
We thank referee 1 (Andreas Fichtner) for his overall positive review of this paper. We have 
addressed most of his comments in the annotated manuscript (changes are indicated in blue). 
Here we discuss a number of specific issues. 
 
First we want to mention that, given the wide range of methods discussed in the paper, the 
discussion of each method is necessarily brief. We have deliberately chosen for a somewhat 
informal style, by first introducing a method with intuitive arguments, followed by a more 
quantitative explanation. Our aim is not to go into depth for each method, but mainly to show 
connections between the methods, using the acoustic version of Green's theorem as the 
unifying basis. We have given plenty of references for readers who want to learn more about 
specific methods, including extensions for full elastodynamic waves. 
 
Having said this, we appreciate the remark of this referee that our explanations are sometimes 
too brief for readers who are not yet familiar with a specific method, so we have extended the 
explanations where necessary. In particular, we have significantly expanded the explanation 
of the focusing function in section 3.1.  
 
The referee is worried about the approximations that are made to derive the expressions for 
Green's function retrieval by cross-correlation (section 2.3). We have improved the text to 
explain the approximations better. We would like to add the following. The method of 
Green's function retrieval from ambient noise, which is widely used by the seismological 
community, was originally based on rather intuitive arguments. The derivation presented here 
shows that the method can, at least in principle, not only retrieve the direct wave but also 
scattered waves, and, more importantly, it reveals the underlying approximations. The 
limitations of Green's function retrieval by cross-correlation have been recognised by many 
researchers (including the authors and the referee), who proposed many improvements. 
Several references are given to improved methods.  
 
Responses to some of the comments on the annotated manuscript: 
 
We have shortened the 'historical review' in the introduction and removed references to full 
waveform inversion (which is not further addressed in the paper anyway). 
 
We briefly explain equation (7), but do not follow the suggestion to state that it requires that 
there are no waves parallel to the boundary. To our opinion, for this expression in the space-
frequency domain it is sufficient to state that evanescent waves are excluded.  
 
We understand that figures with the label ''artist impression, figures not to scale'' led to 
confusion. We have rescaled the figures and removed the label. 
 
We reduced the contrasts of the scatterers in figures 2 and 4, so that the focus becomes better 
visible. We think this change is justified because these figures are merely intended to 
illustrate the principle of the discussed methods. 
 
 
 
 
 



We thank referee 2 (Robert Nowack) for his positive review of this paper. We have addressed 
most of his comments in the annotated manuscript (changes are indicated in red). Here we 
discuss a number of specific issues. 
 
We think that the last part of the title (... across the scales) is justified because the discussed 
methods apply to many scales. The examples are meant to be generic. At several points in the 
paper we have emphasized the references to applications at different scales. 
 
We appreciate the suggestion to include the supplementary material as appendices, but we 
have chosen not to follow this suggestion. The supplementary material belongs to two papers 
(this paper, and the companion paper by Brackenhoff et al.) and will be made accessible for 
both papers. 
 
We have briefly defined the homogeneous Green's function in the introduction and explained 
the name in section 2. 
 
At various places we have emphasized the difference between the finite open surface S0 and 
the closed surface S. 
 
At the end of section 3.1 we have mentioned that the assumptions underlying the Marchenko 
method break down for strongly scattering media. 
 
We do not see ''e ed e e'' on the lower part of Figure 5a. We will double-check this figure in 
the proof. 
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Abstract. The earthquake seismology and seismic exploration communities developed a variety of seismic imaging methods

for passive- and active-source data. Despite the seemingly different approaches and underlying principles, many of those

methods are based in some way or another on Green’s theorem. The aim of this paper is to discuss a variety of imaging methods

in a systematic way, using a specific form of Green’s theorem (the homogeneous Green’s function representation) as the

common starting point. The imaging methods we cover are time-reversal acoustics, seismic interferometry, back propagation,5

source-receiver redatuming and imaging by double focusing. We review classical approaches and discuss recent developments

that fully account for multiple scattering, using the Marchenko method. We briefly indicate new applications for monitoring

and forecasting of responses to induced seismic sources, which are discussed in detail in a companion paper.

1 Introduction

Through the years, the earthquake seismology and seismic exploration communities developed a variety of seismic imaging10

methods for passive- and active-source data, based on a wide range of principles such as time-reversal acoustics, Green’s

function retrieval by noise correlation (a form of seismic interferometry), back propagation (also known as holography), source-

receiver redatuming, and so on. Many of these methods are rooted in some way or another in Green’s theorem (Green, 1828;

Morse and Feshbach, 1953; Challis and Sheard, 2003). The current paper is a modest attempt to discuss a variety of imaging

methods and their underlying principles in a systematic way, using Green’s theorem as the common starting point. We are by15

far not the first to recognise links between different imaging methods. For example, Esmersoy and Oristaglio (1988) discussed

the link between back propagation and reverse-time migration, Derode et al. (2003) derived Green’s function retrieval from

the principle of time-reversal acoustics by physical reasoning, and Schuster et al. (2004) linked seismic interferometry to back

propagation, to name but a few.

We start by reviewing a specific form of Green’s theorem, namely the classical representation of the homogeneous Green’s20

function, originally developed for optical holography (Porter, 1970; Porter and Devaney, 1982). The homogeneous Green’s

function is the superposition of the causal Green’s function and its time reversal. We use its surface-integral representation to

derive time-reversal acoustics, seismic interferometry, back propagation, source-receiver redatuming and imaging by double

focusing in a systematic way, confirming that these methods are all different sides of the same coin. We briefly discuss the

potential and limitations of these methods. Because the classical homogeneous Green’s function representation is based on25

a closed surface integral, an implicit assumption for all these methods is that the medium of interest can be accessed from
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all sides. Because in most seismic applications acquisition is limited to the earth’s surface, a major part of the closed surface

integral is necessarily neglected. This implies that errors are introduced and, in particular, that multiple reflections between layer

interfaces are not correctly handled. To address this issue, we also discuss a recently developed single-sided representation of

the homogeneous Green’s function. We use this to derive, in the same systematic way, modified seismic imaging methods

that account for multiple reflections between layer interfaces. In a companion paper (Brackenhoff et al., 2019) we extensively5

discuss applications for monitoring induced seismicity.

Although the solid earth supports elastodynamic (vectorial) waves, to facilitate the comparison of the different methods

discussed in this paper we have chosen to consider scalar waves only. Scalar waves, which obey the acoustic wave equation,

serve as an approximation for compressional body waves propagating through the solid earth, or for the fundamental mode

of surface waves propagating along the earth’s surface, depending on the application. At several places we give references to10

extensions of the methods that account for the full elastodynamic wave field.

2 Theory and applications of a classical wave field representation

2.1 Classical homogeneous Green’s function representation

We consider an inhomogeneous lossless acoustic medium, with mass density ρ(x) and compressibility κ(x), where x =

(x1,x2,x3) denotes the Cartesian coordinate vector. In this medium we define a unit impulsive point source of volume-injection15

rate density q(x, t) = δ(x−xA)δ(t), where δ(·) denotes the Dirac delta function, xA the position of the source and where t

stands for time. The response to this source, observed at any position x in the inhomogeneous medium, is the Green’s function

G(x,xA, t). It obeys the following wave equation

∂i(ρ
−1∂iG)−κ∂2tG=−δ(x−xA)∂tδ(t), (1)

where ∂t stands for the temporal differential operator ∂/∂t and ∂i for the spatial differential operator ∂/∂xi. Latin subscripts20

(except t) take on the values 1, 2 and 3, and Einstein’s summation convention applies to repeated subscripts. We impose the

condition G(x,xA, t) = 0 for t < 0, so that G(x,xA, t) for t > 0 is the causal solution of equation (1), representing a wave

field originating from the source at xA. Note that the Green’s function obeys source-receiver reciprocity, i.e., G(xB ,xA, t) =

G(xA,xB , t), assuming both are causal and obey the same boundary conditions (Rayleigh, 1878; Landau and Lifshitz, 1959;

Morse and Ingard, 1968). This property will be frequently used without always mentioning it explicitly.25

The time-reversal of the Green’s function, G(x,xA,−t), is the acausal solution of equation (1), which, for t < 0, represents

a wave field converging to a sink at xA. The homogeneous Green’s function Gh(x,xA, t) is defined as the superposition of the

Green’s function and its time reversal, according to

Gh(x,xA, t) =G(x,xA, t) +G(x,xA,−t). (2)

It is called “homogeneous” because it obeys a homogeneous wave equation, i.e., a wave equation without a singularity at30

the right-hand side. Hence ∂i(ρ−1∂iGh)−κ∂2tGh = 0, in which the medium parameters ρ(x) and κ(x) are in general not
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Figure 1. Configuration for the homogeneous Green’s function representation (equation 6). The rays in this and subsequent figures represent

the full responses between the source and receiver points, including primary an multiple scattering.

homogeneous. Note that in this paper we use the adjective “homogeneous” in two different meanings. We define the Fourier

transform of a time-dependent function u(t) as

u(ω) =

∞∫
−∞

u(t)exp(iωt)dt. (3)

Here ω denotes angular frequency and i the imaginary unit. For notational convenience, we use the same symbol for quantities

in the time domain and in the frequency domain. The wave equation for the Green’s function in the frequency domain reads5

∂i(ρ
−1∂iG) +κω2G= iωδ(x−xA). (4)

The homogeneous Green’s function in the frequency domain is defined as

Gh(x,xA,ω) =G(x,xA,ω) +G∗(x,xA,ω) = 2<{G(x,xA,ω)}, (5)

where the superscript asterisk denotes complex conjugation and where < means that the real part is taken. The classical

representation of the homogeneous Green’s function reads (Porter (1970); Oristaglio (1989); supplementary material, section10

1.3)

Gh(xB ,xA,ω) =

∮
S

1

iωρ(x)

(
{∂iG(x,xB ,ω)}G∗(x,xA,ω)−G(x,xB ,ω)∂iG

∗(x,xA,ω)
)
nidx, (6)

see Figure 1. Here S is an arbitrarily shaped closed surface with outward pointing normal vector n = (n1,n2,n3), which

does not necessarily coincide with the boundary of the medium. It is assumed that xA and xB are situated inside S. Note

that the aforementioned authors use a slightly different definition of the Green’s function (the factor iω in the source term in15

equation (4) is absent in their case). Nevertheless, we will refer to equation (6) as the classical homogeneous Green’s function

representation. When S is sufficiently smooth and the medium outside S is homogeneous (with mass density ρ0, compressibility

κ0 and propagation velocity c0 = (κ0ρ0)−1/2), the two terms under the integral in equation (6) are nearly identical (but opposite

in sign), hence this representation may be approximated by

Gh(xB ,xA,ω) =−2

∮
S

1

iωρ0
G(x,xB ,ω)∂iG

∗(x,xA,ω)nidx. (7)20
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The main approximation is that evanescent waves are neglected (Zheng et al., 2011; Wapenaar et al., 2011).

In the following sections we discuss different imaging methods. Each time we first introduce the specific method in an

intuitive way. After that we present a more quantitative derivation, based on equation (7).

2.2 Time-reversal acoustics

Time-reversal acoustics has been pioneered by Fink and co-workers (Fink, 1992; Derode et al., 1995; Draeger and Fink, 1999;5

Fink, 2006). It makes use of the fact that the acoustic wave equation for a lossless medium is invariant under time reversal

(for discussions about elastodynamic time-reversal methods we refer to Scalerandi et al. (2009), Anderson et al. (2009) and

Wang and McMechan (2015)). Hence, given a particular solution of the wave equation, its time-reversal obeys the same wave

equation. Figure 2 illustrates the principle (after Derode et al. (1995) and Fink (2006)). In Figure 2a, an impulsive source at xA

emits a wave field which, after propagation through a highly scattering medium, is recorded by receivers at x on the surface10

S0. In the practice of time-reversal acoustics, S0 is a finite open surface. We discuss the limitations of this later. The recordings

at S0 are denoted as vn(x,xA, t), where vn stands for the normal component of the particle velocity. Note that these recordings

are very complex due to multiple scattering in the medium. In Figure 2b, the time-reversals of these complex recordings,

vn(x,xA,−t), are emitted from the surface S0 into the medium. After propagating through the same scattering medium, the

field should focus at xA, i.e., at the position of the original source. Figure 2c shows a snapshot of the field at t= 0, which15

indeed contains a focus at xA. Figure 2d shows a horizontal cross-section of the amplitudes at t= 0 at the depth level of the

focus (the solid blue curve with the sharp peak). For comparison, the dotted red curve shows the amplitude cross-section of the

focus that is obtained with a similar time-reversal experiment in absence of scatterers. Since the solid blue curve has a sharper

peak than the dotted red curve, we can conclude that multiple scattering contributes to the formation of the focus in Figure 2c.

The scattering medium effectively widens the aperture angle, which explains the better focus.20

The time-reversal principle can be made more quantitative using Green’s theorem (Fink, 2006). First, using the equation of

motion, we express the normal component of the particle velocity at S in the frequency domain as

vn(x,xA,ω) =
1

iωρ0
∂iG(x,xA,ω)nis(ω), (8)

where s(ω) is the spectrum of the source at xA. Using this in the homogeneous Green’s function representation of equation (7)

we obtain25

Gh(xB ,xA,ω)s∗(ω) = 2

∮
S

G(xB ,x,ω)v∗n(x,xA,ω)dx, (9)

or, in the time domain (using equation 2),

{G(xB ,xA, t) +G(xB ,xA,−t)} ∗ s(−t) = 2

∮
S

G(xB ,x, t)︸ ︷︷ ︸
“propagator”

∗ vn(x,xA,−t)︸ ︷︷ ︸
“secondarysources”

dx, (10)

where the inline asterisk (∗) denotes temporal convolution. This is the fundamental expression for time-reversal acoustics. The

integrand on the right-hand side formulates the propagation of the time-reversed field vn(x,xA,−t) through the inhomoge-30

neous medium by the Green’s function G(xB ,x, t) from the sources at x on the boundary S to any receiver position xB inside
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Figure 2. Principle of time-reversal acoustics. (a) Forward propagation from xA to the finite open surface S0. (b) Emission of the time-

reversed recordings from S0 into the medium. (c) Snapshot of the wave field at t= 0, with focus at xA. (d) Solid blue curve: amplitude

cross-section of the focussed field in (c), taken along a horizontal line through the focal point xA. Dotted red curve: amplitude cross-section

obtained from a similar time-reversal experiment, in absence of scatterers.
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the medium. The integral is taken along all source positions x on the closed boundary S. The right-hand side resembles Huy-

gens’ principle, which states that each point of an incident wave field acts as a secondary source, except that here the secondary

sources on S consist of time-reversed measurements instead of an incident wave field. The left-hand side quantifies the field

at any point xB inside S, which consists at negative time of a backward propagating field G(xB ,xA,−t) ∗ s(−t), converging

to xA, and at positive time of a forward propagating field G(xB ,xA, t) ∗ s(−t), originating from a virtual source at xA. By5

setting xB equal to xA we obtain the field at the focus (i.e., at the position of the original source). By taking xB variable in

a small region around xA, while setting t equal to zero, equation (10) quantifies the focal spot. Assuming the source function

s(t) is symmetric, this yields

[{G(xB ,xA, t) +G(xB ,xA,−t)} ∗ s(t)]t=0 =− ρ̄

2πr
ṡ(r/c̄) (11)

(Douma and Snieder, 2015; Wapenaar and Thorbecke, 2017), where c̄ and ρ̄ are the propagation velocity and mass density in10

the neighborhood of xA, r is the distance of xB to xA, and ṡ(t) denotes the derivative of the source function s(t).

It should be noted that the integration in equation (10) takes place over sources on a closed surface S. However, in the

example in Figure 2 the time-reversed field is emitted into the medium from a finite open surface S0. Despite this discrepancy,

a good focus is obtained around xA. Nevertheless, Figure 2c also shows a noisy field at t= 0, particularly in the scattering

region. According to equation (10), this noisy field would vanish when the time-reversed field would be emitted from a closed15

surface into the medium.

Figure 2 is representative for ultrasonic applications of time-reversal acoustics, because in those applications it is feasible

to physically emit the time-reversed field into the real medium (Fink, 1992; Cassereau and Fink, 1992; Derode et al., 1995;

Draeger and Fink, 1999; Fink, 2006; Tanter and Fink, 2014). Time-reversal acoustics also finds applications in geophysics at

various scales, but in those applications the time-reversed field is emitted numerically into a model of the earth. This is used20

for source characterization (McMechan, 1982; Gajewski and Tessmer, 2005; Larmat et al., 2010) and for structural imaging

by reverse-time migration (McMechan, 1983; Whitmore, 1983; Baysal et al., 1983; Etgen et al., 2009; Zhang and Sun, 2009;

Clapp et al., 2010). In these model-driven applications it is much more difficult to account for multiple scattering and therefore

it is usually ignored. Moreover, the scattering mechanism is often very different, particularly in applications dedicated to image

the earth’s crust. We discuss a second time-reversal example to illustrate this.25

Whereas in Figure 2 we considered short-period multiple scattering at randomly distributed point-like scatterers in a homo-

geneous background medium, in Figure 3 we consider long-period multiple scattering at extended interfaces between layers

with distinct medium parameters (which is representative for multiple scattering in the earth’s crust). Figure 3a shows the re-

sponse vn(x,xA, t) to a source at xA inside a layered medium, observed at the surface S0. The time-reversal of this response is

emitted from S0 into the same layered medium. The field at t= 0 is shown in Figure 3b. We observe again a clear focus at xA,30

but this time the multiple scattering does not contribute to the resolution of the focus (because there are no point scatterers that

effectively widen the aperture angle). On the contrary, the multiply scattered waves give rise to strong distinct artefacts at other

regions in the medium. Again, these artefacts would disappear entirely when the time-reversed field would be emitted from a
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Figure 3. Time-reversal acoustics in a layered medium. (a) Forward propagation from xA to the finite open surface S0. (b) Emission of the

time-reversed recordings from S0 into the medium and snapshot of the wave field at t= 0, with focus at xA.

closed surface, but this is of course unrealistic for geophysical applications. In section 3.2 we discuss a modified approach to

single-sided time-reversal acoustics which does not suffer from artefacts like those in Figure 3b.

2.3 Seismic interferometry

Under certain conditions, the cross-correlation of passive ambient-noise recordings at two receivers converges to the response

that would be measured at one of the receivers if there were an impulsive source at the position of the other. This methodology,5

which creates a virtual source at the position of an actual receiver, is known as Green’s function retrieval by noise correlation

(a form of seismic interferometry). At ultrasonic scale it has been pioneered by Weaver and co-workers (Weaver and Lobkis,

2001; Lobkis and Weaver, 2001; Weaver and Lobkis, 2002). At ultrasonic scale the object of investigation is often a closed

system (i.e., a finite specimen with reflecting boundaries on all sides). Early applications for open systems are discussed by

Aki (1957), Claerbout (1968), Duvall et al. (1993), Rickett and Claerbout (1999), Schuster (2001), Wapenaar et al. (2002),10

Campillo and Paul (2003), Derode et al. (2003), Snieder (2004), Schuster et al. (2004), Roux et al. (2005), Sabra et al. (2005a),

Larose et al. (2006) and Draganov et al. (2007). A detailed discussion of the many aspects of seismic interferometry is beyond

the scope of this paper. Overviews of seismic interferometry, for passive as well as controlled-source data, are given by Schuster

(2009), Wapenaar et al. (2010) and Nakata et al. (2019).

Figure 4 illustrates the principle for passive ambient-noise data. In Figure 4a, a distribution of uncorrelated noise sources15

N(x, t) at some finite open surface S0 emit waves through an inhomogeneous medium to receivers at xA and xB . The cross-
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Figure 4. Principle of seismic interferometry. (a) Propagation of ambient noise from S0 through an inhomogeneous medium to receivers at

xA and xB . (b) Cross-correlation of responses at xA and xB (with xA fixed and xB variable).

correlation of the responses at xA and xB converges to G(xB ,xA, t)∗CN (t), where CN (t) is the autocorrelation of the noise.

The result is shown in Figure 4b, for a fixed virtual source at xA and an array of receivers at variable xB .

We use the homogeneous Green’s function representation of equation (7) to explain this in a more quantitative way (Wape-

naar et al., 2002; Weaver and Lobkis, 2004; van Manen et al., 2005; Korneev and Bakulin, 2006). Representations for elas-

todynamic interferometry are discussed by Wapenaar (2004), Halliday and Curtis (2008) and Kimman and Trampert (2010).5

Applying source-receiver reciprocity to the Green’s functions under the integral in equation (7), we obtain

Gh(xB ,xA,ω) =− 2

iωρ0

∮
S

G(xB ,x,ω)∂iG
∗(xA,x,ω)nidx. (12)

The integrand can be interpreted as the Fourier transform of the cross-correlation of responses to sources at x on closed surface

S, observed by receivers at xA and xB . Note that S is the surface containing the sources; it is not the boundary of the medium.

Whereas G(xB ,x,ω) is the response to a monopole source at x, ∂iG(xA,x,ω)ni is the response to a dipole source at the same10

position. In most situations there will be only one type of source present at x, therefore we approximate the dipole sources by

monopole sources, using the far-field approximation

∂iG(xA,x,ω)ni→
iω|cos(α(x))|

c0
G(xA,x,ω). (13)

Here α(x) is the angle between the normal to S at x and the ray from the source at x to the receiver at xA. When the medium

inside S is inhomogeneous, there will be multiple rays between x and xA, hence the angle α(x) is not unique. Moreover,15

for passive interferometry the positions of the sources are usually unknown. For simplicity we ignore the |cos(α(x))| term in

equation (13) and substitute the remaining expression into equation (12). This yields

Gh(xB ,xA,ω)≈ 2

ρ0c0

∮
S

G(xB ,x,ω)G∗(xA,x,ω)dx, (14)
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or, in the time domain (using equation 2),

G(xB ,xA, t) +G(xB ,xA,−t)≈
2

ρ0c0

∮
S

G(xB ,x, t) ∗G(xA,x,−t)dx (15)

(the approximation sign refers to the far-field approximation, with the term |cos(α(x))| ignored). This expression shows that

the Green’s function and its time-reversal between xA and xB can be approximately retrieved from the cross-correlation of

responses to impulsive monopole sources at x on S, followed by an integration along S. This expression, and variants of it,5

are used in situations where responses to individual transient sources are available (Kumar and Bostock, 2006; Schuster and

Zhou, 2006; Bakulin and Calvert, 2006; Abe et al., 2007; Tonegawa et al., 2009; Ruigrok et al., 2010). Next, we modify this

expression for simultaneous noise sources. For a distribution of noise sources N(x, t) on S (like in Figure 4a), we can write for

the observed fields at xA and xB

p(xA, t) =

∮
S

G(xA,x, t) ∗N(x, t)dx, (16)10

p(xB , t) =

∮
S

G(xB ,x
′, t) ∗N(x′, t)dx′. (17)

Assuming the noise sources are mutually uncorrelated, they obey

〈N(x′, t) ∗N(x,−t)〉= δS(x−x′)CN (t), (18)

where CN (t) is the autocorrelation of the noise (which is assumed to be the same for all sources), 〈·〉 stands for time averaging,

and δS(x−x′) is a 2D delta function defined in S. Cross-correlation of the observed noise fields in xA and xB gives15

〈p(xB , t) ∗ p(xA,−t)〉=

〈∮
S

∮
S

G(xB ,x
′, t) ∗N(x′, t) ∗G(xA,x,−t) ∗N(x,−t)dx′dx

〉
. (19)

Using equation (18) this becomes

〈p(xB , t) ∗ p(xA,−t)〉=

∮
S

G(xB ,x, t) ∗G(xA,x,−t) ∗CN (t)dx. (20)

Note that the right-hand side resembles that of equation (15). Hence, if we convolve both sides of equation (15) with CN (t),

we can replace its right-hand side by the left-hand side of equation (20), according to20

{G(xB ,xA, t) +G(xB ,xA,−t)} ∗CN (t)≈ 2

ρ0c0
〈p(xB , t) ∗ p(xA,−t)〉. (21)

Equation (21) (and its extension for elastodynamic waves) is the fundamental expression for Green’s function retrieval from

ambient noise in an open system. The right-hand side stands for the cross-correlation of the ambient-noise responses at two

receivers at xA and xB . The left-hand side consists of a superposition of the virtual-source response G(xB ,xA, t)∗CN (t) and

its time-reversal G(xB ,xA,−t) ∗CN (t). Originally this methodology was based on intuitive arguments and it was only used25

to retrieve the direct wave between the two receivers. Since equation (21) is derived from a representation which holds for an

inhomogeneous medium, it follows that the retrieved response is that of the inhomogeneous medium, hence, in principle it

9



includes scattering (this will be illustrated below with a numerical example). The derivation that leads to equation (21) also

reveals the approximations underlying the methodology of Green’s function retrieval.

According to equations (16) and (17), it is assumed that the fields p(xA, t) and p(xB , t) are the responses to noise sources on

a closed surface S. However, in the example in Figure 4, the noise field is emitted into the medium from a finite open surface

S0. A consequence of this discrepancy is that the retrieved response in Figure 4b lacks the acausal termG(xB ,xA,−t)∗CN (t).5

Moreover, the causal termG(xB ,xA, t)∗CN (t) is blurred by scattering noise, which does not vanish by longer time-averaging.

According to equations (16), (17) and (21), the retrieved response would contain the causal and acausal terms and the scattering

noise would vanish when the noise field would be emitted from a closed surface and the recorded fields at xA and xB would

be correlated for long enough time.

Figure 4 is representative for seismic surface-wave interferometry (Campillo and Paul, 2003; Sabra et al., 2005b; Shapiro10

and Campillo, 2004; Bensen et al., 2007), in which case Figure 4a should be interpreted as a plan view, with the noise signals

representing microseisms, S0 representing a coast line and the Green’s functions representing the fundamental mode of surface

waves (with additional effort, higher mode surface waves can be retrieved as well (Halliday and Curtis, 2008; Kimman and

Trampert, 2010; Kimman et al., 2012; van Dalen et al., 2014)). The retrieved surface-wave Green’s functions are typically used

for tomographic imaging (Sabra et al., 2005a; Shapiro et al., 2005; Bensen et al., 2008; Lin et al., 2009). Seismic interferometry15

can also be used for reflection imaging of the earth’s crust with body waves. Because the scattering mechanism is very different,

we discuss a second example to illustrate seismic interferometry with body waves. Figure 5a shows the same layered medium

as Figure 3a, this time with noise sources at S0 in the subsurface and the upper surface being a free surface. For this situation

the part of the closed-surface integral over the free surface in equation (6) vanishes. Hence, the closed surface integrals in

equations (16) and (17) can be replaced by open surface integrals, over the noise sources in the subsurface in Figure 5a. The20

responses to these noise sources, shown in the upper part of Figure 5a, are recorded by receivers below the free surface. For

p(xA, t) we take the central trace (indicated by the red box) and for p(xB , t) (with variable xB) all other traces. We apply

equation (21) to obtain the virtual-source response G(xB ,xA, t) ∗CN (t) and its time-reversal G(xB ,xA,−t) ∗CN (t), for a

fixed virtual source at xA and receivers at variable xB . The causal part is shown in Figure 5b. In agreement with the theory,

this is the full reflection response of the layered medium, including multiple reflections. Applications of reflection-response25

retrieval from ambient noise range from the shallow subsurface to the global scale (Chaput and Bostock, 2007; Draganov et al.,

2009; Forghani and Snieder, 2010; Ryberg, 2011; Ruigrok et al., 2012; Draganov et al., 2013; Tonegawa et al., 2013; Panea

et al., 2014; Boué et al., 2014; Boullenger et al., 2015; Oren and Nowack, 2017; Almagro Vidal et al., 2018). Since body waves

in ambient noise are usually weak in comparison with surface waves, much effort is spent on recovering the body waves from

behind the surface waves. Reflection responses retrieved by body-wave interferometry are typically used for reflection imaging.30

For both methods discussed here (surface-wave interferometry and body-wave interferometry) we assumed that the noise

sources are regularly distributed along a part of S and that they all have the same autocorrelation function. In many practical

situations the source distribution is irregular, and the autocorrelations are different for different sources. Several approaches

have been developed to account for these issues, such as iterative correlation (Stehly et al., 2008), multidimensional deconvo-

10
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Figure 5. Seismic interferometry with body waves in a layered medium. The upper boundary is a free surface. (a) Noise observed by

receivers just below the surface, due to uncorrelated noise sources in the subsurface (only the first 5 seconds of approximately 5 minutes of

noise registrations are shown). (b) Retrieved reflection response, including multiple reflections.

lution (Wapenaar and van der Neut, 2010; van der Neut et al., 2011), directional balancing (Curtis and Halliday, 2010a) and

generalized interferometry, circumventing Green’s function retrieval (Fichtner et al., 2017).

2.4 Back propagation

Given a wave field observed at the surface of a medium, the field inside the medium can be obtained by back propagation

(Schneider, 1978; Berkhout, 1982; Fischer and Langenberg, 1984; Wiggins, 1984; Langenberg et al., 1986). Because back5

propagation implies retrieving a 3D field inside a volume from a 2D field at a surface, it is also known as holography (Porter

and Devaney, 1982; Lindsey and Braun, 2004). Figure 6 illustrates the principle. In Figure 6a, the field at the finite open

surface S0 due to a source at xA inside a layered medium (the same medium as in Figures 3 and 5) is back propagated to an

arbitrary point xB inside the medium by the time-reversed direct arrival of the Green’s function, Gd(x,xB ,−t). Figure 6b

shows Gd(x,xB ,−t) (for fixed xB) and a snapshot of the back propagated field at time instant t1 > 0 for all xB . Note that10

above the source (which is located at xA) the primary upgoing field coming from the source is clearly retrieved. However, the

field below the source is not retrieved. Moreover, several artefacts are present because multiple reflections between the layer

interfaces are not accounted for.

Back propagation is conceptually different from time-reversal acoustics. In time-reversal acoustics the observed wave field

is reversed in time and (physically or numerically) emitted into the medium, whereas in back propagation the original observed15
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Figure 6. Principle of back propagation. (a) The upgoing wave field p−(x,xA, t) at the surface S0 and illustration of its back propagation to

xB inside the medium. (b) The back propagation operator Gd(x,xB ,−t) (for variable x along S0 and fixed xB) and a snapshot of the back

propagated wave field p−(xB ,xA, t) at t1 = 300 ms for all xB .

wave field is numerically back-propagated through the medium by a time-reversed Green’s function. Despite this conceptual

difference (time reversal of the wave field versus time reversal of the propagation operator), it is not surprising that these

methods are very similar from a mathematical point of view.

A quantitative discussion of back propagation follows from equation (7). By interchanging xA and xB and multiplying both

sides with the spectrum s(ω) of the source at xA, we obtain5

Gh(xB ,xA,ω)s(ω) =−2

∮
S

1

iωρ0
{∂iG∗(x,xB ,ω)}G(x,xA,ω)s(ω)nidx. (22)

Here G(x,xA,ω)s(ω) stands for the observed field p(x,xA,ω) at the surface S and − 2
iωρ0

∂iG
∗(x,xB ,ω)ni for the back

propagation operator, both in the frequency domain. Hence, in theory the exact field Gh(xB ,xA,ω)s(ω) can be obtained

at any xB inside the medium. Because in practical situations the field p(x,xA,ω) is observed only at a finite part S0 of

the surface, approximations arise in practise when the closed surface S is replaced by S0. One of the consequences is that10

multiple reflections are not handled correctly. A detailed analysis (Wapenaar et al., 1989) shows that the primary arrival of the

upgoing wave field p−(xB ,xA,ω) =G−(xB ,xA,ω)s(ω) is reasonably accurately retrieved with the following approximation

of equation (22)

p−(xB ,xA,ω)≈
∫
S0

F+
d (x,xB ,ω)p−(x,xA,ω)dx. (23)
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Here the back propagation operator F+
d (x,xB ,ω), also known as the focusing operator, is defined as

F+
d (x,xB ,ω) =

2

iωρ0
∂3G

∗
d(x,xB ,ω), (24)

where we used n3 =−1 at S0, considering that the positive x3-axis is pointing downward. Equations (23) and (24) represent

the common approach to back propagation for many applications in seismic imaging and inversion. It works well for primary

waves in media with low contrasts but it breaks down when the contrasts are strong and multiple reflections between the layer5

interfaces cannot be ignored. In section 3.3 we discuss a modified approach to back-propagation which enables the recovery of

the full wave field p(xB ,xA,ω), including the multiple reflections, inside the medium (also below the source at xA) and which

suppresses artefacts like those in Figure 6b in a data-driven way.

2.5 Source-receiver redatuming and imaging by double focusing

In the previous section we discussed back propagation of p−(x,xA,ω), which is the response to a source at xA inside the10

medium, observed at x at the surface. Here we extend this process for the situation in which both the sources and receivers are

located at the surface. To this end, we first adapt equations (23) and (24). We replace S0 by S′0 (just above S0), x by x′ ∈ S′0,

xA by x ∈ S0 and xB by xA, and we add an extra superscript (+) to the wave fields (explained below), which yields

p−,+(xA,x,ω)≈
∫
S′0

F+
d (x′,xA,ω)p−,+(x′,x,ω)dx′, (25)

with15

F+
d (x′,xA,ω) =

2

iωρ0
∂′3G

∗
d(x′,xA,ω), (26)

where ∂′3 stands for differentiation with respect to x′3. In equation (25), p−,+(x′,x,ω) =G−,+(x′,x,ω)s(ω) represents the

reflection data at the surface. The first superscript (−) denotes that the field is upgoing at x′; the second superscript (+) de-

notes that the source at x emits downgoing waves. Furthermore, p−,+(xA,x,ω) =G−,+(xA,x,ω)s(ω) is the back propagated

upgoing field at xA. Applying source-receiver reciprocity on both sides of equation (25) we obtain20

p−,+(x,xA,ω)≈
∫
S′0

p−,+(x,x′,ω)F+
d (x′,xA,ω)dx′. (27)

The receiver for upgoing waves at xA has turned into a source for downgoing waves at xA, etc. Hence, equation (27) back

propagates the sources from x′ on S′0 to xA. Substituting this into equation (23), with at both sides p− replaced by p−,+, gives

p−,+(xB ,xA,ω)≈
∫
S0

∫
S′0

F+
d (x,xB ,ω)p−,+(x,x′,ω)F+

d (x′,xA,ω)dx′dx. (28)

Here p−,+(x,x′,ω) represents the reflection response at the surface (illustrated by the blue arrows in Figure 7a). Similarly,25

p−,+(xB ,xA,ω) denotes the reflection response to a source for downgoing waves at xA, observed by a receiver for upgoing

waves at xB (illustrated by the yellow arrows in Figure 7a). According to equation (28), it is obtained by back propagating

sources from x′ to xA with operator F+
d (x′,xA,ω) and receivers from x to xB with operator F+

d (x,xB ,ω), indicated by the
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dashed arrows in Figure 7a. In the exploration community this process is called (source-receiver) redatuming (Berkhout, 1982;

Berryhill, 1984) and it is closely related to source-receiver interferometry (Curtis and Halliday, 2010b). For the elastodynamic

extension, see Kuo and Dai (1984), Wapenaar and Berkhout (1989) and Hokstad (2000).

The redatumed response p−,+(xB ,xA,ω) can be used for reflectivity imaging by setting xB equal to xA and selecting the

t= 0 component in the time domain, as follows5

r(xA)≈ p−,+(xA,xA, t= 0) =
1

2π

∞∫
−∞

p−,+(xA,xA,ω)dω. (29)

The combined process (equations 28 and 29) comprises imaging by double focusing (Berkhout, 1982; Wiggins, 1984; Bleistein,

1987; Berkhout and Wapenaar, 1993; Blondel et al., 2018), because it involves twice the application of the focusing operator

F+
d (x,xA,ω). By taking the focal point xA variable, a reflectivity image of the entire region of interest is obtained. Figure 7b

shows the image obtained in this way of the same layered medium as considered in previous examples. Note that the interfaces10

are clearly imaged, but also that significant artefacts are present because multiple reflections are not correctly handled (indicated

by the red arrows). In sections 3.4 and 3.5 we discuss more rigorous approaches to source-receiver redatuming and imaging by

double focusing, which account for multiple reflections in a data-driven way.

3 Theory and applications of a modified single-sided wave field representation

The applications of Green’s theorem, discussed in section 2, are all derived from the classical homogeneous Green’s function15

representation. This representation is exact, but it involves an integral over a closed surface. In many practical situations the
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Figure 8. The focusing function f1(x,xA, t) in a truncated version of the actual medium.

medium of interest is accessible from one side only, which implies that the integration can only be carried out over an open

surface. This induces approximations, of which the incomplete treatment of multiple reflections is the most significant one. In

the following we discuss a modification of the homogeneous Green’s function representation which involves an integral over an

open surface and yet accounts for all multiple reflections. We call this modified representation the single-sided homogeneous

Green’s function representation. Next, we discuss how it can be used to improve several of the applications discussed in section5

2.

3.1 Single-sided homogeneous Green’s function representation

The classical homogeneous Green’s function representations (equations (6) and (7)) are entirely formulated in terms of Green’s

functions and their time reversals. A Green’s function is the causal response to a source at a specific position in space, say at

xA. A time-reversed Green’s function can be seen as a focusing function which focuses at xA. However, this only holds when10

it converges to xA equally from all directions, which can be achieved by emitting it into the medium from a closed surface. For

practical situations we need another type of focusing function, which, when emitted into the medium from a single surface,

focuses at xA. We introduce the focusing function at the hand of Figure 8. This figure shows a truncated version of the medium,

which is identical to the actual medium between the upper surface S0 and the focal plane SA (the plane which contains the

focal point xA), but it is reflection free above S0 and below SA (here “reflection free” means that the medium parameters do15

not vary in the vertical direction). We call the focusing function f1(x,xA, t). In the reflection-free half-space above S0 the
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Figure 9. Numerical example of the focusing function. (a) Emission of the downgoing part of the focusing function from S0 into a truncated

version of the actual medium. (b) Responses at S0 and SA.

focusing function consists of a downgoing and upgoing part, according to

f1(x,xA, t) = f+1 (x,xA, t) + f−1 (x,xA, t), (30)

where the superscripts + and − indicate downgoing and upgoing, respectively. The downgoing part f+1 (x,xA, t) is shaped

such that f1(x,xA, t) focuses at xA at t= 0, and continues as a diverging downgoing field into the reflection-free half-space

below SA. The upgoing part of the focusing function in the upper half-space, f−1 (x,xA, t), is defined as the reflection response5

of the truncated medium to the downgoing focusing function f+1 (x,xA, t). The focusing property at the focal plane SA can be

formulated as

δ(x′H,A−xH,A)δ(t) =

∫
S0

T (x′A,x, t) ∗ f+1 (x,xA, t)dx, (31)

where T (x′A,x, t) is the transmission response of the truncated medium between S0 and SA, and where xH,A and x′H,A are

the horizontal coordinates of xA and x′A (both at SA), respectively (the precise definition of T (x′A,x, t) is given in Appendix10

A of Wapenaar et al. (2014a)). In physical terms, equation (31) formulates the emission of f+1 (x,xA, t) from S0 into the

truncated medium, leading to a focus at xA at SA. In mathematical terms, equation (31) defines f+1 (x,xA, t) as the inverse of

the transmission response T (x′A,x, t). Because the evanescent part of the transmission response cannot be inverted in a stable

way, in practice the focusing function, and hence the focus at SA, are band-limited.

The focusing function is illustrated with a numerical example in Figure 9. Figure 9a shows how the downgoing part of15

the focusing function, f+1 (x,xA, t), is emitted from x at S0 into the medium. The first event (at negative time) propagates
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downward toward the focal point xA (indicated by the outer yellow rays). On its path to the focal point it gets reflected at layer

interfaces, indicated by the blue rays. During upward propagation, these blue rays meet new yellow rays (coming from the

later events of the focusing function), in such a way that effectively no downward reflection takes place at the layer interfaces,

etc. Hence, only the first event of the focusing function reaches the focal depth, where it focuses at xA. Figure 9b shows the

responses to the focusing function, at S0 and SA. The response at S0 is the upgoing part of the focusing function, f−1 (x,xA, t).5

The response at SA is the band-limited focused field.

Given the focusing function for a focal point at xA and the Green’s function for a source at xB , the single-sided representation

of the homogeneous Green’s function in the frequency domain reads (Wapenaar et al., 2016a)

Gh(xB ,xA,ω) = 2

∫
S0

1

ωρ(x)

(
{∂iGh(x,xB ,ω)}={f1(x,xA,ω)}−Gh(x,xB ,ω)={∂if1(x,xA,ω)}

)
nidx, (32)

where = denotes the imaginary part. The derivation can be found in the supplementary material, section 2.2 (a similar single-10

sided representation for vectorial wave fields is derived by Wapenaar et al. (2016b) and illustrated with numerical examples by

Reinicke Urruticoechea and Wapenaar (2019)). In equation (32), S0 may be a curved surface. Moreover, the actual medium, in

which the Green’s function is defined, may be inhomogeneous above S0 (in addition to being inhomogeneous below S0). Note

the resemblance with the classical representation of equation (6). Unlike the classical representation, which is exact, equation

(32) holds under the assumption that evanescent waves can be neglected. When S0 is horizontal and the medium above S0 is15

homogeneous (for the Green’s function as well as for the focusing function), this representation may be approximated by

Gh(xB ,xA,ω) = 4<
∫
S0

1

iωρ0
G(x,xB ,ω)∂3

(
f+1 (x,xA,ω)−{f−1 (x,xA,ω)}∗

)
dx (33)

(Van der Neut et al., 2017). For the derivation, see the supplementary material, section 2.3. For the decomposed Green’s

function G−,+(xB ,xA,ω), introduced in section 2.5, we have the following representation (by combining equations 31 and 38

of the supplementary material)20

G−,+(xB ,xA,ω) = 2

∫
S0

1

iωρ0
G−,+(x,xB ,ω)∂3f

+
1 (x,xA,ω)dx−χ(xB)f−1 (xB ,xA,ω), (34)

where χ is the characteristic function of the medium enclosed by S0 and SA. It is defined as

χ(xB) =


1, for xB between S0 and SA,

1
2
, for xB on S = S0 ∪SA,

0, for xB outside S.

(35)

In many practical situations S0 is a free surface, which means that the assumption of a homogeneous medium above S0 is not

fulfilled. A free surface gives rise to surface-related multiple reflections. These can be removed by a process called surface-25

related multiple elimination (Verschuur et al., 1992). Applying this process is equivalent with replacing the free surface by a

transparent surface and a homogeneous half-space above this surface (Fokkema and van den Berg, 1993; van Borselen et al.,

1996). Hence, when S0 is a free surface, equations (33) and (34) hold for the situation after surface-related multiple elimination.
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The representations of equations (33) and (34) form the starting point for modifying several of the applications discussed in

section 2. These methods, which will be discussed in the subsequent sections, have in common that they make use of focusing

functions. As stated earlier, the focusing function f+1 (x,xA, t) for x at S0 is the inverse of the transmission response of the

truncated medium between S0 and SA. Hence, when a detailed model of the medium between these depth levels is available, its

transmission response can be numerically modeled and f+1 (x,xA, t) can be obtained by inverting this transmission response.5

Next, f−1 (x,xA, t) can be obtained by applying the reflection response of the truncated medium to f+1 (x,xA, t). This is

obviously a model-driven approach. On the other hand, when the reflection response of the actual medium is available at S0,

the focusing functions f+1 (x,xA, t) and f−1 (x,xA, t) for x at S0 can be retrieved from this reflection response by a 3D extension

of the Marchenko method (Wapenaar et al., 2014a; Slob et al., 2014). This method needs an initial estimate of f+1 (x,xA, t),

for which one could use the inverse of the direct arrival of the transmission response. This requires only a smooth model of the10

medium between S0 and SA. In practice, the back propagating direct arrival of the Green’s function, Gd(x,xA,−t), is usually

taken as initial estimate. Because the Marchenko method uses the reflection response (obtained from reflection measurements

at the surface S0) and a smooth model of the medium, it is a data-driven approach for retrieving the focusing functions.

One of the underlying assumptions of the Marchenko method is that the Green’s functions and the focusing functions are

separable in time. This assumption is satisfied for layered media with moderate lateral variations (like in Figure 3), considering15

moderate horizontal source-receiver offsets; it breaks down for strongly scattering media (like in Figure 2). In the latter case the

Marchenko method is only approximately valid, but despite the approximation it can still lead to better images than standard

imaging methods (Wapenaar et al., 2014b). A further discussion of the 3D Marchenko method is beyond the scope of this

paper.

3.2 Modified time-reversal acoustics20

We discuss a modification of time-reversal acoustics. Assuming the focusing functions are available for x at S0 (for example

from the Marchenko method), we define a new particle velocity field, according to

v̂∗n(x,xA,ω) =
1

iωρ0
∂3
(
f+1 (x,xA,ω)−{f−1 (x,xA,ω)}∗

)
s(ω), (36)

where for s(ω) we take a real-valued spectrum. Using this in equation (33) we obtain

Gh(xB ,xA,ω)s(ω) = 4<
∫
S0

G(xB ,x,ω)v̂∗n(x,xA,ω)dx. (37)25

In the time domain this becomes

Gh(xB ,xA, t) ∗ s(t) = 2

∫
S0

G(xB ,x, t) ∗ v̂n(x,xA,−t)dx+ 2

∫
S0

G(xB ,x,−t) ∗ v̂n(x,xA, t)dx. (38)

The first integral is the same as that in equation (10) (except that v̂n is defined differently), whereas the second integral is

the time reversal of the first one. For ultrasonic applications, assuming there are receivers at one or more xB locations, the

field v̂n(x,xA,−t) can be emitted physically into the real medium and its response can be measured at xB . The homogeneous30
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Figure 10. Modified time-reversal acoustics in a layered medium. (a) Classical approach: emission of the time-reversed recordings from S0

into the medium. (b) Emission of a modified field, defined by equation (36), into the medium. Note the improved focus.

Green’s function is then obtained by superposing this response and its time reversal. For geophysical applications, the first

integral can, at least in theory, be evaluated by numerically emitting the field v̂n(x,xA,−t) into a model of the earth. The

superposition of this integral and its time-reversal gives the homogeneous Green’s function. Following either one of these

procedures, the result obtained at t= 0 is shown in Figure 10b. For comparison, Figure 10a once more shows the classical

time-reversal result of Figure 3b. Note the different character of the fields vn and v̂n in the upper panels, which have only one5

event in common i.e., the time-reversed direct arrival. The snapshots at t= 0 in the lower panels are also very different: the

artefacts in Figure 10a are almost entirely absent in Figure 10b. The latter figure only shows a clear focus at xA.

Obtaining an accurate focus as in Figure 10b by numerically emitting the field v̂n(x,xA,−t) into the earth requires a very

accurate model of the earth, which should include accurate information on the position, structure and contrast of the layer

interfaces. This requirement can be overcome by also retrieving the Green’s function G(xB ,x, t) in equation (38) with the10

Marchenko method and evaluating the integrals for all xB . This is not further discussed here. Alternative methods that don’t

need information about the layer interfaces are discussed in sections 3.3 to 3.5 and illustrated with examples.
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Figure 11. Principle of modified back propagation. (a) The wave field p(x,xA, t) at the surface S0 and illustration of its back propagation

to xB inside the medium. (b) The back propagation operator F (x,xB , t) (for variable x along S0 and fixed xB) and a snapshot of the back

propagated wave field p(xB ,xA, t) at t1 = 300 ms for all xB .

3.3 Modified back propagation

We modify the approach for back propagation. By interchanging xA and xB in equation (33) and multiplying both sides with

a real-valued source spectrum s(ω), we obtain

p(xB ,xA,ω) + p∗(xB ,xA,ω) = 2<
∫
S0

F (x,xB ,ω)p(x,xA,ω)dx, (39)

with p(x,xA,ω) =G(x,xA,ω)s(ω) and5

F (x,xB ,ω) =
2

iωρ0
∂3
(
f+1 (x,xB ,ω)−{f−1 (x,xB ,ω)}∗

)
. (40)

Note that the operator F+
d (x,xB ,ω) in equation (24) is an approximation of the operator F (x,xB ,ω) in equation (40). It is

obtained by omitting the term {f−1 (x,xB ,ω)}∗ and replacing the term f+1 (x,xB ,ω) by its initial estimate, i.e, the Fourier

transform of the direct arrival of the Green’s function, Gd(x,xB ,−t). Figure 11 illustrates, in the time domain, the principle of

modified back propagation. In Figure 11a, the field p(x,xA, t) is back propagated to an arbitrary point xB inside the medium by10

operator F (x,xB , t). This operator can be obtained from reflection data at the surface and the initial estimate Gd(x,xB ,−t),

using the Marchenko method. Figure 11b shows F (x,xB , t) (for fixed xB) and a snapshot of the back propagated field at a

time instant t1 > 0 for all xB . Note that the full field p(xB ,xA, t) is retrieved (downgoing and upgoing components, primaries

and multiples) and that hardly any artefacts are visible. The dashed lines in the snapshot in Figure 11b indicate the interfaces
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Figure 12. (a) Principle of modified source-receiver redatuming. (b) Snapshot of the wave field p(xB ,xA, t) at t2 = 500 ms for all xB .

to aid the interpretation of the snapshot. Note, however, that these interfaces need not be known to obtain this result: only a

smooth subsurface model is required to define the initial estimate Gd(x,xB ,−t) of the focusing operator. All other events in

the focusing operator come directly from the reflection data at the surface.

This back propagation method has an interesting application in monitoring of induced seismicity. Assuming p(x,xA, t)

stands for the response to an induced seismic source at xA, this method creates, in a data-driven way, omnidirectional virtual5

receivers at any xB to monitor the emitted field from the source to the surface. This application is extensively discussed in the

companion paper (Brackenhoff et al., 2019).

3.4 Modified source-receiver redatuming

We modify the approach for source-receiver redatuming. First, in equation (39), we replace S0 by S′0 (just above S0), x by

x′ ∈ S′0, xA by x ∈ S0 and xB by xA. Next, we apply source-receiver reciprocity on both sides of the equation. This yields10

p(x,xA,ω) + p∗(x,xA,ω) = 2<
∫
S′0

p(x,x′,ω)F (x′,xA,ω)dx′, (41)

with F (x′,xA,ω) defined as in equation (40), with ∂3 replaced by ∂′3, similar as in equation (26). The field p(x,x′,ω) =

G(x,x′,ω)s(ω) represents the data at the surface. Equation (41) back propagates the sources from x′ on S′0 to xA. Source-

receiver redatuming is now defined as the following two-step process. In step one, apply equation (41) to create an omnidirec-

tional virtual source at any desired position xA in the subsurface. According to the left-hand side, the response to this virtual15

source is observed by actual receivers at x at the surface. Isolate p(x,xA,ω) from the left-hand side by applying a time window

(a simple Heaviside function) in the time domain. In step two, substitute the retrieved response p(x,xA,ω) into equation (39)

to create virtual receivers at any position xB in the subsurface. Figure 12(a) illustrates the principle. The operators can be
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obtained with the Marchenko method. Figure 12b shows a snapshot of p(xB ,xA, t) at a time instant t2 > t1 > 0 for all xB

(the retrieved snapshot at t1 is indistinguishable from that in Figure 11b, which is why we chose to show a snapshot at another

time instant). The dashed lines in the snapshot in Figure 12b indicate the interfaces to aid the interpretation of the snapshot, but

the interfaces need not to be known to obtain this result. This method has an interesting application in forecasting the effects

of induced seismicity. Assuming xA is the position where induced seismicity is likely to take place, this method forecasts the5

response by creating, in a data-driven way, a virtual source at xA and virtual receivers at any xB that observe the propagation

and scattering of its emitted field from the source to the surface. Also this method is extensively discussed in the companion

paper (Brackenhoff et al., 2019).

3.5 Modified imaging by double focusing

If we would apply imaging to the retrieved response p(xB ,xA,ω) + p∗(xB ,xA,ω) in a similar way as in equation (29), we10

would obtain an image of the virtual sources instead of the reflectivity. Similar as in section 2.5 we need a process to obtain

the decomposed response p−,+(xB ,xA,ω). Our starting point is equation (34), in which we interchange xA and xB and

choose both these points at SA, such that f−1 (xA,xB ,ω) = 0. Applying source-receiver reciprocity on the left-hand side and

multiplying both sides with a source spectrum s(ω), we obtain

p−,+(xB ,xA,ω) =

∫
S0

F+(x,xB ,ω)p−,+(x,xA,ω)dx, (42)15

with p−,+(x,xA,ω) =G−,+(x,xA,ω)s(ω) and

F+(x,xB ,ω) =
2

iωρ0
∂3f

+
1 (x,xB ,ω). (43)

Next, in equation (34), replace S0 by S′0 (just above S0), x by x′ ∈ S′0 and xB by x ∈ S0. Applying source-receiver reciprocity

on the right-hand side and multiplying both sides with a source spectrum s(ω), we obtain

p−,+(x,xA,ω) =

∫
S′0

p−,+(x,x′,ω)F+(x′,xA,ω)dx′− f−1 (x,xA,ω)s(ω), (44)20

with F+(x′,xA,ω) defined as in equation (43), with ∂3 replaced by ∂′3, similar as in equation (26). Substitution of equation

(44) into equation (42) yields

p−,+(xB ,xA,ω) +

∫
S0

F+(x,xB ,ω)f−1 (x,xA,ω)s(ω)dx

=

∫
S0

∫
S′0

F+(x,xB ,ω)p−,+(x,x′,ω)F+(x′,xA,ω)dx′dx. (45)

This is the modified version of equation (28), with the operators F+
d , which account for primaries only, replaced by operators25

F+, accounting for primaries and multiples. These operators can be obtained with the Marchenko method from the reflection

data p−,+(x,x′,ω) and a smooth model of the medium to define the initial estimate of f+1 . The second term on the left-hand

side can be removed by a time-window in the time domain, which leaves the redatumed reflection response p−,+(xB ,xA,ω).
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b)	

Figure 13. Reflectivity images obtained by the double-focusing method. (a) Classical approach. (b) Modified approach.

The reflectivity imaging step to retrieve r(xA) is the same as that in equation (29) and is not repeated here. Figure 13b shows an

image obtained by applying equations (45) and (29) for all xA in the region of interest, for the same medium that was imaged

with the classical double-focusing method (which for ease of comparison is repeated in Figure 13a). Note that the artefacts

caused by the internal multiple reflections (indicated by the red arrows in Figure 13a), have almost entirely been removed.

In practical situations the modified method may suffer from imperfections in the data, such as incomplete sampling, anelastic5

losses, out-of plane reflections, 3D spreading effects, etc. Several of these imperfections can be accounted for by making the

method adaptive (van der Neut et al., 2014). Promising results have been obtained with real data (Ravasi et al., 2016; Staring

et al., 2018).

Other methods exist that deal with internal multiple reflections in imaging. Davydenko and Verschuur (2017) discuss

a method called full wave field migration. This is a recursive method, starting at the surface, which alternately resolves10

layer interfaces and predicts the multiples related to these interfaces. In contrast, equation (45) is non-recursive. The field

p−,+(xB ,xA,ω) at SA is obtained without needing information about the layer interfaces between S0 and SA; a smooth

model suffices. Following work of Weglein et al. (1997, 2011) on an inverse-scattering series approach to multiple elimi-

nation, Ten Kroode (2002) proposes a method that attenuates the internal multiples directly from the reflection data at the

surface, without needing model information. This method resembles a multiple prediction and removal method proposed by15

Jakubowicz (1998). These methods address all orders of internal multiples, but only with approximate amplitudes. Variants

of the Marchenko method have been developed that aim to eliminate the internal multiples from the reflection data at the

surface (Meles et al., 2015; van der Neut and Wapenaar, 2016; Zhang et al., 2019). The last reference shows that all orders

of multiples are, at least in theory, predicted with the correct amplitudes without needing model information. Once the inter-

nal multiples have been successfully eliminated from the reflection data at the surface, standard redatuming and imaging (for20

example as described in section 2.5) can be used to form an accurate image of the subsurface, without artefacts caused by

multiple reflections.
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4 Conclusions

The classical homogeneous Green’s function representation, originally developed for optical image formation by holograms,

expresses the Green’s function plus its time-reversal between two arbitrary points in terms of an integral along a surface

enclosing these points. It forms a unified basis for a variety of seismic imaging methods, such as time-reversal acoustics, seismic

interferometry, back propagation, source-receiver redatuming and imaging by double focusing. We have derived each of these5

methods by applying some simple manipulations to the classical homogeneous Green’s function representation, which implies

that these methods are all different sides of the same coin. As a consequence, they share the same advantages and limitations.

Because the underlying representation is exact, it accounts for all orders of multiple scattering. This property is exploited by

seismic interferometry in a layered medium below a free surface and, to some extent, by time-reversal acoustics in a medium

with random scatterers. However, in most cases multiple scattering is not correctly handled because in practical situations10

data are not available on a closed surface. We also discussed a single-sided homogeneous Green’s function representation,

which requires access to the medium from one side only, say from the earth’s surface. This single-sided representation ignores

evanescent waves, but it accounts for all orders of multiple scattering, similar as the classical closed-surface representation. We

used the single-sided representation as the basis for deriving modifications of time-reversal acoustics, back propagation, source-

receiver redatuming and imaging by double focusing. These methods account for multiple scattering and can be used to obtain15

accurate images of the source or the subsurface, without artefacts related to multiple scattering. Another interesting application

is the monitoring and forecasting of responses to induced seismic sources, which is discussed in detail in a companion paper.
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