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Abstract  10 

The Kirthar Fold Belt is part of the transpressive transfer zone lateral collision zonein Pakistan linking the Makran accretionary 

wedge with the Himalaya orogeny. The region is deforming very obliquely, nearly parallel to the regional S-N plate motion 

vector, indicating strong strain partitioning. In the central Kirthar Fold Belt, folds trend roughly N-S and their structural control 

is poorly understood. In this study, we use newly acquired 2D seismic data with pre-stack depth migration, published focal 

mechanisms, surface and subsurface geological data as well as structural modelling with restoration and balancing to constrain 15 

the structural architecture and kinematics of the Kirthar Fold Belt. 

The central Kirthar Fold Belt is controlled by Pliocene to recent inversion of Mesozoic rift related normal faults. Focal 

mechanisms indicate dip-slip faulting on roughly N-S trending faults with some dip angles in the order ofexceeding  4540°, 

which are considered too steep for newly initiated thrust faults. The hinterland of the study area is primarily dominated by 

strike strike-slip faulting. The inverting faults do not break straight through the thick sedimentary column of the post-rift and 20 

flexural foreland; rather the inversion movements link with a series of detachment horizons in the sedimentary cover, 

progressively imbricating the former footwall of the normal fault. Due to the presence of a thick incompetent upper unit 

(Eocene Ghazij shales) these imbricates develop as passive roof duplexes. Finally, the youngest footwall shortcut links with a 

major detachment and the deformation propagates to the deformation front, forming a large fault-propagation fold.  Shortening 

within the studied sections is calculated to be on the order of 20%.  25 

The central Kirthar fold belt is a genuine example of hybrid thick- and thin-skinned system in which the paleogeography 

controls the deformation. The locations and sizes of the former rift faults controls the location and orientation of the major 

folds. The complex tectonostratigraphy (rift, post rift, flexural foreland) alone with the strong E-W gradients defines the 

mechanical stratigraphy, which in turn controls the complex thin-skinned deformation.  
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1. Introduction 

The external regions of fold-thrust belts are typically interpreted using templates from classical thin-skinned thrust related 

deformation. However, more and more thrust belts are interpreted as showing a strong influence of linked basement involved 

deformation (Lacombe and Bellahsen, 2016 and references therein). The inversion of inherited rift faults is one possibility of 

thick-skinned contribution in a thrust belt. Furthermore, the direct linkage of inverting basement faults to thin-skinned thrusts 5 

in the external parts of orogens (hybrid thick- and thin-skinned system) have received more attention recently (e.g. Giambiagi 

et al., 2008; Fuentes et al., 2016; Mahoney et al., 2017).  

As an outcome of structural investigations for hydrocarbon exploration we are able to report about a well constrained example 

of linked thin-skinned to thick-skinned deformation at the deformation front of the central Kirthar Fold Belt in Pakistan. This 

example illustrates the kinematical linkage between inverting deep reaching faults and the associated thin-skinned deformation, 10 

and also shows how this hybrid system is strongly controlled by its paleostructural (extension/rift) and paleogeographic 

(mechanical stratigraphy) inheritance.  

The Kirthar fold belt belongs to the western fold belts in Pakistan which is a zone of strike-slip faults and fold belts along the 

western lateral boundary of the Indian plate linking the Himalaya orogen with the Makran accretionary wedge (Lawrence et 

al., 1981, Bannert et al., 1992, Fig. 1). The northern Kirthar Fold Belt as well as the Sulaiman Ranges to the North of it, had 15 

been traditionally interpreted with classical fold-thrust belt geometries with an implied shortening magnitude of 30-40% 

(Banks and Warburton, 1986; Humayon et al., 1991; Jadoon et al., 1992, 1993, Fig. 16a-c, see location examples in Fig. 1). In 

contrast, the southern Kirthar Fold Belt had been field investigated (Smewing et al., 2002a) and modeled (Fowler et al., 2004) 

with the conclusion that the deformation in the belt is dominated by inversion tectonics (Fig. 16e) with an estimated shortening 

of approximately 17%.  20 

The reported contrasting styles of deformation in the Kirthar fold belt would imply significant and potentially implausible 

along-strike variation in the shortening magnitudes. In order to understand how deformation is accommodated along this lateral 

plate boundary, adequate estimations on shortening are essential. Furthermore, constraining the deformation style is 

fundamentally important for the exploration of resources, as seismic interpreters usually use template structural models to 

interpret in areas of poor seismic image resolution. 25 

In this study we use observations from surface geology (field work, Google Earth) and subsurface data (recent 2D seismic 

surveys and well data) to constrain the structural style and kinematics of the central Kirthar Fold Belt. We use seismic 

interpretation, section analysis techniques and kinematical forward modelling to constrain the balanced cross sections through 

the area to show that the central Kirthar Fold Belt is driven by thick-skinned inversion which is linked with thin-skinned 

deformation further toward the foreland. The thin-skinned deformation pattern is dominated by folding with no major thrusts 30 

cutting through these structures. The key controlling parameters for the deformation in this area are the pre-existing structures 

and the mechanical stratigraphy, which is itself a result of the paleo-evolution. 
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2. Regional setting  

2.1 Structural setting 

The wider Kirthar Range area is situated on the lateral plate boundary of India. The India-Pakistan plate is moving in a 

northward direction respectively relative to Eurasia (Mohadjer et al., 2010, Fig. 1), placing the margin in an overall setting of 

left-lateral transpression. The Chaman Fault, a large scale strike-slip fault, is considered to represent the lithospheric plate 5 

boundary (transform fault) in this lateral collision zone (Lawrence et al., 1981; Bannert et al., 1992). East of the plate boundary, 

a 150-200 km wide deformation zone is present (Bannert et al., 1992; Szeliga et al., 2009; Figs. 1, 2). Strain partitioning is 

ongoing active (cf. Szeliga et al., 2009 and references therein), documented by the presence of strike-slip faults as well as folds 

and thrusts (Fig. 1). This deformation is also reflected in the distribution of seismic seismically active faults which show strike-

slip deformation mainly towards the hinterland and dip-slip reverse faults close to the deformation front (Fig. 2, cf. Reynolds 10 

et al., 2015).  

Most of the publications on the structural style of the Sulaiman and Kirthar ranges describe these to be thin-skinned fold-thrust 

belts. Initially, a passive roof duplex style of deformation was attributed to explain the deformation of these fold belts (Banks 

and Warburton, 1986; Jadoon, 1992, Fig. 16a-c). The associated percentage of shortening accommodated by such a thrust and 

duplex dominated deformation was valued to be in the order of 37%, estimated for a section through the Sulaiman Lobe 15 

(Jadoon et al., 1992). These authors propose the same structural style for the northern Kirthar Belt. For the frontal part of the 

southern Kirthar Fold Belt, thin-skinned fold-thrust styles have been constructed based on field work (Schelling, 1999, Fig. 

16f, see approx. location in Fig. 1). In contrast, Smewing et al. (2002a) infer, based on field work, that the southern Kirthar 

Fold Belt is dominated by inversion of Jurassic normal faults. Also based on field work and seismic interpretations, Fowler et 

al. (2004) model the southern Kirthar Fold Belt as inversion deformation. Their sections show shortening on detachment 20 

horizons in the sedimentary cover, but the kinematic link between the shortening in the basement and in the cover remains 

conceptual and partly unclear (Fig. 16e).  

2.2 Tectonostratigraphic evolution 

The known stratigraphic section in the study area spans from the Triassic to recent (from outcrop and wells; Fig. 3), however 

older sediments are known along the western margin of the Indian plate. During the Late Precambrian and Early Paleozoic, 25 

the Indo-Pakistan plate was part of Gondwana, a situation that persisted until the onset of Triassic to Jurassic rifting (Smith, 

2012; Scotese, 2016; cf. Jurassic time step in Fig. 4a). Northern Pakistan was positioned at the northern margin of Gondwana 

facing the PanthalassicPhantalassic/Paleo-Tethyan Ocean. Salt deposits formed along the Gondwana margin in sub-basins, 

which are present and observable in the Zagros Hormuz Salt and the Salt Range Formation of Northern Pakistan (Kadri, 1995; 

Smith 2012). It remains unknown, if deposits (with or without salt) from this period are present in the subsurface of the study 30 

area. Further north in Pakistan, Cambrian sediments are overlain unconformably by the Permian stata and it is not certain 

whether or not the intervening systems were deposited and later eroded (Kadri, 1995). During the Late Permian, the Paleo-
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Tethys was at its widest, indicating ongoing drifting in the ocean. The passive margin of northern Pakistan was tectonically 

quiescent with shallow marine to paralic conditions prevailing up to the Late Triassic (Kadri, 1995). The break-up of 

Gondwana which formed the Indian as well as the Afghanistan-Arabia-Africa plates developed in the Triassic and Jurassic 

times (see Jurassic time step, Fig. 4a), however, the exact timing for rifting in vicinity of the study area seems uncertain.  

Kadri (1995) reports that from the middle Triassic onwards the sedimentation on both sides of the Paleo Tethys suture is 5 

different. In general the Triassic mixed successions of shallow marine clastics and carbonates are grouped in the Alozai Group 

or Wulgai Formation (Kadri, 1995). Continued rifting is interpreted for the Lower Jurassic deep water Shirinab Formation 

(which can be separated into three members Springwar, Loralai and Anjira, cf. Fig. 3). Smewing et al. 2002a find evidence for 

early Jurassic normal faulting due to synkinematical debris flows and slumping in the Lower Jurassic Shirinab Formation. 

Smewing et al. (2002b) placed the rift in the Kirthar area into Early to Late Jurassic time (Fig. 4a), mainly marked by the 10 

successive drowning of the Springwar sandstones and mudstone cycles followed by the pelagic Loralai and Anjira members, 

as well as the limestones of the Chiltan Formation. The pelagic Anjira limestones are replaced eastward with the thickly bedded 

limestones of the Chiltan Formation. East of the Kirthar Escarpment, the pelagic Anjira limestones are not known from wells 

in the study area. We interpret the deep water-shallow water relationship of the Anjira-Chiltan limestones as expression of a 

hinge zone, related to differential post-rift subsidence. The unconformity on top of the Chiltan limestones is interpreted as 15 

break-up unconformity (Smewing et al., 2002b). Wandrey et al. (2004) consider Jurassic or earlier extensional tectonics and 

failed rifting along the Indus River to contribute to buried horst-and-graben structures and the division of the greater Indus 

Basin into three sub-basins. The top of the Jurassic strata is marked by a basin wide unconformity (Wandrey et al., 2004; 

Smewing et al., 2002b). The slightly contradicting reported times for Triassic/Jurassic rifting could be either are likely the 

result of several pulses of rifting related to the break-up of Gondwana or interpretational uncertainty.  20 

The Cretaceous sediments are interpreted to be have been deposited on a westward sloping Indian shield (Kadri, 1995) in the 

drift phase (cf. Fig. 4b). Large deltas prograded from the emergent Indian continent, depositing the shaly to sandy Sembar and 

Goru formations in the middle Indus Basin (MIB) and shedding turbidites into the Kirthar Fold Belt area (Fowler et al. 2004). 

Portions of the Indian shield were uplifted during the Cretaceous which is partly related to the plate passing over an active 

mantle hot-spot (Eschard et al., 2004) which generated unconformities towards the interior of the continent. The Cretaceous 25 

strata thin strongly towards the Jakobad High which is an intrabasinal high in the Indus Basin (Kadri, 1995) northeast of our 

study area. The internal structuration of the Indus Basin is interpreted as relicts of a failed rift (Zaigham and Mallick, 2000; 

Wandrey et al., 2004). Mixed clastic and carbonate deposits represent the Upper Cretaceous succession, consisting of the Parh, 

Mughal Kot and Pab Formations (Fig. 3). Island arc collision and ophiolite obduction occurred on the northwestern margin of 

the Indian plate during the Paleocene (Khan et al., 2009). The Muslim Bagh and Bela Ophiolites were obducted onto the Indian 30 

margin (an island arc is anticipated northwest of the drifting Indian plate in Fig. 4b). Obduction of these ophiolites onto the 

Indian continental margin in western Pakistan is stratigraphically constrained between the Late Maastrichtian and Early Eocene 

(between ca. 67 Ma and ca. 50 Ma; Khan et al., 2009 and references herein). Likely as a result of this obduction, the shelf basin 

deepened and received more clastic influx. Local inversion movements are considered to be responsible for the presence of 
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erosional unconformities. Subsequent quiescent phases are represented by widespread carbonate depositions (e.g. Dungan 

Formation, Fig. 3). The northwest corner of the Indian plate started to collide with Eurasia during the Eocene (Fig. 4 C). The 

remaining segment of the Tethys Ocean narrowed further and eventually completely closed. In the study area this phase is 

represented by, on one side, carbonate deposits on the shelf edge (Laki Formation, Sui Main Limestone Fig. 3) and on the 

other, a westward rapidly deepening basin sourced filled partly with shales and siliciclastic deposits shed from the N/NW 5 

(Ghazij Formation; Wandrey, 2004; Ahmad et al. 2012). For the study area Ahmad et al. (2012) observe a dramatic east to 

west thickness increase of the Ghazij formation from thin layers of shale (in the Mazerani 1 well on the frontal anticline) to 

about 1000 m thickness (outcrop section) in the area west of the Kirthar escarpment in less than 40km distance. A final and 

short switch back to slightly more quiet conditions is indicated by the deposition of the Kirthar Formation (limestones with 

intercalated shales). During the Oligocene – Lower/Middle Miocene, the Indian Ocean coastline gradually migrated southward 10 

in the foreland basin and marine conditions were progressively replaced by continental conditions (Fig. 4D). Marine conditions 

prevailed in the study area until the Early/Middle Miocene times and are represented by shallow marine carbonates, clastics 

and shales of the Oligocene Nari Formation and the Mid-Miocene Gaj Formation (Fig. 3). In the late Miocene to Pliocene the 

collision between India and Eurasia resulted in the uplift of the main Himalaya and enormous quantities of clastic material 

reached the Lower Indus Basin (i.e. Siwaliks Group, Fig. 3). During this time, transpressive deformation along the western 15 

plate margin propagates onto the Lower Indus Basin. Recent ongoing deformation in the study area and regional uplift leads 

to erosion rather than deposition. Sediments along the Indus are bypassing the foreland into the Indian Ocean. 

2.3 Mechanical stratigraphy  

The behaviour of the sedimentary column when deformed is defined by its mechanical stratigraphy, which itself is the result 

of the tectonostratigraphic evolution. The formations deposited on the shelf margin during the drift phase are located in our 20 

study area. The presence of a long lived hinge zone in the study area results in an E-W proximal/distal sedimentological 

relationship of having successively more incompetent layers present towards the West.  Several detachment horizons can be 

interpreted in the stratigraphic succession (Fig. 3, right column). A colour codeing indicates if a certain level is interpreted as 

detachment based on field or seismic observations, or modelling.is given to highlight the rationale for interpreting a level as 

detachment.  25 

3. Remote field work and field work  

The core study area is covering the area east of the Kirthar Escarpment, where seismic data is available. In the east of the 

Kirthar EscarpmentThere, only Cenozoic rocks are outcropping and were partly investigated by field work. The area west of 

the Kirthar Escarpment, where older rocks crop out, was not accessible due to security reasons. Therefore, the western area 

was investigated by remote methods: observations in Google Earth and remote assessment of bedding attitude data.  30 
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3.1 Remote Fieldwork using Google Earth 

Google Earth was utilized in order to investigate structures in the study area on a broad and detailed scale. A quality check of 

the data quality from Google Earth revealed that images from 2010-2014 fit best to the Digital Elevation Model (DEM) (least 

draping effects and offset from the DEM).  

Fig. 6 shows several examples from the virtual field work with a few important observations on the deformation and 5 

mechanical stratigraphy for the study area. The strong mechanical contrast between the Eocene Kirthar limestones and the 

Eocene Ghazij shales is demonstrated by young gravity book-shelf faulting along an escarpment (Fig. 6a). This young, ongoing 

deformation is a gravitationally triggered mass movement that is a result of the competency contrast and rapid erosion of the 

soft shales. These shales reach several hundred meters of thickness east of the Kirthar Escarpment. Similarly, but a bit more 

challenging to observe, is the gravity sliding on the large anticline in the northern part of the study area (Fig. 6b). There, slabs 10 

of Kirthar limestones (forming part of the roof of the anticline) slide have collapsed downwards/eastwards and slid across parts 

of the already eroded forelimb. As a consequence, sub-horizontal Kirthar limestone beds are superposed over the steep to 

partly overturned younger beds of the forelimb. Similar features have been observed in numerous examples in the Zagros in 

Iran (Harrison and Falcon 1934, 1936). A potential sequence of the landslide evolution after the mechanism suggested by 

Harrison and Falcon (1934, 1936) is shown in Supplement Figure 1 along with an alternative solution. The main requirements 15 

for the landslide solution is the presence of a thick weak layer underneath the Kithar limestone that can act as a decollement. 

Further to the South (towards the background in Fig. 6b) the Kirthar beds are representingrepresent the hinge zone of the 

anticline. There, extensional faults are visible, including relay ramps and other associated features which also demonstrate the 

young gliding motion on top of the soft Ghazij shales towards the East onto the eroded forelimb.  

One example of the deformation style in the west of the Kirthar Escarpment is shown in Fig. 6c. Jurassic limestones and 20 

younger strata are partly folded on different wavelengths (disharmonic folding). The large dark, gentle anticline consists of 

Jurassic basinal limestones. Bright limestones on the ridges of the higher frequency folds are from the Cretaceous Parh 

Formation. The required decoupling and ductile deformation in-between those layers is located in the Goru Formation, known 

to consist of soft shales.  

Consequently the observations indicate potential decollement horizons in the Ghazij and Goru Formations, as indicated in Fig. 25 

3.  

3.2 Remote fieldwork to assess bedding attitude data  

In addition to the observations done in Google Earth, we used the “Three-Point method” to obtain additional measurements of 

bedding dip and strike. We used a high resolution DEM and draped satellite images to calculate bedding dip and dip-direction 

data from three digitized points that are located on a considered geological plane. The quality and level of detail that can be 30 

achieved is highly dependent on the quality and resolution of the input data and the outcrop conditions. We used a 30m 

horizontal resolution SRTM DEM (Jarvis et al., 2008) and Landsat 7 images (Landsat-7 image courtesy of the U.S. Geological 
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Survey). Measurements were only created in areas with univocal identification of large scale bedding planes. QC of generated 

data and comparison to locally existing field measurements show that bedding strike is general very reliable, whereas the 

bedding dip results may partly be underestimated.  

3.3 Field work 

The field work focused on collecting bedding dip data to supplement existing data and to partly QC quality-check the remotely 5 

assessed data. Furthermore, the style of deformation as observable in at the field scale was investigated. Sub-recent sediments 

(Pleistocene to present) are tilted (Fig. 7a), being part of the large scale fold/flexure in the southern sector (Fig. 5, point a). 

Changes in dip are primarily apparent due to the outcrop conditions where recent outcrop degeneration was present, but small 

alterations of the dominant dip of the limbs of the large scale structure have been observed, possibly a result of internal 

thickening within the formation caused by space problems in the inner part of the folds. The necessary flexural slip has been 10 

documented even in the very young, likely Pleistocene sediments. Fig. 7b shows striations on bedding planes in sandy beds of 

a tilted sandstone-conglomerate succession (location Fig. 5, point b). It is only iIn rare cases that small small-scale (e.g. Fig. 

7c) and medium scale (e.g. Fig. 7d) folds form were observed (locations in Fig. 5, point c and d, respectively). These folds are 

interpreted to reflect higher order folds caused by local accommodation of space problems in relation to the large scale folding.  

4. Seismic interpretation and analysis  15 

The frontal most anticline (Fig. 5) hosts several gas condensate fields and is partly covered by 2D seismic and at least one 3D 

seismic cube. From 2014-2017 two new 2D seismic surveys were acquired west of this frontal anticline. For confidentiality 

reasons we are unable to show exact locations of the seismic lines and the well data. However, we subdivided the area into a 

northern and a southern sector (Fig. 5) and use two representative W-E composed seismic sections to discuss the structural 

differences of these sectors (Fig. 8). . The seismic surveys have up to 6 km horizontal spread and up to 240 fold and utilized 20 

dynamite as the source. Processing of the lines in Fig. 8 is up to Pre-Stack Depth Migration (PSDM). These seismic lines have 

been tied to the vintage seismic data and wells for stratigraphic control. Stratigraphic control on the lines is given by wells on 

the frontal anticline or in the foreland via a grid of vintage 2D lines or the 3D seismic cube. Based on this data robust grids of 

Oligocene to Cretaceous (Jurassic partly) horizons exist along the frontal anticline and the un-deformed foreland. Horizons are 

indicated in the un-deformed foreland in Figure 8 as well as in the stratigraphic column (Fig. 3).  25 

The seismic quality tends to degrade towards the West and also with depth. Consequently the structural architecture in those 

parts is less constrained. On both sections, the top of the Eocene Kirthar limestones (cf. Fig. 3) is indicated on locations where 

well or seismic data unambiguously allow for that interpretation or where it is constrained by surface geology (Fig. 8, orange 

interpretation). The top of the Kirthar limestones is one of the most characteristic features in the seismic data. It is represented 

by a strong, continuous reflector on top of a package of weaker reflectors with good continuity. In the following section, a 30 
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brief description of the main structures at the level of the Kirthar limestones Kirthar level is given and structures in areas of 

good seismic image quality are analysed.  

4.1 Northern sector  

In the northern sector, the undeformed foreland is marked by relatively approximately horizontal reflectors (Fig. 8a, point a). 

Sub-horizontal seismic reflectors indicate the presence of sedimentary rocks to at least 8 km in depth. A minor anticlinal feature 5 

(Fig. 8a, point b) and a more pronounced anticline (Fig. 8a, point d) are separated by a zone of discontinuous reflectors (Fig. 

8a, point c), that is interpreted as a fault offsetting the Kirthar limestone. The relative timingSome more details  of these frontal 

structures is well depicted in the growth strata imaged on a time-domain seismic section nearby (Fig. 9):  

The interpreted growth strata packages “a” and “b” show westward thinning and onlap, thus a pattern of apparent progressive 

limb rotation. The seismic interpretation at depth indicate a thrust fault (thrust “1” in Fig. 9 a). There is no additional thin-10 

skinned deformation east of the tip of the wedge documented in confidential seismic data east of the section or on the surface. 

Therefore, this thrust is interpreted as part of a structural wedge, roofed by a bedding parallel thrust (thrust “2” in Fig. 9 a). 

Tilted strata below thrust “1” with a slightly westward offset kink axis (white stippled line in Fig. 9a) indicate a potential 

deeper wedge. Fig. 9 b-d show a possible sequence of deformation events that honours the growth strata pattern and structures 

identified on the seismic. By stacking two wedges the deformation front can stay relatively stationary and develop a growth 15 

strata package similar to the imaged one. Migrating kink bands likely are not resolved due to low sedimentation rates and 

potential intervals of erosion. Unlike shown the wedges might also be partial active at the same time, complexly 

accommodating large scale layer parallel shortening. The youngest thrust short-cuts the wedges (Fig. 9d, fault “3” in Fig. 9a) 

and deforms the youngest growth strata package (“c” in Fig. 9a).The interpreted growth strata packages GS1 and GS2 show 

westward thinning and onlap as well as progressive limb rotation related to the triangle deformation at depth (with thrust “1” 20 

and roof thrust “2”, Fig. 9). The youngest growth strata package, GS3, is only deformed above the projection of fault “3”. As 

a result of the location of this deformation, this fault is younger than faults “1” and “2”. Movement on this fault generates a 

fault-propagation fold in the hanging wall. The relatively good seismic image and nearby well control allows to define the 

stratigraphic level of the roof thrust (fault “2” in Fig. 9). The thrust has a trend that is parallel to the bedding in the Paleocene 

shales (upper Ranikot shales, cf. Fig. 3) just below the thick and competent limestones (Sui Main limestones, cf. Fig. 3), 25 

characterized by the low-reflectivity seismic character. Tilting of the reflectors below thrust “1” is partly due to a velocity pull-

up, but some additional tilting related to layer parallel shortening in deeper levels cannot be excluded. The deeper parts 

segments of thrusts “1” and “3” is are relatively uncertain based on the seismic profiles. However, the Jurassic Chiltan 

Formation is has been drilled in the hanging wall of thrust “3”, indicating that the thrust cuts below the Jurassic. 

A syncline is located west of these frontal structures, though it is not imaged on the seismic data due to steeply dipping to 30 

overturned beds (Fig. 8a, point e). A large scale anticline with Kirthar limestones on surface level is indicated at point f (Fig. 

8a, cf. Fig. 5). The low-reflectivity seismic facies below the Kirthar limestones are is the Eocene Ghazij (Shales) Formation 

Shales (Fig. 8a, point g). These shales thicken dramatically from the wells on the frontal anticline s in the East (several tens of 
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meters) towards the West (several hundreds of meters, constrained by seismic velocities and outcrop information just west of 

the Kirthar Escarpment, cf. Fig. 5 and seismic velocity dataAhmad et al. 2012). A small scale anticline of higher order is 

cropping out with exposes Kirthar limestones on the surface (Fig. 8a, point h). A syncline is markingmarks the western end of 

the seismic line (Fig. 8a point i). The Kirthar Formation is croppingcrops  out also at the Kirthar Escarpment west of the section 

(Fig. 5 northern sector, at approx. 1150 m above sea level). It is notable that the regional elevationstructural elevation of the 5 

Kirthar limestone increases from east to west (approx. 2.5 km in the western syncline, Fig. 8a point i). At the highest 

outcropping point of Kirthar limestones the difference to the estimated regional level is 5.5 – 6 km with an uncertainty related 

to the interpreted slope of the regional elevation. A rough depth depth-to to-detachment analysis conducted with the excess 

area approach (Epard and Groshong, 1993) on the large scale anticline reveals suggests an upper detachment depth of 8-10 

km. The spread in the predicted detachment is due to high uncertainty in the deeper stratigraphic picks on the seismic and the 10 

fact that the Kirthar Formation is not returning to regional elevation in the syncline to the West.  

4.2 Southern sector 

In the southern section, the undeformed foreland (Fig. 8b, point a) shows sub-horizontal reflectivity to at least 8 km in depth. 

To the West a minor flexure (Fig. 8b, point b) is situated underneath a seismic noise zone hiding a thrust fault (Fig. 8b, point 

c). This The anticline above the thrust (Fig. 8b, point d) is the southern along-strike continuation of the anticline on the northern 15 

section (Fig. 8a, point d). The syncline towards the West (Fig. 8b, point e) is much broader than its northern equivalent. Sub-

horizontal reflectors indicate the presence of sedimentary rocks to at least a depth of 10 km. The frontal structures have been 

analysed and interpreted. Finally the concluded model is illustrated and tested by running a kinematic forward model (Fig. 10). 

The interpreted fault geometries as well as a stratigraphic template elaborated from wells and outcrop sections are used for the 

starting configuration of the model (Fig. 10a). Step 1 follows the sequence elaborated in the northern sector (i.e. wedging 20 

before fault-propagation folding cf. Fig. 9) which shows a small fault-bend fold that forms a small triangle structure at the 

deformation front (Fig. 10b). This triangle structure is cut by a subsequent thrust, forming a fault-propagation fold (figure Fig. 

10c). This step is modelled using the tri-shear implementation in Move software (Midland Valley, 2016, Fig. 10c). There are 

several parameters that control the shape of the anticline. In detail, more than one solution (combination of parameters) can 

generate an approximate fit to the given constraints (seismic, well data (not shown) and surface dips), but differences are not 25 

significant. The reasonable fit shown in Fig. 10c supports the fault interpretation and the amount of shortening applied to these 

frontal structures (about 5000 m of horizontal shortening). To the west of the red stippled line in Fig. 10c, the model does not 

exactly match the seismic image- the interpreted Kirthar Formation is constantly rising until the limestones crop out in a small 

scale fold (Fig. 8b, point f). West of point f the Kirthar formation continues outcroppingis continuously exposed to the Kirthar 

Escarpment (just west of the end of the seismic line) at an elevation of around 1850 m above sea level.  30 

Similar to the northern section is the westward thickening of the Eocene Ghazij shales thicken westward 
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. The shales are thin (several tens of meters) in the frontal anticline (Fig. 8b, below point d) and thicken towards the West (Fig. 

8b, point g). This thickening is taking place especially pronounced west of the clinoforms (Fig. 8b, point h), which mark are 

interpreted as the carbonate margin of the Sui/Laki Limestones.  

On the southern section the regional elevationstructural elevation of the Kirthar limestones to the West rises constantly from 

the syncline axis (Fig. 8b, point e) towards the Kirthar Escarpment in the West. The structural elevation gain above regional 5 

at the Kirthar Escarpment is more than 6500 m (with uncertainty related to the interpreted regional level, Fig. 8b stippled 

orange line). 

5. Linking thick-skinned and thin-skinned deformation 

Despite some structural differences between the northern and southern sectors, the common observation is the overall increase 

of the regional elevationelevation level of the Kirthar and other formations above the regional from the East to the West. Such 10 

an increase in elevation can potentially be explained by several mechanisms: a) a strong wedge shape of the pre-deformational 

strata below the Kirthar, b) a thrust/fault to a deeper structural level, c) internal structural thickening of formations below the 

Kirthar Formation or any combination thereof as these proposed mechanisms are not mutually exclusive. 

We suggest that the order of structural uplift (larger than 5500 m) is linked to a deeper structural level in the basement. The 

other mechanisms above might still contribute a smaller part to the regional uplift. This anticipated thick-skinned deformation 15 

needs to be linked to the demonstrated thin-skinned deformation close to the deformation front.  

In order to generate a most reasonable structural model we briefly review the available nodal planes of earthquakes as well as 

some indications from the geological map west of the Kirthar Escarpment.  

For several reasons discussed throughout this chapter, we propose that the most likely scenario for driving the structural uplift 

is a thick-skinned contribution that is probably caused by partial inversion of existing structures linking upwards with suitable 20 

detachments in the sedimentary column. The balanced sections of the southern and the northern zone are displayed in Fig. 12 

and 14, respectively. The sections honour the seismic interpretation and constraints from the structural modelling and fit the 

regional context and constraints. Before discussing the sections individually in detail we need to elaborate these constraints 

and arguments. This includes addressing the following main questions: a) Could a pure thin-skinned (duplex) solution explain 

the same (regional) pattern?  b) Which are the indications for inversion in contrast to a (non-inversion) basement involved 25 

model? 

5.1. Constraints from regional structures (thin- vs. thick-skinned) 

West of the area covered in Figure 5 the topographic and structural elevation remains high (more than 6000m), as indicated 

by the outcropping of the Jurassic in various folds (Figs. 2, 5). A conceptual regional cross section is displayed in Figure 16g. 

West of the area covered in Figure 5 the section is mainly based on a low resolution geological map (scale, Bannert et al., 30 

1992). The section tentatively shows some relatively steep thick-skinned faults and gently folded strata above. Due to the 
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limited data and the problems of cross-section orientation and non-plane strain conditions balancing of this regional section is 

problematic. However, the folds shown in the section accommodate approximately 10% of line length shortening. Based on 

the balancing results from our own sections where higher resolution data is present, we argue that the actual shortening can be 

somewhat higher (in the order of 15-20%) and that the difference is due to scale problems as well as unresolved shortening in 

wedges and other distributed shortening. A conceptual section compares a thick-skinned to a thin-skinned solution (Fig. 17). 5 

In both cases the deformation is pinned at the deformation front. The thick-skinned model envisages that the total amount of 

shortening is accommodated in the contractional structures above the approximately equally shortened basement (Fig. 17a). 

The thin-skinned model assumes that the basement remains undeformed beneath the duplex structures (Fig. 17b) and has to be 

shortened towards the hinterland. The thin-skinned duplex solution shown (assuming reasonable stratigraphic thicknesses) 

does not reach the structural uplift observed (more than 6000m) and has serious balancing problems. Increasing the magnitude 10 

of shortening would allow to attain higher structural elevation(s), but increases the balancing issue at the same time. The 

shortening of the strata above the duplexes would likely require a set of back-thrusts as the plane of the roof-thrust is severely 

folded and thus not likely a viable slip-plane. No such back-thrusts or other structures that would accommodate the excess 

shortening are observable on the geological maps. Furthermore, the basement would require to shorten somewhere as well 

with the same magnitude, which would usually happen by a staircase thrust system towards the hinterland – with the 15 

consequence that deeper stratigraphic rocks or basement are uplifted (tentatively shown in Fig. 17b). However, towards the 

hinterland no such root zone is present (cf. Figs. 2, 16 g). Furthermore, the fold belt as such does not show a prominent surface 

slope (only 0.5° -1°, Fig. 16h). This could indicated that the transpressive fold belt likely does not represent a critical tapered 

accretionary wedge (cf. Dahlen et al. 1984, Suppe 2007), although, we do not have good control on the basal angle of a potential 

wedge. A governing wedge shape is probably necessary to allow sustained basal accretion of duplexes.   20 

Steeper faults, also affecting the basement, do require much less shortening to uplift overlying strata to a high structural 

elevation (Fig. 17 a) and are consistent with the missing root zone towards the plate boundary (Figs. 2, 16 g). 

In our study area, Tthe outcropping structures west of the seismic coverage/west of the Kirthar Escarpment yield some 

indications about the structural architecture below the Kirthar and Ghazij Formations (Fig. 5). The area west of the Kirthar 

Escarpment has a high mean elevation (more than 1000 m above sea level, cf Fig. 16h). The anticlines with Jurassic outcrops 25 

represent the structures with the highest elevations in the area (labelled with bold numbers 1 in Fig. 5). In-between are areas 

where Paleocene (and sparsely also Eocene) rocks are preserved, which represent relative structural lows (labelled with bold 

numbers 2 in Fig. 5). A further characteristic is the presence of long wavelength folds with several km wavelength (labelled 

with bold numbers 3 in Fig. 5) and anticlines folds with much smaller wavelengths and higher frequencies (labelled with bold 

numbers 4 in Fig. 5), indicating a much shallower detachment horizon. The large scale anticlines are usually double plunging 30 

and have roughly NNW-SSE to N-S trending axes, but a variety of additional subordinate directions are present as well. A 

plausible deformation model should be able to explain this complex pattern.  

As lined out above, a thick-skinned contribution to the structural elevation is necessary. In a transpressional system we would 

expect a zone of shortening in which the shortening features are striking 45° to parallel to the dominant strike-slip features 
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(Sanderson and Marchini, 1984, Fossen et al., 1994, Schreurs and Colleta, 1998). The Chaman and Ghazeraband faults are in 

an N-S to NNE to SSW orientation (Fig. 1), thus, shortening structures should have a strike orientation of NE-SW to NNE-

SSW. The NNW-SSE to N-S trending axes west of the Kirthar Escarpment in the central Kirthar fold belt (Fig. 5) seem rather 

unusual in respect to the orientation of the transpressive margin. Thus, it seems reasonable to assume, that the NNW-SSE to 

N-S orientation is not linked to newly initiated faults at depth but is associated to localized deformation controlled by inherited 5 

zones of weaknesses.  

5.1 2 Focal mechanism from theConstraints from seismicity  southern western fold belt  

We use ISC bulletin database derived nodal planes to constrain potential fault geometries in the subsurface in the wider study 

area (Fig. 2). Given the tectonic setting of a lateral collision zone, it is not surprising that earthquakes towards the current plate 

boundary at the Chaman Fault document dominantly strike-slip faulting. Some focal mechanisms of earthquakes close to the 10 

deformation front show dominant dip-slip shortening (Fig. 2 and Table 1). All these events are in depth ranges of 10-15 km, 

with the exception of F4 (Fig. 2 and Table 1), which is at greater depth (33 km). Interestingly is that this event is the only one 

with a slight oblique character. Given the potential error ranges on the depth of the events the shallow events could be located 

in the crystalline basement or in the lower part of the sedimentary column.   

It is not clear which of the two nodal planes was the moving plane. We could either assume it is the one with the lowest dip or 15 

it is westward dipping corresponding to the South-east or eastward directed shortening. For the first assumption fault dips are 

between 15° - 45° and for eastward dipping faults between 15° - 57°. In both cases, the steeper faults are considered to be too 

steep to represent newly initiated reverse/thrust faults. We interpret these steep faults therefore as parts of reactivated pre-

existing faults that are in a suitable angle for reactivation. The shallower dipping events could represent newly initiated faults, 

of which those in depth above 12 km could be located in the sedimentary column.  20 

Based on levelling data surface deformation associated with the 1931 Mach Earthquake in front of the northern Kirthar ranges 

has been investigated by Ambraseys and Bilham (2003) as well as by Szeliga et al. (2009). The authors model different fault 

slip solutions to match the seismic and post seismic elevation gain at the deformation front. In a geological section Szeliga et 

al. (2009) consider listric thrust faults with angles exceeding 45° linking shortening on a deep flat decollement (likely in the 

basement) to higher levels in the sediments (Fig. 16d). In order to match the surface deformation after the 1931 Mach 25 

earthquake with elastic models a fault geometry comprising deep detachment, a ramp section (part of a steep listric fault) and 

a branching gently dipping thrust towards the deformation front are needed. The fault shape considered responsible for the 

event by Szeliga et al. (2009) is tentatively shown in Figure 16d as red line. Such a geometry supports our proposed model 

close to the deformation front, where basement faults link with shallower detachments and thrusts in the sediments.  
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5.2 3 Deformation pattern west of the Kirthar Escarpment 

5.3 A simplified thick-skinned - thin-skinned inversion model 

We propose that an inversion model is the best solution to explain all the different observations and constraints. Yamada and 

McClay (2004) demonstrated that the shape of the normal fault and associated (half-) graben with its syn-kinematic fill (Fig. 

11a) defines the shape of the inversion anticline (Fig. 11b). Interesting to note is the presence of double plunging anticlines 5 

and the possibility of local lows in-between the anticlines and towards the hinterland (Fig. 11b), which can be compared 

toresembles the structural pattern west of the Kirthar Escarpment in map view. The analogue experiments are limited by the 

rigid boundary conditions (rigid and non-deformable footwall, constant length of the hanging-wall fault ) whereas in nature, 

this is likely not the case. Inversion likely does affect only those parts of the faults that are suitable for frictional reactivation. 

In listric fault systems these would be dominantly the lower/deeper segments located in the ridged basement (depending on 10 

the post-rift strain history). Other inversion related deformation like hanging wall shortcut faults, reverse faults, buttressing 

effects (cf. Cooper et al., 1989; Hayward and Graham, 1989) are likely to be present as well and can be considered as indirect 

inversion. In the study area the shortening of the inverting normal fault is considered to be transferred to a detachment in the 

sediments (Fig. 11c), explaining the presence of short wavelength folds adjacent to the large wavelength folds (cf. Fig. 5). The 

linking from the deeper inverting fault to the detachment in the sediments might be associated with the above mentioned 15 

complex deformation, e.g. a footwall short-cut fault (Fig. 11c). 

We further suggest that the complex map pattern is likely the result of a much more complex inverted fault pattern as observed 

in natural rifts. En-echelon pattern and overlaps of faults with intact and broken relay ramps, horses etc. (Fig. 11d) could 

contribute to a more complex deformation pattern if directly or indirectly inverted. Additionally, several stacked detachment 

horizons allow to accommodate shortening by linking stacked wedges and distributed ductile strain. As a consequence the 20 

amount of shortening introduced by basement faults is partly disseminated and thrusts, if they reach the surface have relatively 

small displacements (relative to the amount introduced by the basement faults)  without the necessity of major thrust faults 

breaking the surface. We consider that the inverting faults are inherited from the original rift phase on the lateral boundary 

when the Indian plate rifted from northern Gondwana (Fig. 4a). The direction of the rift faults thus would also define the N-S 

direction of the anticlines, which is strongly oblique to the plate kinematic vector. 25 

5.4 Southern section kinematic model and balanced section  

The kinematical model of the frontal deformation structures in the southern section (Fig. 10) accommodates approximately 

5000 m of shortening. However, this amount of shortening is not enough to explain the 6500 m of regional uplift towards the 

hinterland at the Kirthar Escarpment when taking into consideration reasonable fault dips. A fault with a 45° angle and a 

displacement of 5000 m would generate a structural uplift of 5000 m from a simple geometric perspective. Either a much 30 

steeper fault is necessary (i.e. >52°), or some additional shortening above/in frontassociated to the inverting fault are is required 

to explain the 6500 m of regional uplift. From careful seismic interpretation and dip-analysis we have interpreted the presence 
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of small passive roof duplexes underneath the soft Eocene Ghazij shales. Below point g in (Fig. 8b) some strong but laterally 

discontinuous reflector packages are present (between points h and i). The reflectors are interpreted to represent the Paleocene 

limestones. The discontinuous pattern is interpreted to be caused by poor imaging and by structural imbrication. East of point 

i (Fig. 8b), a small back-thrust is interpreted. The structural solution is presented in the balanced section (Fig. 12a). By adding 

the shortening of these small passive roof duplexes to the total displacement on the basement fault, the required regional uplift 5 

at the Kirthar Escarpment can be achieved, as is demonstrated in Fig. 13.  

To test our model, we generated a The simplified kinematical forward model that shows the evolution from the restored section 

(Fig. 12b) to the present stage (Fig. 12a). The initial configuration of the model has starting from one major normal fault (Fig. 

13a) as in the restoration. For simplicity we will assume syn-kinematical growth in the lower Jurassic formations, although the 

fault might have been active as normal fault earlier and later as well (see Section 2.2 Tectonostratigraphic evolution section).  10 

The frontal triangle and the small identified interpreted back-thrust (corresponding to the wedge modelled in Fig. 10 and the 

back-thrust east of point i (Fig. 8b) are likely formedis suggested to have formed in an early deformation phase of dominant 

wedging and layer parallel shortening in the section. In the model, this deformation is linked to slight inversion of the displayed 

normal fault (Fig. 13b), however, the deformation could also be linked to shortening further in the West which is transferred 

via thin-skinned detachments. The generation of the interpreted small passive roof thrusts is considered to be the result The of 15 

the main inversion of the normal fault  generatesgenerating shortcut faults with a slightly smaller dip angle in the sediments of 

the footwall. The presence of several weak stratigraphic units allows some wedging as well as the passive roof backthrust in 

the Ghazij shales (Fig. 13b and c). This stage reflects large scale layer parallel shortening of the stratigraphy above/in front of 

the inverting normal fault. The youngest deformation is occurring on the thrust in the frontal anticline. In order to explain this 

we suppose With that with increasing inversion above the null point, the pressure stress on the basement in the footwall likely 20 

increases and it finally yields. A basement shortcut develops and links with a suitable detachment generating the frontal 

anticline (Fig. 13d). With such a kinematical model all The the features/constraints visible in the seismic and at surface, and 

especially, the regional elevationstructural elevation uplift at the Kirthar Escarpment can all be explained with one major fault 

inversion (Fig. 13 D). West of the Kirthar Escarpment the regional structural elevation remains relatively high and is not 

dropping as in the simplified model (Fig. 13d hatched area). For that area, additional shortening is required to maintain the 25 

high structural elevation, which could be related to associated toadditional (partly) inverting normal faults is required, similar 

to the sketch section in Fig. 16 g.  

The balanced section in Fig. 12a shows the final interpretation for the seismic line displayed in Fig. 8b, with further details 

than shown in the kinematic section (Fig. 13). This section restores to the pre-contractional situation as shown in Fig. 12b. The 

balanced section has been constructed by line length restoration onto a carefully constructed stratigraphic template that takes 30 

well data and regional thickness trends into account. An overall areal balance has been considered. The amount of shortening 

is about 10 km, corresponding to 20% between the fixed pin and the loose line. The Eocene and Oligocene strata has have 

shorter line lengths than the older strata due to roof back-thrusting on the Eocene Ghazij shales and subsequent erosion. The 

loose line in Fig. 12b is not absolutely straight for Paleocene and older, documenting a small remaining error in the order of 
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1% which is within the drafting accuracy which is meaningful in respect to all uncertainties. The upper part of the section can 

be considered as well constrained (seismic image, surface geology and well control). The deeper part of the section is 

constrained by kinematic and balancing considerations (interpretation and kinematic modelling go hand in hand in an iterative 

process). In detail, there could be other solutions fulfilling the constraints (e.g. a more complex pattern of imbrications/duplexes 

and other structures accommodating layer parallel shortening). In that sense, the presented section is a likely scenario 5 

honouring as many constraints as possible and remaining as simple as possible.  

5.5 Northern section kinematic model and balanced section  

As demonstrated above, the northern sector is dominated by folding and shows a more gradual rise of the regional 

elevationstructural elevation towards the West. We interpret the shape of the large anticline in Fig. 8a as a partlyn uplifted 

detachment fold (Fig. 14) with plastic deformation in the fold core. In detail the deformation in the fold core can be 10 

accommodated by small scale thrusts (e.g. fishtail wedges etc.). The relative gentler uplift of regional elevationstructural 

elevation towards the West indicates the presence of several small inverting faults in the basement in comparison to the 

southern section. The balanced section of the northern sector (Fig. 14a) restores to the pre-contraction geometry as is shown 

in Fig. 14b. The method of restoration is the same as for the southern sector. The weak formations have been additionally 

areally balanced. The amount of shortening is approximately 11.2 km, corresponding to 18% between the fixed and the loose 15 

line. The loose line in Fig. 14b is not absolutely straight, documenting a small remaining error in the order of the (reasonably) 

achievable accuracy. We A proposed a kinematical evolution that takes a simplified version of the restored section as starting 

configuration  is displayed in (Fig. 15). Several half graben normal faults with thickening strata toward the fault (again in 

Jurassic for simplicity reasons) are interpreted to be present below some post rift strata (Fig. 15a). The thick-skinned movement 

is linked with a thin-skinned decollement close to the base of the sedimentary column (Fig. 15b), .a requirement from 20 

restoration and balancing (Fig. 14). For simplicity, this step is modelled with one footwall-shortcut on the westernmost fault. 

The large scale anticline in the northern sector likely starts to grow in this increment. Fig. 14b anticipates a buttressing effect 

of the easternmost fault causing the folding. Alternatively, early inversion movement on this easternmost fault could generate 

a perturbation in the sedimentary sequence which is subsequently amplified by shortening which is transferred along the basal 

décollement. The inversion is modelled with a foreland propagation sequence, although a more complex kinematic cannot be 25 

ruled out. The second (middle) fault is also modelled with a small footwall shortcut (Fig. 15c). The associated shortening is 

amplifying the large scale fold. Some shortening of this increment might cause the observed triangle deformation of stacked 

wedges (Fig. 9). Finally, the easternmost fault is inverting including a footwall shortcut that links to the observed frontal 

structures (Fig. 15d). The final balanced section honours some more details as constrained by the seismic data (Fig. 14a). In 

total, the northern section is less constrained than the southern section as the seismic is allowing more a wider range of solutions 30 

for the deeper geometry. The main uncertainties are the amount number of basement faults, the amount of initial extensional 

throw, how many faults and shortcuts are present in the sediments and the sequence of deformation propagation. The kinematic 

model in Fig. 14 as well as the balanced section are thus not unique solutions however they but provide a satisfactory 
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explanation for the observed structures that is consistent with the mechanical stratigraphy, the regional observations and the 

local constraints (seismic and surface geology). 

The balanced section of the northern sector (Fig. 14a) restores to the pre-contraction geometry as is shown in Fig. 14b. The 

method of restoration is the same as for the southern sector. The weak formations have been additionally areally balanced. The 

amount of shortening is approximately 11.2 km, corresponding to 18% between the fixed and the loose line. The loose line in 5 

Fig. 14b is not absolutely straight, documenting a small remaining error in the order of the drafting accuracy. 

6. Discussion 

In the following section we discuss implications of the results from the local to regional scale, compare the deformation style 

to similar fold belts, and finally address some uncertainty issues.  

6.1 Local paleogeographic controls on deformation 10 

On a local scale the deformation seen in the geological map (Fig. 5) is partly mimicking the original rift geometry. The large 

scale folds are most likely representing the former location of the main extensional growth grabens. The dominating N-S 

orientation of fold trends is thus is directlyseems to be controlled by the former rift geometry and thuswhich apparently  has a 

strong influence on how strain is partitioned on this lateral margin.  

In detail, most local differences in the structural style and orientation seem to be based on slight paleogeographic differences 15 

as well. Comparing the northern to the southern sectors of the study area, the detachment depth at the trailing edge of thin-

skinned deformation is different.there is difference of the detachment depth of the trailing thin-skinned deformation. In the 

South, the large syncline (Fig. 8b) indicates a flat segment of the detachment in lower Jurassic or Triassic rocks. The 

comparative correlative thrust fault clearly cuts deeper in the North (Figs. 8a, 9, 14). As a consequence the frontal anticline 

shows a south to north along-strike structural increase in structural reliefuplift. The uplift has been recognized for a long time 20 

(wells and the distribution of the existing gas condensate fields), but geometrically they it hashave not been properly 

investigated. The reason for the along strike change in depth of the basal detachment, however, is not known. It may have 

geometrical (fault throw, angle, depth) or facies (mechanical stratigraphy) related reasons. Both, however would be inherited 

from the pre-contractional evolution, with the rifting phase likely having the greatest impact. 

There is one very clear example on how the long- lived hinge zone and the associated facies changes control the young 25 

contractional deformation. The tip of the triangle/duplex in the centre of the southern section is localised at the point where 

the Laki Formation limestones (Sui Main Limestones, stippled orange line) have their paleo-shelf edge and are replaced 

laterally by Ghazij Formation shales (Fig. 12a, see also Fig. 8b, point h). The limestones have several hundred meters of 

thickness in the frontal anticline and are overlain by several tens of meters of Ghazij shales only. West of the Kirthar 

Escarpment, the Laki Formation/Sui Main Limestones are missing, instead several hundred meters of Ghazij shales are present. 30 

The clinoforms of the Sui Main Limestones are well imaged (Fig. 8b point h). West of that point most of the Laki Formation 
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is replaced by marls and shales that act ashost the passive roof thrust for the inversion related footwall duplexes underneath. 

The juxtaposition of carbonate margins that border basinal facies can localize thrust faults as has been demonstrated by 

centrifuge physical modelling by (Dixon, 2004).  

6.2 Kirthar Fold Belt deformation 

Our model of inversion with linked thin- skinned deformation for the central Kirthar Fold Belt is in line with the observations 5 

and the model proposed by Smewing et al. (2002a) and Fowler et al. (2004) for the southern Kirthar Fold Belt. In our study 

we demonstrate propose how thick-skinned inversion and thin-skinned deformation kinematically link to produce the observed 

deformation pattern. With Oour model we are is also able to explain an observation of Smewing et al. (2002a) where in which 

they describe field evidence of a Jurassic normal fault that is still under net extension, despite the assumed inversion and 

relative high structural elevation. Following our model the upper part of the former normal faults could remain in net extension 10 

and be significantly uplifted above their original regional elevation due to footwall imbrication and shortcuts (cf. the former 

normal faults in Fig. 14). These imbrications however, do not penetrate toreach the surface but generate structural wedges with 

a roof thrust in Ghazij shales. They are unlike the passive roof duplexes proposed originally for the northern Kirthar Fold Belt 

by Banks and Warburton (1986). Those authors use classical thin-skinned fold-trust belt geometries based on the sequential 

imbrication of the foreland sequence above a pre-Jurassic continuous planar detachment horizon. Their roof thrusts are 15 

localized in Ghazij shales and further towards the hinterland in Goru formation shales. Shortening in such a system often 

approaches 40-50%, a value much higher than the shortening observed in the central (our study) and southern Kirthar Fold 

Belt (Fowler et al., 2004). The large scale map pattern does not significantly change from our study area towards the northern 

Kirthar Fold Belt. We propose,   that the deformation observed in the northern Kirthar Fold Belt (i.e. Banks and Warburton, 

1986) could also be caused by linked thick-skinned and thin-skinned inversion related deformation, as the thin-skinned solution 20 

has significant regional balance problems.. The modelled fault shape responsible for the 1931 Mach Earthquake by Szeliga et 

al. 2009 comprises a thrust fault up-dip of a steep thrust ramp section that links to a deeper decollement, either in thick 

sediments or in the basement (cf. Fig. 16 d). The general structure is similar to what we interpret at the deformation front in 

the central Kirthar Fold belt. The linkage between a relatively steep, deep-reaching fault and a more shallow dipping frontal 

thrust can be interpreted as the potential transition from a thick-skinned (inverted?) fault a the frontal thin-skinned system. 25 

Similarly, the thin-skinned deformation observed by Schelling (2000, cf. Fig. 16f) can be put into this context. The sections 

investigated by Shelling are relatively short and thus only cover the leading edge margin of the thin-skinned deformation 

(similar to the frontal structures in Fig. 12). Thus, no major south to north discrepancies in shortening values need to be 

considered for the Kirthar Fold Belt. The deformation style does not necessarily vary dramatically, however the way the 

shortening is accommodated is considered to be controlled by local inherited controlsstructures.  30 
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6.3 Possible lithospheric inheritance of the inversion belt 

It is important to briefly discuss some potential reasons why the the central Kirthar Fold Belt is dominated by inversion with 

thin-skinned deformation instead of following classical thin-skinned fold-thrust belt model. The importance of a structural 

inheritance from rifting has already been proposed by Smewing et al. (2002a). However, most pro-wedge thrust belts affect 

areas which went through rifting and passive margin settings before collision. Whether the continental margin in the collision 5 

phase evolves into a dominated system of thin-skinned or thick-skinned deformation depends on several factors.  

The presence of a weak (ductile) middle or lower crust seems to be key factor which allows for distributed deformation through 

most of the crust, which results in forming fold-thrust belts with a dominant/primary thick-skinned character (Lacombe and 

Bellahsen, 2016). Thermally weakened shear zones might be conserved in little extended proximal continental margins which 

can also influence the deformation style. Weak crustal levels are often lacking in distal parts of the margins as a result of the 10 

rheological evolution of the rifted margin over time (Perez-Gussinye and Reston, 2001; Cloetingh et al. 2005; Reston & 

Manatschal, 2011). The resulting stronger lithospheric domains are more prone to localized deformation in a continental 

subduction style (Lacombe and Bellahsen, 2016). Thus, the relative position and the time since rifting apparently play a role 

in determining in which mode the convergent deformation will reactivate structures.  

We therefore speculate, that the inversion dominated central Kirthar Fold belt represents the inner part of the continental 15 

margin in which a weak continental crust is still present. The long lived hinge line observed in several facies associations is 

interpreted to reflect approximately the limit of the major post-rift subsidence and the eastern border of the extended lithosphere 

(assuming pure-shear). The more than 100 km wide area from east of the dominating strike slip faults (Chaman and Ghazaband 

Faults, Fig. 1) could be considered to have initially accommodated the shortening component of transpression, hence show 

inversion where suitable faults are located. Sustained deformation should have rotated faults and folds closer to the 20 

margindeformation front to the Ghazaband fault (Fig. 1) is interpreted to be dominated by initial inversion (later partly 

overprinted by strike-slip deformation). We infer that this large area shares a similar rheology which was inherited from 

Gondwana and the break break-up phase. The width of this zone might indicate that the lithosphere rifted in a wide rift mode 

(Buck, 1991) before continental break-up to the West. Consequently there should be a narrow zone of highly extended crust 

(external rifted margin) present west of the inversion belt. Today this zone is covered by Flysch flysch sediments, bracketed 25 

between the Ghazaband and Chaman Faults (Bannert et al., 1992, Fig. 2). How much of the former external rifted margin has 

been subducted or laterally displaced along the strike-slip faults remains difficult to estimate and is beyond the scope of this 

paper. Interestingly, further to the North in the Pamir area earthquake tomography data is interpreted to show delamination 

and rollback of the Indian plate lithosphere (Kufner et al., 2015). India’s thinned western continental margin separates from 

Cratonic cratonic India and subducts beneath Asia while the buoyant northwestern salient of Cratonic cratonic India bulldozes 30 

into Cratonic cratonic Asia (Kufner et al., 2015).  
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6.4 Hybrid thick- and thin-skinned systems in other areas 

Thick-skinned inversion of passive margin or intra-cratonic rifts is considered to be present in 50% of orogens with 

documented deformation style (Nemčok et al., 2013). There are various possibilities how thick-skinned deformation can 

contribute to the deformation of a fold-thrust belt (see recent review of Lacombe and Bellahsen, 2016 and references therein). 

Here, we briefly compare the deformation style elaborated for the central Kirthar Fold Belt with other well constrained 5 

examples of linked inversion with thin-skinned deformation.  

For the Malargüe Fold-Thrust belt, Giambiagi et al. (2008) revealed that the reactivation of normal faults was coeval with the 

activation of shallow detachments and low-angle thrusting at the thrust front with several faults moving at the same time in 

some portions. Also for the Malargüe Fold-Thrust belt Fuentes et al. (2016) work out geometric relationships of the hybrid 

system with a series of detailed sections based on surface geology, seismic and well data through that thrust belt. Their section 10 

“E” shows strong similarities with the deformation style in the southern section of our study, especially the imbrication of 

sediments in the footwall with duplexes and a passive roof thrust on top. Recently, Mahoney et al. (2017) proposed a very 

similar deformation for the Eastern Muller Ranges in the Papuan Fold Belt in Papua New Guinea. There, the Cenozoic 

carbonates are shortened to around 13-21% but are partly uplifted up to 7 km above regional elevation. Mesozoic rift faults, 

partly inverting and partly linking to thin skinned detachments are considered to reflect exert the major control on deformation. 15 

Triangle structures and back-thrusts are considered transient deformation steps, related to the uplift and erosion history while 

the deformation accumulates before linking to the frontal deformation structures (Mahoney et al., 2017). The proposed 

deformation is very similar to the style we consider for the central Kirthar Fold Belt. In our example the presence of a complex 

mechanical stratigraphy with several detachment horizons in the stratigraphic column seems to produce even more complex 

geometries than in the example from Papua New Guinea. 20 

6.5 Uncertainty  

Basement involvement is very often used in balanced section to account for a high regional elevationstructural elevation uplift 

towards the hinterland. However, for a relatively small uplift of regional elevationstructural elevation the thick skinned 

explanation is often ambiguous, as there are often several alternative possibilities which are not investigated (e.g. strong 

wedging of the pre-kinematic sedimentary sequence, change in basal detachment depth, change in basement dip etc.).  25 

Recently, Butler et al. (2018) demonstrated that for several reviewed sections that there is a substantially greater range of 

solutions available for interpreting the geometry and evolution of thrust belt structures than implied by the original idealized 

models. For a specific section in the Papuan Fold and thrust belt two realisations are available by different authors. One with 

thin-skinned and one with inversion style tectonics (e.g. Hill, 1997; Buchanan and Warburton 1996; cf. Butler et al. 2018). 

Similarly there is a strong discussion on the contribution of thick-skinned deformation below the different segments of the 30 

Zagros fold belt (see discussions in Lacombe and Bellahsen, 2016; Hinsch and Bretis, 2015, for the Mountain Front Flexure).  
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In order to overcome limitations from single deterministic geometries, Butler et al. (2018) propose good documentation, 

alternative models and to embrace the uncertainties. In this work, we show the original seismic data, review in detail the 

regional to local context and use these as arguments why we think our presented deformation model is the most plausible for 

the central Kirthar Fold Belt from the other investigated alternatives. We do not show alternative models, but we highlight our 

workflow, the considered constraints and indicate uncertainties of the sections. With all the arguments given, tThe contribution 5 

of deep founded faults with associated thin-skinned deformation can be considered as reliable, and the pure thin-skinned 

deformation style can be considered as obsolete. 

Based on several observations (folding pattern, fold orientation, focal mechanism) this thick-skinned deformation is interpreted 

to invert inherited zones of weakness from the rift phase that generated the lateral margin of India. This model is very likely, 

but remains a conclusion, rather than a direct observation. 10 

. In detail the interpreted and constructed sections are as good as the constraints allow and thus still have several solutions. The 

amount of uncertainty in the sections depends also on the level of observation. How much change on our model is a new 

solution or just a modification is a matter of definition and also scale dependent. 

7. Conclusions 

Large scale strain partitioning along the western Indian plate leads to major left lateral strike-slip faulting close to the plate 15 

margin as well as to NW-SE to W-E shortening close to the deformation front of the Kirthar Fold Belt. We analyse regional 

(geological maps, focal mechanisms, geological maps) to local (reflection seismic and well data, surface geology) data at the 

front of the central fold belt to constrain the structural architecture and style. The deformation is most probable controlled by 

the inversion of inherited rift faults, likely of Jurassic age, which is buried underneath the sediments. The young shortening on 

the rift faults is coupled with thin-skinned deformation by imbricating and shortcutting into the footwall and transferring some 20 

shortening onto a detachment horizon. As a consequence, large scale folds build as a result of the thick-skinned inversion and 

smaller scale folds and thin skinned related thrust deformation form in front. In the southern sector a structural elevation gain 

of approximately 6500 m across one large monocline clearly indicates the influence of the deep seated faulting. Towards the 

North the structural elevation gain is distributed across several folds indirectly related to several inverting faults at depth. The 

main control on deformation is considered the presence and orientation of the pre-shortening rift. In addition, the rift and post 25 

rift history resulted in some prominent E to W proximal to distal facies trends being reflected in a heterogeneous mechanical 

stratigraphy which is responsible for the style on how shortening is accommodated in the thin-skinned structures.  

The hybrid deformation style of thin-skinned to thick-skinned deformation is also present in other fold-thrust belts around the 

world with hydrocarbon resources. Combining as many constraints as possible from regional to local scale facilitates the 

development of plausible structural models and assess uncertainties. The importance of understanding the structural 30 

architecture and kinematics is here and there of paramount importance for the successful exploration of these resources.  
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Figures and captions 

 

Figure replaced 

Figure 1: Simplified structural sketch of the wider Kirthar fold-belt area on a shaded relief map. Location is indicated in in the inset 
map. The approximate plate motion is from Mohadjer et al. (2010); Locations of sSections in Fig. 16 from other studies are indicated: 5 
a: Jadoon et al. (1992), a+bb+c: Banks and Warburton (1986), c: Jadoon et al. (1992), d:Szeliga et al. (2009), e: Fowler et al. (2004), 
ef: Schelling (1999), g: this study..  
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Figure replaced 

Figure 2: Nodal planes from International Seismological Centre (2015) database , plotted on satellite imageDEM with draped 
geological map after Bannert et al. (1992) and selected structural elements. Location of the figure is indicated in Fig. 1. Dotted red 
lines are locations of sections in Fig. 16. Labelled events are listed in Table 1. Yellow star marks the 1931 Mach event after Szeliga 5 
et al. (2009). 
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Figure replaced: added seismic horizons 

Figure 3: Litostratigraphic overview with hydrocarbon play elements and mechanical stratigraphic interpretations (after Kadri, 
1995; Tectostrat 2001; Smewing et al. 2002b and author observations). S.H. = seismic horizons used in this study 

 5 
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Figure 4: Paleogeographic evolution of the study area as part of the Indian plate since the Jurassic. (a) Jurassic, ca. 175 million 
years, a rift evolves northwest of the approximate study area location (star; map from Scotese, 2014a), (b) ca. 65 million years, 
Cretaceous/Paleocene, drifting northward. An strip of emergent land Island arc (likely an intra oceanic arc) is visible north of the 5 
approx. study area location (map from Scotese, 2014b). (c) ca. 50 Eocene, post ophiolite obduction, but pre-collision with Eurasia 
(map from Scotese, 2014c). (d) ca. 20 Miocene, early collision stage with flexural foreland stage (map from Scotese, 2014c). 
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Figure 5:  Semi-transparent lithostratigraphic map (modified after Tectostrat, 2001) of the study area draped in Google Earth. 
Dotted rectangles with labels a, b, c indicate approx. areas seen in slanted view in Fig. 6a-c. Red labels a-d indicate locations of field 
photographs in Fig. 7. Northern and southern sectors of the fold belt are indicated by bold red and green lines, respectively. Bold 
white numbers indicate examples for 1: structural highs, 2: structural lows, 3: long wavelength anticline, 4: short wavelength folding. 5 
K.E:= Kirthar Escarpment 
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Figure 6: Example for remote field work with Google Earth. Locations of the views are indicated in Fig. 5. (a) Recent mass wasting: 
Blocks of Kirthar Limestones glide down the eroded flanks of soft Ghazij Formation; (b) Sub-recent to recent mass wasting: a large 
slab of Kirthar Limestones from the anticline roof is now folded over the previously eroded forelimb of the anticline (cf. 
Supplementary Figure I). In the background extensional faults are visible in the Kirthar limestones on representing the roof of the 5 
boy-fold anticline in the Kirthar limestones. The limestones partly glide/collapse over the vertical beds of the forelimb. (c) 
Disharmonic folding: Jurassic rocks show large wavelength folding, while the hard limestones of the Cretaceous Parh formation are 
folded in smaller wavelength and higher frequency. A weak decollement zone is located in the Goru Shales. 
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Figure 7: Examples for observations from fieldwork. (a) Sub-recent conglomeratic sediments are folded and eroded. (b) Striations 
on a bedding plane in (Pleistocene?) conglomerates indicating flexural slip folding. (c) small scale anticline in Nari Formation rocks. 
The amplitude and wavelength of the fold suggest, that the lower detachment horizon is likely in lower Nari Formation. (d) small to 
medium scale folding in Kirthar and Nari Formations. The fold is a mappable feature (cf. Fig. 5) and indicates to a detachment 5 
horizon below the Kirthar limestones. 
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Figure replaced, added well control and horizon information 

Figure 8: Two W-E composed seismic sections of pre-stack depth migrated seismic. Orange interpretations indicate clearly 
constrained Top Kirthar Formation from seismic, wells and outcrop. Stippled orange line is anticipated pre-contractional regional 
elevation of the Kirthar Formation. K.E.: Kirthar Escarpment. A high resolution image without interpretation is available as 5 
supplementary figure. The final interpreted seismic lines are part of Figs. 12a and 14a; (a) Seismic section composed from two 
overlapping 2D seismic lines in the northern Sector (exact position not shown for confidentiality reasons). W1: well control within 4 
km to Jurassic level. W2: well control within 5 km to Paleogene level. Labels a-i are used to indicated features discussed in the text. 
Numbered horizons in the East refer to horizons as in Fig. 3  (b) section composed from 2D and 3D seismic data. W3: well control 
within 1 km to Upper Cretaceous level. Labels a-i are used to indicated features discussed in the text. Numbered horizons in the East 10 
refer to horizons as in Fig. 3 
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Figure replaced 

Figure 9: (a) 2D seismic section in time domain in the northern sector (exact position not shown for confidentiality reasons) with 
fault and growth strata interpretation. Faults 1-3 and growth strata packages GS1-GS3 are discussed in the text.(b-d) show a possible 
solution for the growth strata pattern as discussed in the text. Seismic in the background of (d) is roughly depth converted version 5 
of (a).   
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Figure 10: Forward modelling of the frontal structures in the southern sector (a) The seismic image, surface geometry including 
dips, the present day deformed state of the Top Eocene limestones (constrained by nearby well control) as well as the interpreted 
and constructed faults are given as reference frame for the forward model. The model uses a stratigraphic wedge with thicknesses 5 
which are constrained by well and outcrop observations. (b) A small triangle structure at the deformation front is modelled with 
fault-bend folding. The lower detachment (1) is in lower Jurassic or Triassic succession, the upper one is interpreted in the soft 
Cretaceous Goru shales (dotted line). (c) A fault-propagation fold forms hinterland-ward of the triangle structure by a thrust ramp 
(2) modelling done with tri-shear. The model mimics the structure imaged in the seismic approximately from the deformation front 
(east) to the red stippled line.  10 
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Figure replaced 

Figure 11: (a) and (b) Model of extension with subsequent inversion on curved linked faults (modified after Yamada and McClay, 
2004). (c) Adding aleading thin-skinned deformation and short-cut element fault to the sketch of inverted curved linked fault system 
(d) Sketch of half graben systems with overlapping faults for anticipation of more complex subsurface geometries before inversion.  5 
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Figure 12: (a) Constructed W-E section in the southern sector of the study area with PSDM seismic in the background (i.e. Figure 
8b). The section is balanced between the red lose line and the eastern end of the section (fixed line), KE: Kirthar Escarpment; (b) 
restored section (50% scale of (a)). Calculated shortening is approx. 10 km or 20%. 

 5 
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Figure 13: Simplified kinematical evolution of the southern sector. (a) Pre-contractional situation with Jurassic normal fault. Thin 
stippled lines indicate faults of dominant layer parallel shortening, (c) and (b) Incremental deformation of imbrication and passive 
roof thrusting above the inverting normal fault. (d) Final geometry of the kinematical forward model compared to seismic and 
surface geology. The geometry in the hatched area in the western part of the section does not fit the surface geology and would 5 
require additional deformation by inverting faults and cover sediments not regarded in this model.  
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Figure 14: (a) Constructed W-E section in the northern sector of the study area with PSDM seismic in the background (i.e. Fig. 8a). 
Dip-measurements projected between 2.5 and 4km. The section is balanced between the red lose line and the eastern end of the 
section (fixed line). (b) Restored section (at 50% scale of (a)) by using line length and area balancing methods. Calculated shortening 
is approx. 11.2 km or 18% 5 
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Figure 15: Simplified kinematical evolution of the southern sector, shown for Eocene to Basement rocks. (a) pre-contractional 
situation with Jurassic normal faults. Stippled line indicated future shortcut fault. (b) and (c) Increments of inversion with shortcut 
faulting and detachment folding related to buttressing. (d) Final geometry of the kinematical forward model.  
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Figure 16 Selected sections in southern western fold belt of Pakistan (for section locations see Figs.1 and 2). a: after Jadoon et al. 
(1992), b+c: after Banks and Warburton (1986), d:after Szeliga et al. (2009), red fault indicate approx. shape of fault considered 
responsible for Mach 1931 event, e: after Fowler et al. (2004), f: after Schelling (1999), g: this study, the frontal part (strong colours) 
is a slightly projected section elaborated for the northern sector of this study area. The western part is a tentative regional sketch 5 
section based on the geological map of Bannert et al. 1992, as shown in Fig. 2, G.F. = Ghazeraband fault, h:average topography of a 
20 km wide section centred on the trace of (g). 5 times vertical exaggeration. 
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Figure 17 simplified sketch comparing thick- vs. thin skinned solutions for the structural elevation uplift of the Jurassic level. 
Elevations are in respect to the regional elevation of the Jurassic (0 km); a) A series of thick skinned faults with a total of 20 km 
shortening (16%). Due to the pinning at the deformation front a roof thrust under the horizons need to be present. The excess line 
length of the sediments above the roof thrust needs to be accommodated in the section as well, which could happen in internal 5 
shortening and amplification of the folds. The solution explains a structural uplift towards the hinterland of 5-7 km. b) One example 
of a duplex solution with total 48 km of shortening (38%). Due to the pinning at the deformation front a roof thrust under the 
horizons need to be present. The excess line length of the sediments above the roof thrust (about 40km) needs to be accommodated 
in the section as well. The example solution stays below 5 km structural uplift. In order to increase the uplift, more shortening in the 
duplexes would be required, which would increase the balancing issues. A tentative thrust cutting into the basement behind the 10 
duplexes would uplift basement rocks towards the hinterland. 
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Table 1: Nodal planes from International Seismological Centre (2015) database, reviewed events only. In addition to the dip the dip-
azimuth of the planes is calculated. The strike and rake values from the database are given for completeness and assessment of 
obliquity. Event F1 has 3 different solutions in the database. The differences are a rough indication of the uncertainty of the data. 
Green/red dip values indicate the lower and higher dip surfaces of the pair. The author column refers to the original provider in the 5 
database (cf. Lentas et al.; 2018 and references therein). 
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Figure 
Label Event Id Mw Z Date Author

Dip-
azimuth Dip Strike Rake

Dip-
azimuth Dip Strike Rake

F1a 603867342 5.4 -10100 19.12.2013 NEIC 253.8 14.7 163.8 70.9 93.5 76.2 3.5 94.9

F1b 603867342 5.4 -12000 19.12.2013 GCMT 291.0 39.0 201.0 133.0 61.0 63.0 331.0 61.0

F1c 603867342 5.4 -12000 19.12.2013 NEIC 277.0 26.0 187.0 99.0 87.0 64.0 357.0 85.0

F2 308027 5.4 -15000 21.01.1992 HRVD 306.0 48.0 216.0 104.0 105.0 44.0 15.0 75.0

F3 301671 4.9 -15000 28.03.1992 HRVD 272.0 57.0 182.0 89.0 93.0 33.0 3.0 91.0

F4 259589 5.1 -33000 28.12.1992 HRVD 263.0 33.0 173.0 32.0 146.0 73.0 56.0 119.0

F5 13436558 5.0 -12000 17.03.2009 GCMT 304.0 45.0 214.0 106.0 102.0 47.0 12.0 75.0

F6 604543379 5.0 -12000 08.05.2014 GCMT 212.0 42.0 122.0 69.0 59.0 52.0 329.0 108.0
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Kirthar Fm. limestones

Ghazij Fm. shales

Dunghan and Sui Main limestones

Supplementary Fig. 1

Schematic evolution showing land-slide interpretation of Fig. 6b.
a) Erosion affects roof of anticline 
b) Gravitational induced ductile deformation of soft shales leading to 

formation of “roof and wall” structure (knee), as suggested by 
Harrison and Falcon (1934, 1936) for several anticlines in Iran. 

c) Anticipated present day situation after the structure has collapsed 
into a “slip sheet”  (Harrison and Falcon 1934, 1936)

d) Alternative starting geometry with could lead to similar solution

Nari Fm. 

(d)
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