applying Bodnar´s (1993) equation, the obtained final melting temperatures correspond to 413 

salinity ranges of 3.5 to 11.3 eq. wt. % NaCl.414 

D2 is characterized by the presence of mono-phase and infrequent two-phase inclusions415 

generally within their growth zones. The homogenization temperature of two-phase inclusions 416 

varies between 58 and 71°C. Upon cooling, a complete freezing of the fluid phase is reached 417 

at -56 to -40°C. The first ice melting temperature was distinguished at -22°C. The final ice 418 

melting temperatures fall within -17.5 and -5°C, corresponding to salinities between 7.9 and 419 

20.5 eq. wt. % NaCl.420 

D3 is commonly inclusion poor. The measureable inclusions were detected and examined 421 

only in saddle dolomite crystals. These crystals contain only two-phase aqueous inclusions. Their 422 

homogenization temperatures are within the narrow range of 70 to 73°C. The complete freezing 423 

and first ice melting temperatures could not be distinguished but the final ice melting 424 

temperature occurred at temperatures between -13 and -6°C equal to salinity ranges of 9.2 to 425 

16.9 eq. wt.% NaCl. The first melting temperatures of fluid inclusions in D1, D2 and D3 were 426 

about -21°C, suggesting a H2O-NaCl fluid system.427 

D4 contains only two-phase aqueous inclusions. The homogenization temperatures in D4428 

vary between 79 and 105°C. Complete freezing of inclusions occurred at temperatures 429 

between -86 and -54 °C. The first ice melting was detected at -35 to -40°C indicating the 430 
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possible presence of divalent cations such as Ca2+ and/or Mg2+ in the fluids (Shepherd et al., 431 

1985; Goldstein and Reynolds, 1994). The final ice melting temperatures fall within a range 432 

of -15 and -9°C corresponding to salinities of 12.8 to 18.6 eq. wt. % NaCl. A couple of 433 

inclusions show homogenization temperatures exceeding 120°C with salinities higher than 434 

20 eq. wt. % NaCl. The inconsistent homogenization temperatures and salinities obtained for 435 

these fluid inclusions, within the framework of an individual fluid inclusion assemblage (FIA)436 

described by Goldstein and Reynolds (1994), indicate possible re-equilibration of these 437 

inclusions and thus are not used in the interpretations. 438 

The obtained homogenization temperatures in all fluid inclusion assemblages indicate the 439 

minimum temperatures at which the fluids could have been trapped (Goldstein and Reynolds, 440 

1994). No correction was made for pressure effects on entrapment temperatures since no data 441 

regarding the exact depth and pressure of entrapment are available. In absence of independent 442 

thermal indicators such as Conodont Alteration Index (CIA) and Vitrinite Reflectance (VR), the 443 

accuracy of pressure correction cannot be well constrained (Slobodník et al, 2006), and thus no 444 

correction was made for pressure effects on homogenization temperatures. 445 

No measurable fluid inclusion could be identified in CV1 and CV2 due to intense 446 

deformation twinning. CV3 and CV4 contain only primary mono-phase aqueous inclusions,447 

indicating an entrapment temperature of below about 40-50°C (Goldstein and Reynolds, 1994). 448 

A complete freezing of the inclusions in CV3 occurred at temperatures between -40 and -52.5°C. 449 

The first melting temperature was detected at about -21 to -22°C, suggesting a H2O-NaCl 450 

composition. The final melting temperatures range between -6.4 and -2.7°C, corresponding to 451 

salinities between 9.7 and 4.5 eq. wt. % NaCl. The majority of the values cluster between 7.8 and 452 

5 eq. wt. % NaCl.453 

The complete freezing temperatures of the inclusions in CV4 fall within -46 and -35.5°C. 454 

The first melting temperature could not be determined with confidence but the final melting 455 

temperatures were reached at about -0.1 to -1.8°C, corresponding to salinities of 0.17 to 456 

3.0 eq. wt. % NaCl.457 

5 Discussion458 

5.1 Stable and radiogenic isotopic composition of the parental fluids459 
13C values of all dolomite types mimic the range of host rock and Jurassic marine 460 

limestones and, consequently, they can be interpreted as largely rock-buffered. 18O values 461 
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are partly comparable to those of their respective host rocks as well as Jurassic marine reference 462 

values but more depleted when compared to the presumable Jurassic marine dolomites. The 463 

relatively 18Odolomite values could indicate the contribution of heated fluids in 464 

dolomitization process, although it could also relate to recrystallization of a precursor dolomite465 

by fluids at higher temperature or 18O-depleted (Land, 1980; 1985). The absence of distinctive 466 

textural evidence in the analyzed samples such as enlarged crystal size and/or systematic mottled 467 

cathodoluminescence pattern, and their co-variation with 18O values do not confirm 468 

recrystallization (Mazzullo, 1992 and ref. therein). Nevertheless, special care was taken to avoid 469 

the samples that occasionally displayed scattered mottled luminescence.470 

The oxygen isotope fractionation relation between water and dolomite (Land, 1983) was 471 

used to determine the most plausible parental fluids. In order to avoid erroneous results due to 472 

rock-buffered 18O values, o 18O values of dolomite cements, especially from the bed 473 

parallel veins containing D4 were used. These values may provide the closest approximation to 474 
18O signature of the parental fluids (Barker and Cox, 2011). Accordingly, a 18O value of475 

+2.5 to +4‰ V-SMOW was calculated for D3, while this values increase +5 to +7.5‰ 476 

V-SMOW for D4 (Fig. 13D). The calculated compositions of the potential parental fluids are 477 

progressively higher The higher 18O composition of the dolomitizing fluids relative to the 478 

Mesozoic seawater, which is estimated at -1.2 to -1‰ V-SMOW (Shackleton and Kennett, 1975; 479 

Marshall, 1992; Saelen et al., 1996), is compatible with fluids derived from or that had interacted 480 

with siliciclastics, crystalline basement (Taylor, 1997) and/or evaporite-derived brines.481 

The 87Sr/86Sr ratios obtained for all dolomite types are higher than the Lower Jurassic 482 

marine carbonate values (0.70704-0.70768; McArthur et al., 2012). Since marine carbonates 483 

have very low rubidium (Rb) concentrations they produce negligible in situ radiogenic 87Sr after 484 

their deposition (Stueber et al. 1972; Burke et al. 1982). Therefore, the higher 87Sr/86Sr ratios can 485 

be explained by the contribution of fluids originated or interacted with potassium rich 486 

siliciclastics (K-feldspars), crystalline basement and/or stratigraphic levels with higher 87Sr/86Sr 487 

ratios (Emery and Robinson 1993; Banner, 2004). Taking into account that the Upper Triassic 488 

Burano Formation underlying the studied intervals has 87Sr/86Sr ratios between 0.70774 and 489 

0.70794 (Boschetti et al., 2005), the 87Sr/86Sr ratios (D1 and D4) can partially be explained by 490 

their contribution. However, this contribution cannot justify much higher 87Sr/86Sr ratios 491 

recorded in D3, being higher than values reported for Phanerozoic seawater (McArthur et al., 492 
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2012), and the values recorded in adjacent basinal deposits (i.e. Corniola and Scaglia 493 

Formations). Therefore, parental fluids most likely originated from or had interacted with the 494 

siliciclastics underlying the Burano Formation (Verrucano Formation), if present, and/or with the 495 

crystalline basement with common elevated 87Sr/86Sr ratios (0.71500-0.72650; Del Moro et al., 496 

1982).497 

CV1 is characterized by 13C and 18O values lower than the host limestones (i.e. Calcare 498 

Massiccio), while its 87Sr/86Sr ratio is comparable to them. The salinity and composition of the 499 

parental fluids cannot be inferred here since no measurable fluid inclusions were found within 500 

this cement. The 87Sr/86Sr ratio being within the range of the corresponding host rocks and the 501 

reference values, points to a rock-buffered system for 87Sr/86Sr.502 

The 13 18O values obtained for CV2, as well as 87Sr/86Sr ratios, fall within the 503 

range of the Scaglia host rocks, thus reflecting their rock-buffered nature. This interpretation is 504 

further supported by the comparable luminescence characteristics of CV2 with that of encasing 505 

Scaglia host rocks. The fluids from which CV2 calcite precipitated were most likely derived 506 

from carbonate dissolution during pressure-solution and stylolitization.507 

CV3 is 13C values within the Jurassic marine values but are generally 508 

lower than the host rocks, while 18O values partially overlap both the hosting limestones 509 

and dolostones. Microthermometry of fluid inclusions revealed only mono-phase aqueous 510 

inclusions and thus precipitation at -50°C) with moderate 511 

salinity (4.5-9.7 eq. wt. % NaCl). Such levels of salinity can be assigned to evaporated seawater, 512 

residual brines or fluids derived from evaporite dissolution, and thus makes it difficult here to 513 

interpret their exact origin with the available data.514 

CV4 is the latest calcite phase, and records the 13 18O values, respectively 515 

enriched and significantly depleted when compared to their hosting rocks and preceding 516 

diagenetic products. Generally, the enrichment of 13C could suggest CO2 outgassing due to 517 

evaporation (Friedman, 1970; Hendry et al., 2015) or bacterial fermentation (methanogenesis) of 518 

organic matter (Hudson, 1977) in low temperature diagenetic environments. The homogenization 519 

temperature of CV4 being below about 40-50°C could support any of these processes. Their low 520 
18O values and fluid inclusions with salinities comparable to, but also significantly lower than,521 

seawater reflect the contribution of meteoric fluids during precipitation of this calcite.522 

5.2 Origin of the dolomitizing fluids523 
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The contribution of brines that derived from highly evaporated seawater or evaporites is 524 

suggested by the elevated salinity values obtained from microthermometry of the fluid inclusions525 

(3.5 to 20.5 eq. wt. % NaCl). Accordingly, two sources that could potentially provide such fluids 526 

can be proposed: 1) fluids related to the Late Messinian evaporites, associated with the overlying 527 

Laga Formation, deposited during the Upper Miocene time, and their possible downward 528 

percolation through fault zones by density driven flow and/or seismic pumping mechanisms529 

(Sibson, 1981; McCaig, 1988, 1990); or their tectonic involvement into the Apenninic thrust 530 

wedge during its propagation (underthrusting; Lobato et al., 1983); and 2) fluids related to the 531 

underlying décollement horizon of Burano evaporites (Upper Triassic) and their upward flow532 

through fault zones during development of the Montagna dei Fiori Anticline. The first scenario is 533 

valid if the dolomitization would have occurred only from the Upper Miocene time onwards.534 

Several researchers (e.g. Vai and Ricci Lucchi, 1977; Bassetti et al., 1998; Roveri et al. 2001) 535 

have shown that the occurrence of primary shallow-water evaporites, which were dominantly 536 

gypsum, was limited to the western and central parts of the northern Apennines consisting of 537 

thrust-top marginal basins. In contrast, evaporites never precipitated in parts of the central 538 

Apennines including the Montagna dei Fiori region (Marche area) (Roveri et al. 2001). Hence, 539 

the evaporitic horizons existing within the Laga Formation corresponds to resedimentation 540 

(gypsum debris) of those previously precipitated in the marginal basins. This interpretation 541 

makes the Messinian evaporites an unlikely source of Mg-rich brines. Moreover, taking into 542 

account that the maximum burial related temperature of the Calcare Massiccio Formation did not 543 

exceed 80°C in the Montagna dei Fiori region (Ronchi et al., 2003), it’s not likely that the 544 

downward percolation of relatively low-temperature brines derived from the Messinian 545 

evaporites, located at the higher stratigraphic levels, could reach or exceed the high temperatures 546 

recorded in fluid inclusions of the dolomites in the Calcare Massiccio Formation (D4; up to 547 

105°C), given that the homogenization temperatures reflect the minimum entrapment 548 

temperatures (Goldstein and Reynolds, 1994). Deep circulation of these brines, if existed, can 549 

also be excluded by their limited tectonic involvement within the thrust wedge being confined 550 

merely to the off shore wards of the Montagna dei Fiori region (Artoni, 2013). 551 

Accordingly, the Upper Triassic Burano Formation appears as the most plausible source 552 

for the high salinity brines recorded in fluid inclusions, and likewise, the Mg-rich fluids could 553 

have been originated from post-evaporite brines associated with them (Carpenter, 1978; 554 
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McCaffrey et al., 1987). The fluctuations in salinity may argue for different degrees of 555 

contribution of pore waters of lower salinity (e.g. marine or meteoric).556 

5.3 Timing and structural controls on the evolution of parental fluids557 

A generalized paragenesis and the relative chronology of dolomitization in relation to the 558 

structural evolution of the Montagna dei Fiori Anticline are illustrated in Figs. 14 and 15. The 559 

paragenesis is constructed on the basis of direct evidences recorded during observations at 560 

outcrop scale and microscopic observations (e.g. cross-cutting relationships between diagenetic 561 

phases, stylolites, fractures and other structural kinematics), and indirect evidences (e.g. regional 562 

geodynamics and burial history).563 

The occurrence of micritic envelopes and fibrous calcite cements (FC), in grain supported 564 

stratigraphic levels of the Calcare Massiccio Formation, is interpreted to be of eogenetic origin 565 

(i.e. marine phreatic diagenesis; Moore, 1989), reflecting an early diagenesis shortly after 566 

deposition. The well-developed dull and orange concentric cathodoluminescence pattern of the 567 

succeeding mosaic calcite cement (MC) suggests a progressive shift to more reducing conditions 568 

during precipitation in a phreatic diagenetic environment (as shown in Li et al., 2017). High 569 

amplitude bed parallel stylolites postdate both cements, which confirm their precipitation before 570 

significant burial. The observations made here are in agreement with earlier work by Giacometti 571 

and Ronchi (2000), interpreting that the Calcare Massiccio Formation was cemented during the 572 

early diagenetic stages.573 

D1, CV1 and D2 are postdated by well-developed, high amplitude bed-parallel stylolites. 574 

Presence of D1 and CV1 in bed-perpendicular veins typically abutted by these stylolites (see 575 

Figs. 6E to H) support the interpretation that the first dolomitization event (D1 and D2) took 576 

place before significant burial and stylolite development, being the latter and bed-perpendicular 577 

veins dynamically compatible within the same stress field characterized by a vertical, load-578 

related maximum principal axis of the stress ellipsoid. The dominantly mono-phase fluid 579 

inclusions within D1 and D2 are in agreement with precipitation temperatures below about 580 

40-50°C, suggesting a relatively shallow to intermediate burial environment and hence 581 

supporting a pre-Apenninic orogeny age of precipitation from a mix of formational and extra-582 

formational fluids with elevated 87Sr/86Sr ratios. The distribution of D1 and D2 nearby the583 

rifting-related ~ N-S and E-W striking extensional faults and even their displacement along them584 

(Fig. 2A, e.g. site 1), point to the possible contribution of these faults in occurrence of D1 and 585 
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D2. These faults dominantly affect the Jurassic rocks older than the Maiolica Formation which is 586 

attributed to the post-rift deposits, therefore suggesting a pre-Maiolica age for these dolomite 587 

types. Although, an absolute age cannot be provided, based on the evidence discussed above, the 588 

circulation of Mg-rich fluids during this dolomitization event was most likely controlled by 589 

rifting-related Jurassic extensional fault zones cutting through the crystalline basement. Taking 590 

into account that D1 and D2 are the volumetrically more relevant dolomites within the studied 591 

intervals, and assuming the likely role of syn-rift extensional faults (Early to Late Jurassic) in 592 

their precipitation, a dominantly syn-rift dolomitization process is proposed for the dolostones in 593 

the Montagna dei Fiori Anticline.594 

D3 and D4 both record elevated 87Sr/86Sr ratios which accounts for their fault-controlled 595 

origin. However, their occurrence at the top of the Calcare Massiccio and overlaying Bugarone 596 

Formation (Corano Quarry site) which is < 1 m thick in Montagna dei Fiori region, and is 597 

marked as the final rift deposit (Cardello and Doglioni, 2015) discards a syn-rift origin for these598 

dolomites. Moreover, D3 and D4 postdate the development of high amplitude bed parallel 599 

stylolites. The formation of stylolites requires an approximate overburden of 600 to 1500 m600 

(Lind, 1993; Machel, 1999; Mountjoy et al., 1999; Schulz et al., 2016), corresponding to a late to 601 

post-Maiolica deposition time (Early Cretaceous time onwards). The presence of D3 and D4602 

dolomites in bed parallel fractures and shear veins (D4) suggests their association with 603 

contractional deformations, i.e. the most likely tectonic regime for explaining bed-perpendicular 604 

dilation. Therefore, the volumetrically minor second stage of dolomite precipitation may605 

possibly be related to the Late- to post-Miocene compressional tectonics recorded in this region606 

(e.g. Mazzoli et al., 2002; Artoni, 2013; Storti et al., 2018).607 

Dolostones containing D3 and D4 appear commonly as clast-supported breccias along 608 

fault zones pertaining to the Montagna dei Fiori Fault, then overprinted by fault-parallel 609 

stylolites. Accordingly, the occurrence of these dolomites was probably synchronous with the 610 

incipient stages of fault development, predating fault buttressing (Storti et al., 2018).611 

Homogenization temperatures recorded in D4 (up to 105°C), much higher than the maximum 612 

temperatures recorded in the host rocks (below about 80°C; Ronchi et al., 2003), suggest 613 

hydrothermal fluid circulation. The development of the Montagna dei Fiori Anticline at the toe 614 

of the Late Miocene Central Apennines thrust wedge could have favored the forelandward 615 

migration of hydrothermal fluids expelled from the more internal regions of the belt, similarly to 616 
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what has been proposed for the Rocky Mountains foreland (i.e. squeegee flow model; Machel 617 

and Cavell (1999). Such a migration may have possibly favored the precipitation of D4 in bed 618 

parallel veins, generally considered as evidence for syn-compressional fluid overpressure 619 

(Sibson, 2001; Hiemstra and Goldstein, 2015). The presence of D5 only within the damage zone 620 

of the Montagna dei Fiori Fault, postdating dolostone brecciation and, in places, cementing 621 

breccia fragments, may suggest that D5 dolomite precipitation was associated with the late stage 622 

evolution of the Montagna dei Fiori Fault, predating late stage calcite precipitation.623 

The presence of several generations of bed perpendicular stylolites bounding and 624 

intersecting CV2 veins, supports that late stage calcite cements precipitated closely associated625 

with the deformation history of the Scaglia Formation in the hanging wall of the Montagna dei 626 

Fiori Fault, during buttressing against Calcare Massiccio and Corniola Formations in the 627 

footwall, and related with the positive inversion event induced by thrust-sheet stacking at depth628 

(Storti et al., 2018). Precipitation of CV3 and CV4 in interpreted to have occurred during uplift 629 

and cooling as revealed by their relatively low homogenization 40-50°C).630 

Deformation twining is either absent or weakly developed, reflecting the lack of significant 631 

tectonic deformation after calcite precipitation. These cements postdate the dolomitization 632 

events, high amplitude bed perpendicular and parallel stylolites, and are precipitated as cements 633 

bounding the breccia fragments within the damage zone of the Montagna dei Fiori Fault.634 

Salinities calculated from their fluid inclusions, particularly in CV4 suggests precipitation from635 

meteoric waters, which should have been favored during the late evolutionary stages of 636 

antiformal stacking beneath the Montagna dei Fiori Anticline, and eventual late extensional slip 637 

along the Montagna dei Fiori Fault (Storti et al., 2018). The results obtained in this study are in 638 

relative agreement with the earlier work by Ronchi et al. (2003) and Murgia et al. (2004) in the 639 

Central Apennines, assigning dolomitization phases to the pre- and syn-orogenic deformations,640 

although they did not specify the direct relation between the structures and the different types of 641 

dolomite.642 

6 Conclusions643 

The Lower Jurassic limestones outcropping at the core of the Montagna dei Fiori 644 

Anticline (Central Apennines, Italy) are massively affected by dolomitization, in damage zones 645 

of the pre-orogenic faults inherited from the Tethyan rifting and the ones formed during the 646 

Apenninic orogeny. Cross-cutting relationships between deformation structures, and results from 647 
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optical and cold cathodoluminescence petrography, fluid inclusion microthermometry, and 648 

isotope geochemistry, support the occurrence of two major dolomitization events. The first event 649 

is interpreted as developed during the late stages of Tethyan rifting in Jurassic and resulted in 650 

volumetrically significant dolostone geobodies. These dolostones are majorly matrix replacive651 

and their precipitation initiated prior to the significant burial as reflected in their cross-cutting 652 

relationship with bed parallel stylolites, and by homogenization temperatures in fluid inclusions 653 

that are dominantly below about 40-50°C. The second dolomitization event corresponds to 654 

volumetrically less relevant replacive dolomite and dolomite cements occluding fractures. These 655 

dolomites precipitated during hydrothermal fluid circulation associated with contractional 656 

tectonics during the Apenninic orogeny, possibly at the onset of the growth of the Montagna dei 657 

Fiori Anticline (Late Miocene).658 

Dolomitizing fluids in both events were most likely sourced from evaporitic brines 659 

associated to the underlying Burano evaporites and their interaction with siliciclastics and/or the 660 

crystalline basement.661 
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Table captions1073 

Table. 1. Stable carbon and oxygen isotopes, 87Sr/86Sr ratios, and fluid inclusion 1074 

microthermometry data (not pressure corrected) of host rocks and diagenetic phases in the 1075 

Montagna dei Fiori Anticline. Stable carbon and oxygen isotopes values are expressed in 1076 

‰ V-PDB and salinity values in eq. wt. % NaCl.1077 

Figure captions1078 

Fig. 1. A) Simplified regional map (modified after Ghisetti and Vezzani, 1997) showing the 1079 

tectonic outlines of the Central Apennines and the study area (rectangle). B) Schematic 1080 

geological map of the Montagna dei Fiori Anticline showing the distribution of dolostones 1081 

(modified after Storti et al., 2017a). C) Lithostratigraphical column of the successions exposed in 1082 

Montagna dei Fiori (modified after Mattei, 1987; Di Francesco et al, 2010; Storti et al., 2018). 1083 

Lithologies are mentioned in the text. Note that the thickness of the not-outcropping formations 1084 

(Triassic evaporites and the crystalline basement) is not to scale. D) Geological transect across 1085 

present day Central Apennines and the Adriatic Sea (modified after Fantoni and Franciosi, 2010) 1086 

with vertical exaggeration of 2:1. The dashed rectangle indicates the Montagna dei Fiori 1087 

Anticline region.1088 

1089 

Fig. 2. A, B) Geological map of the central sector of the Montagna dei Fiori Anticline, and cross-1090 

section oriented parallel (a-b) to the hinge line representing the tectono-stratigraphic architecture1091 

of the faulted anticline (modified after Storti et al., 2017a). The stereonets (Schmidt equal area 1092 

projection lower hemisphere) provide the attitude of the extensional faults. The locations of the 1093 

corresponding field sites are indicated by numbers.1094 

1095 

Fig. 3. A) Field photograph showing the deformed Scaglia Formation in the hanging wall (HW) 1096 

and brecciated, dolomitized Calcare Massiccio Formation in the footwall (FW) of the Montagna 1097 

dei Fiori Fault. B) A hand specimen from the deformed Scaglia formation showing the intensity 1098 

of the pressure solutions (TS) and their abutting relationship with calcite veins (CV2). C) A 1099 

transmitted light photomicrograph of the dolomitized, brecciated Calcare Massiccio Formation. 1100 

Note all the breccia fragments are composed of dolomite (D4 here). 1101 

1102 
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Fig. 4. Field photographs (Corano Quarry) showing the field relations between dolostones, host 1103 

limestones and the Montagna dei Fiori Fault: A) Panoramic view showing the spatial relationship 1104 

between limestones and dolostones (orange) in the damage zone of the Montagna dei Fiori Fault1105 

(F). Note that the limestones and including dolostones of the Calcare Massiccio and Bugarone 1106 

Formations on the footwall (FW) and marly limestones of the Scaglia Formation on the 1107 

hangingwall (HW) are intensely deformed. B) Plan view of the Calcare Massiccio limestone in 1108 

the footwall damage zone: intersected by calcite veins (CV1), dolomitized and affected by bed 1109 

perpendicular stylolites (arrows). C) Distinct transition (dashed line) between dolomitized and 1110 

undolomitized Calcare Massiccio limestone in the footwall damage zone.1111 

1112 

Fig. 5. Field photograph (A) and a simplified sketch (B) of a dolomitic pocket within the folded 1113 

Calcare Massiccio (grey color) and their relation with bed parallel stylolites (hammer is 40 cm 1114 

long).1115 

1116 

Fig. 6. A) Transmitted light image showing a micritic peloid rimmed by the fibrous cements 1117 

(FC) which are followed by the mosaic cements (MC). B) Transmitted light image showing 1118 

mosaic cements (MC) in a peloidal limestone over printed by high amplitude bed parallel 1119 

stylolites (dotted white line). Note the core of some of the peloids is partially cemented as well.1120 

C, D) Respectively, transmitted light and corresponding cathodoluminescence image of FC and 1121 

MC cements. E) Transmitted light photomicrograph showing D1 crystals rimming a fracture 1122 

which is cemented by CV1. The fracture is in turn affected by a bed parallel stylolite. F) 1123 

Cathodoluminescence image showing D1 scattered in the host rock and riming the fracture. G, 1124 

H) Respectively, transmitted light and corresponding cathodoluminescence image showing part 1125 

of a bed parallel stylolite (dotted white line) overprinting D1 and D2 crystals.1126 

1127 

Fig. 7. A, B) Photomicrographs of respectively, transmitted light and corresponding 1128 

cathodoluminescence image showing the zoned rhombs of D2 with the remnants of D1 preserved 1129 

in their cloudy core. The pore space is occluded by D4. C, D) D3 cementing angular breccia 1130 

fragments of the Bugarone Formation in the damage zone of the Montagna dei Fiori Fault in the 1131 

Corano Quarry site. Note the breccia is overprinted by a fault parallel bed perpendicular stylolite.1132 

E, F) Photomicrographs of respectively, transmitted light and corresponding 1133 
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cathodoluminescence image showing the euhedral to subhedral crystals of D3 developing a 1134 

bright subzone and rim. G, H) D3 with a saddle crystal outline (SD) postdating calcite cements 1135 

(MC) and a zoned D2 crystal. The saddle morphology is outlined by a dotted white line.1136 

1137 

Fig. 8. Photomicrographs of respectively, transmitted light and corresponding 1138 

cathodoluminescence image of dolomite types: A, B) The cross-cutting relationship between D3 1139 

and D4. Note the presence of D3 within the core of dolomite crystals overgrown by D4. C, D)1140 

Successions of dolomite types. Note the green CL color of D4 crystals. Typically, luminescent 1141 

dolomites are known to show yellow, orange to red colors (Machel et al., 1991). Green 1142 

luminescence in carbonates including dolomite have been attributed by a number of researchers 1143 

to the incorporation of three valent rare earth elements (REE) such as Dy3+ and U3+ as 1144 

luminescence activators within their crystal lattice (Luczaj and Goldstein, 2000). Another 1145 

possibility is the emplacement of Mn2+, with yellow luminescence, in Ca2+ sites with blue 1146 

luminescence in the dolomite crystal lattice instead of preferential incorporation in the Mg2+ site 1147 

(Sommer, 1972b; Amieux, 1982; Walker et al., 1989; Habermann et al., 1999). Accordingly,1148 

non-stoichiometric, Ca-rich and poorly ordered dolomites may favor Mn+2 incorporation into 1149 

their Ca2+ site. E, F) Vuggy porosity rimmed by D4 (green CL). Note the porosity is filled with 1150 

fine dolomite rhombs including traces of D2 in their core and D4 overgrowths. 1151 

1152 

Fig. 9. Photomicrographs showing respectively, transmitted light and corresponding 1153 

cathodoluminescence image of D4 and D5 in relation to stylolites and fracturing: A, B) D4, 1154 

exploiting a bed parallel stylolite that crossed-cuts D1 and D2. C, D) A sub-horizontal fracture 1155 

cemented by D4. E, F) D5 microveins (arrows) intersecting all the predating dolomite types in 1156 

the footwall brecciated zone of the Montagna dei Fiori Fault.1157 

1158 

Fig. 10. Field photographs showing the major calcite vein settings observed in Montagna dei 1159 

Fiori: A) Cross-sectional view of bed normal Calcite vein 1 (CV1) abutting bed parallel stylolites 1160 

in folded beds of the Calcare Massiccio Formation. B) Plan view of the Calcite vein 2 (CV2) 1161 

intensely affecting the deformed Scaglia (Rossa) Formation. C, D) Cross-sectional view of the 1162 

Scaglia Formation, intensely affected by pressure solution seams of tectonic origin crossed-over 1163 

by populations of bed-perpendicular Calcite veins (CV3) in en echelon extensional arrays.1164 

39 
 

Solid Earth Discuss., https://doi.org/10.5194/se-2018-136
Manuscript under review for journal Solid Earth
Discussion started: 3 January 2019
c© Author(s) 2019. CC BY 4.0 License.



 
 

1165 

Fig. 11. A) Cathodoluminescence and transmitted light (in set) image showing blocky to 1166 

elongated crystals of CV1 with zoned CL pattern. B) Transmitted light image showing intensely 1167 

twinned CV1 crystals overprinted by euhedral to subhedral crystals of D3. Photomicrographs of 1168 

respectively, transmitted light and corresponding cathodoluminescence image: C, D) CV2 in the 1169 

Scaglia Formation abutted by a bed perpendicular stylolite (indicated by white arrows and 1170 

dashed line). The crystals display blocky to fibrous morphologies, deformation twining, and a 1171 

similar orange luminescence pattern comparable with the adjacent host rock. E, F) CV3 1172 

cementing the breccia fragments in the damage zone of the Montagna dei Fiori Fault. The 1173 

crystals are blocky and show faint deformation twinning. They are brown-orange with distinct 1174 

darker luminescence sector zones. G, H) CV4 present as a cement within a polygonal pore space 1175 

rimmed by dolomite. Note the blocky crystals, absence of deformation twinning and distinct 1176 

concentric luminescence zonation pattern. CV4 is corroded and followed by a late telogenetic 1177 

calcite.1178 

1179 

Fig. 12. A , B) 13 18O values of dolomites (A) host rocks from Montagna 1180 

dei Fiori as well as calcite veins (B). The stable isotope value of Lower Jurassic marine 1181 

limestones based on Veizer et al. (1999) is indicated by a dashed rectangle in subset B. 18O1182 

values of the marine dolomites are considered to be 3-4‰ V-PDB higher than those of marine 1183 

limestones (Land, 1980; Major et al., 1992; Horita, 2014). C) Cross-plot of 87Sr/86Sr ratios and 1184 
18O values of host rocks, dolomites and calcite veins compared with Lower 1185 

Jurassic marine carbonates 87Sr/86Sr (dashed rectangle) framework reported by McArthur et al. 1186 

(2012). 1187 

1188 

Fig. 13. Overview of microthermometry analysis of primary inclusions in Montagna dei Fiori: A) 1189 

Frequency distribution of the Tmice (°C) in dolomite phases. B) Frequency distribution of the 1190 

Th (°C) in dolomite phases. C) Salinity (eq. wt. % NaCl) versus Th (°C) of dolomite and calcite 1191 

phases. D) Isotopic fractionation diagram from Land (1983) used to determine the isotopic 1192 

composition (‰ V-SMOW) of parental fluids in equilibrium with dolomites in Montagna dei 1193 

Fiori.1194 

1195 
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Fig. 14. A) Generalized paragenesis of diagenetic phases in relation to deformational stages and 1196 

burial history of the Calcare Massiccio Formation in the Montagna dei Fiori Anticline. The 1197 

deformational stages are from Storti et al. (2018), and the burial curve is based on Ronchi et al. 1198 

(2003).1199 

1200 

Fig. 15. Sketch showing the successive fault-related diagenetic phases, of most importantly 1201 

dolomitization, recorded in the carbonate succession exposed at the core of the Montagna dei 1202 

Fiori Anticline (not scaled). Different diagenetic phases are indicated with different colors. A)1203 

The first dolomitization event is pre-orogenic (syn-rift), triggered from the fluids channelized 1204 

along Jurassic extensional faults. This event occurred during burial compaction and development 1205 

of bed parallel stylolites (BS). It is represented by scattered dolomite rhombs (D1) followed by 1206 

calcite cementation (CV1). The dolomitization continued with precipitation of larger crystals of 1207 

D2. B) Second dolomitization event: syn-orogenic (early folding/ faulting) dolomitization from 1208 

fluids that migrated from more internal regions of the thrust belt and were channelized along the 1209 

basal detachment level into the fold core. This dolomitization event presents matrix replacive and 1210 

cements displaying infrequent saddle outlines (SD) in pore spaces, within bed parallel veins and 1211 

shear fractures. These dolostones postdate compaction but are affected by bed perpendicular 1212 

stylolites (TS) generated by horizontal to sub-horizontal layer parallel shortening related to the 1213 

growth of the Montagna dei Fiori Anticline. C) Extensional collapse of the anticline and 1214 

development of the Montagna dei Fiori Fault, followed by buttressing of the Scaglia against 1215 

Calcare Massiccio and Corniola Formations during positive inversion induced by continuing 1216 

underthrusting at depth. Precipitation of D5 in micro-veins and cements in breccia zones, 1217 

followed by late stage calcite cementation in the Montagna dei Fiori Fault damage zone (CV2, 1218 

CV3 and CV4).1219 
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Stable isotopes Sr isotopes Fluid inclusion 
microthermometry

13C 18O 87Sr/86Sr Th (°C) Salinity

Calcare 
Massiccio Fm.

+2.4 to +3.1 -1.6 to 0.0 0.70766 - -

Corniola Fm. +2.0 to +2.5 -3.1 to -1.4 0.70725 - -

Scaglia Fm. +1.0 to +3.1 -2.2 to -1.0 0.70784-0.70791 - -

D1 +2.5 -1.9 0.70789 -50 3.5 to 11.3

CV1 +1.6 to +2.1 -4.7 to -2.7 0.70773 - -

D2 - - - -50 to 71 7.9 to 20.5

D3 +2.0 to +2.6 -2.8 to -1.9 0.70859-0.70964 70 to 73 9.2 to 16.9

D4 +2.4 to +2.5 -3.0 to -2.5 0.70790 79 to 105 12.8 to 18.6

CV2 +1.2 to +3.1 -1.7 to -1.6 0.70779 - 0.70787 - -

CV3 +0.5 to +2.4 -2.2 to 0.0 - -50 4.5 to 9.7

CV4 +3.8 to +4.9 -9.4 to -9.1 - -50 0.17 to 3.0

Table. 1
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Fig. 14
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