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Abstract. The solid earth and exploration communities independently developed a variety of seismic imaging methods for

passive- and active-source data. Despite the seemingly different approaches and underlying principles, many of those methods

are based in some way or another on Green’s theorem. The aim of this paper is to discuss a variety of imaging methods in a

systematic way, using a specific form of Green’s theorem (the homogeneous Green’s function representation) as the common

starting point. The imaging methods we cover are time-reversal acoustics, seismic interferometry, back propagation, source-5

receiver redatuming and imaging by double focusing. We review classical approaches and discuss recent developments that

fully account for multiple scattering, using the Marchenko method. We briefly indicate new applications for monitoring and

forecasting of responses to induced seismic sources, which are discussed in detail in a companion paper.

1 Introduction

Traditionally, methods for seismic imaging evolved independently in the solid earth and exploration communities. This has10

led to a wealth of imaging methods for passive- and active-source data, based on a variety of principles such as time-reversal

acoustics, Green’s function retrieval by noise correlation (also known as seismic interferometry), back propagation (also known

as holography), source-receiver redatuming, and so on. According to the authors’ perception, the different communities have

gradually come closer together in the past fifteen years or so. In particular the advent of Green’s function retrieval by noise

correlation has led to a significant cross-fertilisation between the communities via jointly organised sessions and workshops,15

as well as special issues in journals (e.g. “Seismic Interferometry,” Geophysics, July-August 2006; New developments on

imaging and monitoring with seismic noise, “Comptes Rendus Geoscience,” September 2011, etc.). Moreover, the fields of

adjoint tomography in the solid earth community (e.g. Bozdağ et al. (2016)) and full waveform inversion in the exploration

community (e.g. Virieux and Operto (2009)) appear to have much in common and nowadays much cooperation is taking place

in these fields between researchers of both communities. The current special issue on “Advances in seismic imaging across the20

scales” is another welcome initiative to bring the solid earth and exploration communities closer together.

Many of the methods mentioned above are rooted in some way or another in Green’s theorem (Green, 1828; Challis and

Sheard, 2003). The current paper is a modest attempt to discuss a variety of imaging methods and their underlying principles

in a systematic way, using Green’s theorem as the common starting point. We are by far not the first to recognise links between

different imaging methods. For example, Esmersoy and Oristaglio (1988) discussed the link between back propagation and25

reverse-time migration, Derode et al. (2003) derived seismic interferometry from the principle of time-reversal acoustics by
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physical reasoning, Schuster et al. (2004) linked seismic interferometry to back propagation, and links between adjoint tomo-

graphic inversion methods and time-reversal acoustics have been made by Tarantola (1984) and Tromp et al. (2005), to name

but a few. In this paper we restrict ourselves to linking several imaging methods, including recent developments using the 3D

Marchenko method, but we refrain from discussing inversion methods.

Using a specific form of Green’s theorem (i.e., the classical representation of the homogeneous Green’s function, originally5

developed for optical holography (Porter, 1970; Porter and Devaney, 1982)), we derive time-reversal acoustics, seismic inter-

ferometry, back propagation, source-receiver redatuming and imaging by double focusing in a systematic way, confirming that

these methods are all different sides of the same coin. We briefly discuss the potential and limitations of these methods. Because

the classical homogeneous Green’s function representation is based on a closed boundary integral, an implicit assumption for

all these methods is that the medium of interest can be accessed from all sides. Because in most seismic applications acqui-10

sition is limited to the earth’s surface, a major part of the closed boundary integral is necessarily neglected. This implies that

errors are introduced and, in particular, that multiple reflections between layer interfaces are not correctly handled. To address

this issue, we also discuss a recently developed single-sided representation of the homogeneous Green’s function. We use this

to derive, in the same systematic way, modified seismic imaging methods that do account for multiple reflections between

layer interfaces. In a companion paper (Brackenhoff et al., 2019) we extensively discuss applications for monitoring induced15

seismicity.

Although the solid earth supports elastodynamic waves, to facilitate the comparison of the different methods discussed in

this paper we have chosen to consider acoustic waves only. At several places we give references to extensions of the methods

that account for elastodynamic waves.

2 Theory and applications of classical wave field representations20

2.1 Classical homogeneous Green’s function representation

We review the classical representation of the homogeneous Green’s function. We consider an inhomogeneous lossless acoustic

medium, with mass density ρ= ρ(x) and compressibility κ= κ(x), where x = (x1,x2,x3) denotes the Cartesian coordinate

vector. In this medium we define a unit impulsive point source of volume-injection rate density q(x, t) = δ(x−xA)δ(t), where

δ(·) denotes the Dirac delta function, xA the position of the source and where t stands for time. The response to this source,25

observed at any position x in the inhomogeneous medium, is the Green’s function G(x,xA, t). It obeys the following wave

equation

∂i(ρ
−1∂iG)−κ∂2tG=−δ(x−xA)∂tδ(t), (1)

where ∂t stands for the temporal differential operator ∂/∂t and ∂i for the spatial differential operator ∂/∂xi. Latin subscripts

(except t) take on the values 1, 2 and 3, and Einstein’s summation convention applies to repeated subscripts. We impose the30

condition G(x,xA, t) = 0 for t < 0, so that G(x,xA, t) is the causal solution of equation (1), propagating forward, away from
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Figure 1. Configuration for the homogeneous Green’s function representation (equation 6). The rays in this and subsequent figures represent

the full responses between the source and receiver points, including primary an multiple scattering.

the source at xA. Note that the Green’s function obeys source-receiver reciprocity, i.e., G(xB ,xA, t) =G(xA,xB , t). This

property will be frequently used without always mentioning it explicitly.

The time-reversal of the Green’s function, G(x,xA,−t), is the acausal solution of equation (1), which, for t < 0, propagates

backward, towards the point xA. The homogeneous Green’s functionGh(x,xA, t) is defined as the superposition of the Green’s

function and its time reversal, according to5

Gh(x,xA, t) =G(x,xA, t) +G(x,xA,−t). (2)

It obeys a homogeneous wave equation (i.e., a wave equation without a singularity at the right-hand side), hence ∂i(ρ−1∂iGh)−
κ∂2tGh = 0. We define the Fourier transform of a space- and time-dependent function u(x, t) as

u(x,ω) =

∞∫
−∞

u(x, t)exp(iωt)dt. (3)

Here ω denotes angular frequency and i the imaginary unit. For notational convenience, we use the same symbol for quantities10

in the time domain and in the frequency domain. The wave equation for the Green’s function in the frequency domain reads

∂i(ρ
−1∂iG) +κω2G= iωδ(x−xA). (4)

The homogeneous Green’s function in the frequency domain is defined as

Gh(x,xA,ω) =G(x,xA,ω) +G∗(x,xA,ω) = 2<{G(x,xA,ω)}, (5)

where the superscript asterisk denotes complex conjugation and where < means that the real part is taken. The classical15

representation of the homogeneous Green’s function reads (Porter (1970); Oristaglio (1989); supplementary material, section

1.3)

Gh(xB ,xA,ω) =

∮
S

1

iωρ(x)

(
{∂iG(x,xB ,ω)}G∗(x,xA,ω)−G(x,xB ,ω)∂iG

∗(x,xA,ω)
)
nidx, (6)

see Figure 1. Here S is an arbitrarily shaped closed boundary with outward pointing normal vector n = (n1,n2,n3). It is

assumed that xA and xB are situated inside S. Note that the aforementioned authors use a slightly different definition of20
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the Green’s function (the factor iω in the source term in equation (4) is absent in their case). Nevertheless, we will refer to

equation (6) as the classical homogeneous Green’s function representation. When the medium outside S is homogeneous and

S is sufficiently smooth, this representation may be approximated by

Gh(xB ,xA,ω) =−2

∮
S

1

iωρ(x)
G(x,xB ,ω)∂iG

∗(x,xA,ω)nidx. (7)

The main approximation is that evanescent waves are neglected at S (Zheng et al., 2011; Wapenaar et al., 2011). The latter5

representation forms the starting point for discussing a number of applications in the next sections.

2.2 Time-reversal acoustics

The field of time-reversal acoustics has been pioneered by Fink and co-workers (Fink, 1992; Derode et al., 1995; Draeger and

Fink, 1999; Fink, 2006). It is based on the fact that the acoustic wave equation for a lossless medium is invariant under time

reversal (for discussions about elastodynamic time-reversal methods we refer to Scalerandi et al. (2009), Anderson et al. (2009)10

and Wang and McMechan (2015)). Hence, given a particular solution of the wave equation, its time-reversal obeys the same

wave equation. Figure 2 illustrates the principle (after Derode et al. (1995) and Fink (2006)). In Figure 2a, an impulsive source

at xA emits a wave field which, after propagation through a highly scattering medium, is recorded by receivers at x on the

boundary S0. The recordings are denoted as vn(x,xA, t), where vn stands for the normal component of the particle velocity.

Note that these recordings are very complex due to multiple scattering in the medium. In Figure 2b, the time-reversals of these15

complex recordings, vn(x,xA,−t), are emitted from the boundary S0 into the medium. After propagating through the same

scattering medium, the field should focus at xA, i.e., at the position of the original source. Figure 2c shows a snapshot of the

field at t= 0, which indeed contains a focus at xA. Figure 2d shows a cross-section of the amplitudes at t= 0 at the depth

level of the focus (the blue curve with the sharp peak). For comparison, when the same field vn(x,xA,−t) propagates from S0
through a homogeneous medium to xA, hardly any focusing takes place (Figure 2d, green curve without a well-defined peak).20

Hence, we can conclude that multiple scattering contributes to the formation of the focus in Figure 2c. As a matter of fact, the

scattering medium effectively widens the aperture angle, meaning that the resolution of the focus is even better than when the

scatterers would be absent in both steps of the experiment (the latter represented by the red curve in Figure 2d).

The time-reversal principle can be made more quantitative using Green’s theorem (Fink, 2006). First, using the equation of

motion, we express the normal component of the particle velocity at S in the frequency domain as25

vn(x,xA,ω) =
1

iωρ(x)
ni∂iG(x,xA,ω)s(ω), (8)

where s(ω) is the spectrum of the source at xA. Using this in the homogeneous Green’s function representation of equation (7)

we obtain

Gh(xB ,xA,ω)s∗(ω) = 2

∮
S

G(xB ,x,ω)v∗n(x,xA,ω)dx, (9)
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Figure 2. Principle of time-reversal acoustics (artist impression, figures not to scale). (a) Forward propagation from xA to the surface S0. (b)

Emission of the time-reversed recordings from S0 into the medium. (c) Snapshot of the wave field at t= 0, with focus at xA. (d) Amplitude

cross-sections of focussed field. Blue curve: cross-section obtained from (c). Green curve: scatterers only present during forward propagation.

Red curve: no scatterers in both steps.

or, in the time domain (using equation 2),

{G(xB ,xA, t) +G(xB ,xA,−t)} ∗ s(−t) = 2

∮
S

G(xB ,x, t)︸ ︷︷ ︸
′propagator′

∗vn(x,xA,−t)︸ ︷︷ ︸
′source′

dx, (10)

where the inline asterisk (∗) denotes temporal convolution. This is the fundamental expression for time-reversal acoustics.

The right-hand side quantifies the emission of the time-reversed field vn(x,xA,−t) by sources at x on the boundary S and

propagation of this field by the Green’s function G(xB ,x, t) through the inhomogeneous medium to any point xB inside S;5

the integral is taken over all sources on S (Huygens’ principle). The left-hand side quantifies the field at any point xB inside

S, which consists of a backward propagating field G(xB ,xA,−t) ∗ s(−t), converging to xA, and a forward propagating field

G(xB ,xA, t)∗s(−t), propagating away from xA. By setting xB equal to xA we obtain the field at the focus (i.e., at the position

of the original source, as illustrated by Figure 2b). By taking xB variable in a small region around xA, while setting t equal to

5
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zero, equation (10) quantifies the focal spot. Assuming the source function s(t) is symmetric, this yields

[{G(xB ,xA, t) +G(xB ,xA,−t)} ∗ s(t)]t=0 =− ρ̄

2πr
ṡ(r/c̄) (11)

(Douma and Snieder, 2015; Wapenaar and Thorbecke, 2017), where c̄ and ρ̄ are the propagation velocity and mass density in

the neighborhood of xA, r is the distance of xB to xA, and ṡ(t) denotes the derivative of the source function s(t).

It should be noted that the integration in equation (10) takes place over sources on a closed boundary S. However, in the5

example in Figure 2 the time-reversed field is emitted into the medium from a finite open boundary S0. Despite this discrepancy,

a very good focus is obtained around xA. Nevertheless, Figure 2c also shows a noisy field at t= 0, particularly in the scattering

region. According to equation (10), this noisy field would vanish when the time-reversed field would be emitted from a closed

boundary.

Figure 2 is exemplary for ultrasonic applications of time-reversal acoustics, because in those applications it is feasible to10

physically emit the time-reversed field into the real medium (Fink, 1992; Cassereau and Fink, 1992; Derode et al., 1995;

Draeger and Fink, 1999; Fink, 2006; Tanter and Fink, 2014). Time-reversal acoustics also finds applications in geophysics,

but in those applications the time-reversed field is emitted numerically into a model of the earth. This is used for source

characterization (McMechan, 1982; Gajewski and Tessmer, 2005; Larmat et al., 2010) and for structural imaging by reverse-

time migration (McMechan, 1983; Whitmore, 1983; Baysal et al., 1983; Etgen et al., 2009; Zhang and Sun, 2009; Clapp et al.,15

2010). In these model-driven applications it is much more difficult to account for multiple scattering and therefore it is usually

ignored. Moreover, the scattering mechanism is often very different, particularly in applications dedicated to image the earth’s

crust. We discuss a second time-reversal example to illustrate this.

Whereas in Figure 2 we considered short-period multiple scattering at randomly distributed point-like scatterers in a homo-

geneous background medium, in Figure 3 we consider long-period multiple scattering at extended interfaces between layers20

with distinct medium parameters (which is exemplary for multiple scattering in the earth’s crust). Figure 3a shows the response

vn(x,xA, t) to a source at xA inside a layered medium, observed at the surface S0. The time-reversal of this response is emitted

from S0 into the same layered medium. The field at t= 0 is shown in Figure 3b. We observe again a clear focus at xA, but this

time the multiple scattering does not contribute to the resolution of this focus (because no widening of the aperture angle takes

place). On the contrary, the multiply scattered waves give rise to strong distinct artefacts at other regions in the medium. Again,25

these artefacts would disappear entirely when the time-reversed field would be emitted from a closed boundary, but this is of

course unrealistic for geophysical applications. In section 3.2 we discuss a modified approach to single-sided time-reversal

acoustics which does not suffer from artefacts like those in Figure 3b.

2.3 Seismic interferometry

Under certain conditions, the cross-correlation of ambient noise recordings at two receivers converges to the response that30

would be measured at one of the receivers if there were an impulsive source at the position of the other. This methodology,

which creates a virtual source at the position of an actual receiver, is known as Green’s function retrieval, or seismic interferom-

etry. At ultrasonic scale it has been pioneered by Weaver and co-workers (Weaver and Lobkis, 2001; Lobkis and Weaver, 2001;

6
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Figure 3. Time-reversal acoustics in a layered medium. (a) Forward propagation from xA to the surface S0. (b) Emission of the time-reversed

recordings from S0 into the medium and snapshot of the wave field at t= 0, with focus at xA.

Weaver and Lobkis, 2002). At ultrasonic scale the object of investigation is often a closed system. Early applications for open

systems, including seismological applications, are discussed by Aki (1957), Claerbout (1968), Duvall et al. (1993), Rickett and

Claerbout (1999), Schuster (2001), Wapenaar et al. (2002), Campillo and Paul (2003), Derode et al. (2003), Snieder (2004),

Schuster et al. (2004), Roux et al. (2005), Sabra et al. (2005a), Larose et al. (2006) and Draganov et al. (2007). A detailed

discussion of the many aspects of seismic interferometry is beyond the scope of this paper. Overviews are given by Schuster5

(2009), Wapenaar et al. (2010) and Nakata et al. (2019).

Figure 4 illustrates the principle. In Figure 4a, a distribution of uncorrelated noise sources N(x, t) at some boundary S0 emit

waves through an inhomogeneous medium to receivers at xA and xB . The cross-correlation of the responses at xA and xB

converges to G(xB ,xA, t) ∗CN (t), where CN (t) is the autocorrelation of the noise. The result is shown in Figure 4b, for a

fixed virtual source at xA and an array of receivers at variable xB .10

We use the homogeneous Green’s function representation of equation (7) to explain this in a more quantitative way (Wape-

naar et al., 2002; Weaver and Lobkis, 2004; van Manen et al., 2005; Korneev and Bakulin, 2006). Representations for elas-

todynamic interferometry are discussed by Wapenaar (2004), Halliday and Curtis (2008) and Kimman and Trampert (2010).

Using a far field approximation for the derivative of the Green’s function under the integral in equation (7), we obtain

ni∂iG(x,xA,ω)→ iω

c0
G(x,xA,ω), (12)15

where c0 is the propagation velocity of the homogeneous medium outside S. Substituting this into equation (7) yields

Gh(xB ,xA,ω)≈ 2

ρ0c0

∮
S

G(xB ,x,ω)G∗(xA,x,ω)dx, (13)

7
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inhomogeneous medium to receivers at xA and xB . (b) Cross-correlation of responses at xA and xB (with xA fixed and xB variable).

or, in the time domain (using equation 2),

G(xB ,xA, t) +G(xB ,xA,−t)≈
2

ρ0c0

∮
S

G(xB ,x, t) ∗G(xA,x,−t)dx, (14)

where ρ0 is the mass density of the homogeneous medium outside S (the approximation sign refers to the far-field approxi-

mation). For a distribution of noise sources N(x, t) on S (like in Figure 4a), we can write for the observed field at xA and

xB5

p(xA, t) =

∮
S

G(xA,x, t) ∗N(x, t)dx, (15)

p(xB , t) =

∮
S

G(xB ,x
′, t) ∗N(x′, t)dx′. (16)

Assuming the noise sources are mutually uncorrelated, they obey

〈N(x′, t) ∗N(x,−t)〉= δS(x−x′)CN (t), (17)

where CN (t) is the autocorrelation of the noise (which is assumed to be the same for all sources), 〈·〉 stands for time averaging,10

and δS(x−x′) is a 2D delta function defined in S. Cross-correlation of the observed noise fields in xA and xB gives

〈p(xB , t) ∗ p(xA,−t)〉=

〈∮
S

∮
S

G(xB ,x
′, t) ∗N(x′, t) ∗G(xA,x,−t) ∗N(x,−t)dx′dx

〉
. (18)

Using equation (17) this becomes

〈p(xB , t) ∗ p(xA,−t)〉=

∮
S

G(xB ,x, t) ∗G(xA,x,−t) ∗CN (t)dx. (19)
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Note that the right-hand side resembles that of equation (14). Hence, if we convolve both sides of equation (14) with CN (t),

we can replace its right-hand side by the left-hand side of equation (19), according to

{G(xB ,xA, t) +G(xB ,xA,−t)} ∗CN (t)≈ 2

ρ0c0
〈p(xB , t) ∗ p(xA,−t)〉. (20)

This is the fundamental expression for ambient-noise interferometry. The right-hand side stands for the cross-correlation of the

responses at xA and xB . The left-hand side consists of a superposition of the virtual-source response G(xB ,xA, t) ∗CN (t)5

and its time-reversal G(xB ,xA,−t) ∗CN (t). It should be noted that, according to equations (15) and (16), it is assumed that

the fields p(xA, t) and p(xB , t) are the responses to noise sources on a closed boundary S. However, in the example in Figure

4, the noise field is emitted into the medium from a finite open boundary S0. A consequence of this discrepancy is that the

retrieved response in Figure 4b lacks the acausal termG(xB ,xA,−t)∗CN (t). Moreover, the causal termG(xB ,xA, t)∗CN (t)

is blurred by scattering noise, which does not vanish by longer time-averaging. According to equations (15), (16) and (20),10

the retrieved response would contain the causal and acausal terms and the scattering noise would vanish when the noise field

would be emitted from a closed boundary for long enough time.

Figure 4 is exemplary for seismic surface-wave interferometry (Campillo and Paul, 2003; Sabra et al., 2005b; Shapiro and

Campillo, 2004; Bensen et al., 2007), in which case Figure 4a should be interpreted as a plan view, with the noise signals

representing microseisms, S0 representing a coast line and the Green’s functions representing the fundamental mode of surface15

waves. The retrieved surface-wave Green’s functions are typically used for tomographic imaging (Sabra et al., 2005a; Shapiro

et al., 2005; Bensen et al., 2008; Lin et al., 2009). Seismic interferometry can also be used for reflection imaging of the earth’s

crust with body waves. Because the scattering mechanism is very different, we discuss a second example to illustrate seismic

interferometry with body waves. Figure 5a shows the same layered medium as Figure 3a, this time with noise sources at S0 in

the subsurface and the upper surface being a free surface. For this situation the part of the closed-boundary integral over the20

free surface in equation (6) vanishes. Hence, the closed boundary integrals in equations (15) and (16) can be replaced by open

boundary integrals, over the noise sources in the subsurface in Figure 5a. For p(xA, t) we take the central trace of Figure 5a

(indicated by the red box) and for p(xB , t) (with variable xB) all other traces of this figure. We apply equation (20) to obtain

the virtual-source response G(xB ,xA, t)∗CN (t) and its time-reversal G(xB ,xA,−t)∗CN (t), for a fixed virtual source at xA

and receivers at variable xB . The causal term is shown in Figure 5b. Conform the theory, this is the full reflection response of25

the layered medium, including multiple reflections. Reflection responses retrieved by body-wave interferometry are typically

used for reflection imaging (Kumar and Bostock, 2006; Draganov et al., 2009; Tonegawa et al., 2009; Ruigrok et al., 2012;

Oren and Nowack, 2017).

For both methods discussed here (surface-wave interferometry and body-wave interferometry) we assumed that the noise

sources are regularly distributed along a part of S and that they all have the same autocorrelation function. In many practical30

situations the source distribution is irregular, and the autocorrelations are different for different sources. Several approaches

have been developed to account for these issues, such as iterative correlation (Stehly et al., 2008), multidimensional deconvo-

lution (Wapenaar and van der Neut, 2010; van der Neut et al., 2011), directional balancing (Curtis and Halliday, 2010a) and

generalized interferometry, circumventing Green’s function retrieval (Fichtner et al., 2017).
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Figure 5. Seismic interferometry with body waves in a layered medium. The upper boundary is a free surface. (a) Noise observed by

receivers just below the surface, due to uncorrelated noise sources in the subsurface (only the first 5 seconds of approximately 5 minutes of

noise registrations are shown). (b) Retrieved reflection response, including multiple reflections.

2.4 Back propagation

Given a wave field observed at the boundary of a medium, the field inside the medium can be obtained by back propagation

(Schneider, 1978; Berkhout, 1982; Fischer and Langenberg, 1984; Wiggins, 1984; Langenberg et al., 1986). Because back

propagation implies retrieving a 3D field inside a volume from a 2D field at a boundary, it is also known as holography (Porter

and Devaney, 1982; Lindsey and Braun, 2004). Figure 6 illustrates the principle. In Figure 6a, the field at the boundary S0 due5

to a source at xA inside a layered medium (the same medium as in Figures 3 and 5) is back propagated to an arbitrary point xB

inside the medium by the time-reversed direct arrival of the Green’s function, Gd(x,xB ,−t). Figure 6b shows Gd(x,xB ,−t)
(for fixed xB) and a snapshot of the back propagated field at time instant t1 > 0 for all xB . Note that above the source (which is

located at xA) the primary upgoing field coming from the source is clearly retrieved. However, the field below the source is not

retrieved. Moreover, several artefacts are present because multiple reflections between the layer interfaces are not accounted10

for.

A quantitative discussion of back propagation follows from equation (7). By interchanging xA and xB and multiplying both

sides with the spectrum s(ω) of the source at xA, we obtain

Gh(xB ,xA,ω)s(ω) =−2

∮
S

1

iωρ(x)
{∂iG∗(x,xB ,ω)}G(x,xA,ω)s(ω)nidx. (21)
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Figure 6. Principle of back propagation. (a) The upgoing wave field p−(x,xA, t) at the boundary S0 and illustration of its back propagation

to xB inside the medium. (b) The back propagation operator Gd(x,xB ,−t) (for variable x along S0 and fixed xB) and a snapshot of the

back propagated wave field p−(xB ,xA, t) at t1 = 300 ms for all xB .

Here G(x,xA,ω)s(ω) stands for the observed field p(x,xA,ω) at the boundary S and − 2
iωρ(x)ni∂iG

∗(x,xB ,ω) for the back

propagation operator, both in the frequency domain. Hence, in theory the exact field Gh(xB ,xA,ω)s(ω) can be obtained at

any xB inside the medium. Because in practical situations the field p(x,xA,ω) is observed only at a finite horizontal part S0 of

the boundary, approximations arise in practise when S is replaced by S0. One of the consequences is that multiple reflections

are not handled correctly. A detailed analysis (Wapenaar et al., 1989) shows that the primary arrival of the upgoing wave field5

p−(xB ,xA,ω) =G−(xB ,xA,ω)s(ω) is reasonably accurately retrieved with the following approximation of equation (21)

p−(xB ,xA,ω)≈
∫
S0

F+
d (x,xB ,ω)p−(x,xA,ω)dx. (22)

Here the back propagation operator F+
d (x,xB ,ω), also known as the focusing operator, is defined as

F+
d (x,xB ,ω) =

2

iωρ(x)
∂3G

∗
d(x,xB ,ω), (23)

where we used n3 =−1 at S0, considering that the positive x3-axis is pointing downward. Equations (22) and (23) represent10

the common approach to back propagation for many applications in seismic imaging and inversion. It works well for primary

waves in media with low contrasts but it breaks down when the contrasts are strong and multiple reflections between the layer

interfaces cannot be ignored. In section 3.3 we discuss a modified approach to back-propagation which enables the recovery of

the full wave field p(xB ,xA,ω), including the multiple reflections, inside the medium (also below the source at xA) and which

suppresses artefacts like those in Figure 6b in a data-driven way.15
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2.5 Source-receiver redatuming and imaging by double focusing

In the previous section we discussed back propagation of data p−(x,xA,ω), which is the response to a source at xA inside the

medium, observed at x at the surface. Here we extend this process for the situation in which both the sources and receivers are

located at the surface. To this end, we first adapt equations (22) and (23). We replace S0 by S′0 (just above S0), x by x′ ∈ S′0,

xA by x ∈ S0 and xB by xA, and we add an extra superscript (+) to the wave fields (explained below), which yields5

p−,+(xA,x,ω)≈
∫
S′0

F+
d (x′,xA,ω)p−,+(x′,x,ω)dx′, (24)

with

F+
d (x′,xA,ω) =

2

iωρ(x′)
∂′3G

∗
d(x′,xA,ω), (25)

where ∂′3 stands for differentiation with respect to x′3. In equation (24), p−,+(x′,x,ω) =G−,+(x′,x,ω)s(ω) represents the

reflection data at the surface. The first superscript (−) denotes that the field is upgoing at x′; the second superscript (+) de-10

notes that the source at x emits downgoing waves. Furthermore, p−,+(xA,x,ω) =G−,+(xA,x,ω)s(ω) is the back propagated

upgoing field at xA. Applying source-receiver reciprocity on both sides of equation (24) we obtain

p−,+(x,xA,ω)≈
∫
S′0

p−,+(x,x′,ω)F+
d (x′,xA,ω)dx′. (26)

The receiver for upgoing waves at xA has turned into a source for downgoing waves at xA, etc. Hence, equation (26) back

propagates the sources from x′ on S′0 to xA. Substituting this into equation (22), with at both sides p− replaced by p−,+, gives15

p−,+(xB ,xA,ω)≈
∫
S0

∫
S′0

F+
d (x,xB ,ω)p−,+(x,x′,ω)F+

d (x′,xA,ω)dx′dx. (27)
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Here p−,+(x,x′,ω) represents the reflection response at the surface (the blue arrows in Figure 7a). Similarly, p−,+(xB ,xA,ω)

denotes the reflection response to a source for downgoing waves at xA, observed by a receiver for upgoing waves at xB (the

yellow arrows in Figure 7a). It is obtained by back propagating sources from x′ to xA and receivers from x to xB , indicated by

the dashed arrows in Figure 7a. In exploration seismology this process is called (source-receiver) redatuming (Berkhout, 1982;

Berryhill, 1984) and it is closely related to source-receiver interferometry (Curtis and Halliday, 2010b). For the elastodynamic5

extension, see Kuo and Dai (1984), Wapenaar and Berkhout (1989) and Hokstad (2000).

The redatumed response p−,+(xB ,xA,ω) can be used for reflectivity imaging by setting xB equal to xA and selecting the

t= 0 component in the time domain, as follows

r(xA)≈ p−,+(xA,xA, t= 0) =
1

2π

∞∫
−∞

p−,+(xA,xA,ω)dω. (28)

The combined process (equations 27 and 28) comprises imaging by double focusing (Berkhout, 1982; Wiggins, 1984; Bleistein,10

1987; Berkhout and Wapenaar, 1993; Blondel et al., 2018), because it involves twice the application of the focusing operator

F+
d (x,xA,ω). By taking the focal point xA variable, a reflectivity image of the entire region of interest is obtained. Figure 7b

shows the image obtained in this way of the same layered medium as considered in previous examples. Note that the interfaces

are clearly imaged, but also that significant artefacts are present because multiple reflections are not correctly handled. In

sections 3.4 and 3.5 we discuss more rigorous approaches to source-receiver redatuming and imaging by double focusing,15

which account for multiple reflections in a data-driven way.

3 Theory and applications of modified single-sided wave field representations

The applications of Green’s theorem, discussed in the previous section, are all derived from the classical homogeneous Green’s

function representation. This representation is exact, but it involves an integral over a closed boundary. In many practical

situations the medium of interest is accessible from one side only, which implies that the integration can only be carried out20

over an open boundary. This induces approximations, of which the incomplete treatment of multiple reflections is the most

significant one. In the following we discuss a modification of the homogeneous Green’s function representation which involves

an integral over an open boundary and yet accounts for all multiple reflections. We call this modified representation the single-

sided homogeneous Green’s function representation. We discuss how it can be used to improve several of the applications

discussed in the previous section.25

3.1 Single-sided homogeneous Green’s function representations

The classical homogeneous Green’s function representations (equations (6) and (7)) are entirely formulated in terms of Green’s

functions and their time reversals. A Green’s function is the causal response to a source at a specific position in space, say at

xA. A time-reversed Green’s function can be seen as a focusing function which focuses at xA. However, this only holds

when it converges to xA equally from all directions, which can be achieved by emitting it into the medium from a closed30

boundary. For practical situations we need another type of focusing function, which, when emitted into the medium from a

13



-2

-1

0

1

2

-2000 -1000 0 1000 2000 3000 4000 5000 6000
0

500

1000

1500

2000

2500

3000

-5000 -3000 -1000 1000 3000 5000

1000

1500

2000

S0

SA

t=0

a)	 f+
1 (x,xA, t)

xA

t

0

500

1000

1500

2000

2500

3000

-5000 -3000 -1000 1000 3000 5000

1000

1500

2000

-1.5

-1.0

-0.5

0

0.5

1.0

1.5

-2000 -1000 0 1000 2000

-2

-1

0

1

2

-2000 -1000 0 1000 2000 3000 4000 5000 6000

S0

SA

t=0

t
b)	

xA

f�
1 (x,xA, t)

f+
1 (x,xA, t) t

t=0

Figure 8. Introduction of the focusing function, to be used in the single-sided homogeneous Green’s function representations. (a) Emission

of the downgoing part of the focusing function from S0 into a truncated version of the actual medium. (b) Responses at S0 and SA.

single boundary, focuses at xA. Figure 8 illustrates the principle. It shows a truncated version of the medium, which is identical

to the actual medium between the upper boundary S0 and the focal plane SA (the plane which contains the focal point xA), but

it is homogeneous above S0 and below SA. In this truncated medium, we define a focusing function f1(x,xA, t), where xA

denotes the focal point. At any position x, the focusing function consists of a downgoing and upgoing part, according to

f1(x,xA, t) = f+1 (x,xA, t) + f−1 (x,xA, t), (29)5

where the superscripts + and − indicate downgoing and upgoing, respectively. Figure 8a shows how the downgoing part of

the focusing function, f+1 (x,xA, t), is emitted from x at S0 into the medium. The first event (at negative time) propagates

downward toward the focal point xA (indicated by the outer yellow rays). On its path to the focal point it gets reflected at layer

interfaces, indicated by the blue rays. During upward propagation, these blue rays meet new yellow rays (coming from the

later events of the focusing function), in such a way that effectively no downward reflection takes place at the layer interfaces,10

etc. Hence, only the first event of the focusing function reaches the focal depth, where it focuses at xA. Figure 8b shows the

responses to the focusing function, at S0 and SA. The response at S0 is the upgoing part of the focusing function, f−1 (x,xA, t).

The response at SA is the downgoing focused field. Because the half-space below SA is homogeneous, no upgoing waves reach

the focal plane. The focusing conditions at the focal plane are (Wapenaar et al., 2014)

[∂3f
+
1 (x,xA, t)]x3=x3,A

=− 1
2
ρ(xA)δ(xH−xH,A)∂tδ(t), (30)15

[∂3f
−
1 (x,xA, t)]x3=x3,A

= 0. (31)
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Here x3,A (the x3-coordinate of the focal point xA) denotes the depth level of the focal plane SA; xH = (x1,x2) and xH,A =

(x1,A,x2,A) are horizontal coordinate vectors. Note that the focused field in Figure 8b is a band-limited version of the focus

defined in equation (30). This band-limitation is caused by the fact that, for stability reasons, evanescent waves are suppressed

in the focusing function.

Given the focusing function for a focal point at xA and the Green’s function for a source at xB , the single-sided representation5

of the homogeneous Green’s function in the frequency domain reads (Wapenaar et al., 2016a)

Gh(xB ,xA,ω) = 2

∫
S0

1

ωρ(x)

(
{∂iGh(x,xB ,ω)}={f1(x,xA,ω)}−Gh(x,xB ,ω)={∂if1(x,xA,ω)}

)
nidx, (32)

where = denotes the imaginary part. The derivation can be found in the supplementary material, section 2.2 (a similar single-

sided representation for vectorial wave fields is derived by Wapenaar et al. (2016b) and illustrated with numerical examples by

Reinicke Urruticoechea and Wapenaar (2019)). In equation (32), S0 may be a curved boundary. Moreover, the actual medium, in10

which the Green’s function is defined, may be inhomogeneous above S0 (in addition to being inhomogeneous below S0). Note

the resemblance with the classical representation of equation (6). Unlike the classical representation, which is exact, equation

(32) holds under the assumption that evanescent waves can be neglected. When S0 is horizontal and the medium above S0
is homogeneous (for the Green’s function as well as for the focusing function), this representation may be approximated by

(Van der Neut et al., 2017)15

Gh(xB ,xA,ω) = 4<
∫
S0

1

iωρ(x)
G(x,xB ,ω)∂3

(
f+1 (x,xA,ω)−{f−1 (x,xA,ω)}∗

)
dx. (33)

For the derivation, see the supplementary material, section 2.3. For the decomposed Green’s function G−,+(xB ,xA,ω), intro-

duced in section 2.5, we have the following representation (by combining equations 31 and 38 of the supplementary material)

G−,+(xB ,xA,ω) +χ(xB)f−1 (xB ,xA,ω) = 2

∫
S0

1

iωρ(x)
G−,+(x,xB ,ω)∂3f

+
1 (x,xA,ω)dx, (34)

where χ is the characteristic function of the medium enclosed by S0 and SA. It is defined as20

χ(xB) =


1, for xB between S0 and SA,

1
2
, for xB on S = S0 ∪SA,

0, for xB outside S.

(35)

The representations of equations (33) and (34) form the starting point for modifying several of the applications discussed

in section 2. These methods, which will be discussed in the subsequent sections, have in common that they make use of

focusing functions. The focusing function f+1 (x,xA, t) for x at S0 is by definition the inverse of the transmission response

of the truncated medium between S0 and SA. Hence, when a detailed model of the medium between these depth levels is25

available, its transmission response can be numerically modeled and f+1 (x,xA, t) can be obtained by inverting this transmission

response. Next, f−1 (x,xA, t) can be obtained by applying the reflection response of the truncated medium to f+1 (x,xA, t). This

is obviously a model-driven approach. On the other hand, when the reflection response of the actual medium is available at S0,

15
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the focusing functions f+1 (x,xA, t) and f−1 (x,xA, t) for x at S0 can be retrieved from this reflection response by a 3D extension

of the Marchenko method (Wapenaar et al., 2014; Slob et al., 2014). This method needs an initial estimate of f+1 (x,xA, t), for

which one should use the inverse of the direct arrival of the transmission response. This requires only a smooth model of the

medium between S0 and SA. In practice, the back propagating direct arrival of the Green’s function, Gd(x,xA,−t), is usually

taken as initial estimate. Because the 3D Marchenko method uses the reflection response (obtained from measurements) and a5

smooth model of the medium, it is a data-driven approach for retrieving the focusing functions. A further discussion of the 3D

Marchenko method is beyond the scope of this paper.

3.2 Modified time-reversal acoustics

We discuss a modification of time-reversal acoustics. Assuming the focusing functions are available for x at S0 (for example

from the Marchenko method), we define a new particle velocity field, according to10

v̂∗n(x,xA,ω) =
1

iωρ(x)
∂3
(
f+1 (x,xA,ω)−{f−1 (x,xA,ω)}∗

)
s(ω), (36)

where for s(ω) we take a real-valued spectrum. Using this in equation (33) we obtain

Gh(xB ,xA,ω)s(ω) = 4<
∫
S0

G(xB ,x,ω)v̂∗n(x,xA,ω)dx. (37)

In the time domain this becomes

Gh(xB ,xA, t) ∗ s(t) = 2

∫
S0

G(xB ,x, t) ∗ v̂n(x,xA,−t)dx+ 2

∫
S0

G(xB ,x,−t) ∗ v̂n(x,xA, t)dx. (38)15

The first integral is the same as that in equation (10) (except that v̂n is defined differently), whereas the second integral is

the time reversal of the first one. For ultrasonic applications, assuming there are receivers at one or more xB locations, the

field v̂n(x,xA,−t) can be emitted physically into the real medium and its response can be measured at xB . The homogeneous

Green’s function is then obtained by superposing this response and its time reversal. For geophysical applications, the first

integral can, at least in theory, be evaluated by numerically emitting the field v̂n(x,xA,−t) into a model of the earth. The20

superposition of this integral and its time-reversal gives the homogeneous Green’s function. Following either one of these

procedures, the result obtained at t= 0 is shown in Figure 9b. For comparison, Figure 9a once more shows the classical time-

reversal result of Figure 3b. Note the different character of the fields vn and v̂n in the upper panels, which have only one event

in common. The snapshots at t= 0 in the lower panels are also very different: the artefacts in Figure 9a are almost entirely

absent in Figure 9b. The latter figure only shows a clear focus at xA.25

Obtaining an accurate focus as in Figure 9b by numerically emitting the field v̂n(x,xA,−t) into the earth requires a very

accurate model of the earth, which should include accurate information on the position, structure and contrast of the layer

interfaces. This requirement can be overcome by also retrieving the Green’s function G(xB ,x, t) in equation (38) with the

Marchenko method and evaluating the integrals for all xB . This is not further discussed here. Alternative methods that don’t

need information about the layer interfaces are discussed in sections 3.3 to 3.5 and illustrated with examples.30
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Figure 9. Modified time-reversal acoustics in a layered medium. (a) Classical approach: emission of the time-reversed recordings from S0

into the medium. (b) Emission of a modified field, defined by equation (36), into the medium. Note the improved focus.

3.3 Modified back propagation

We modify the approach for back propagation. By interchanging xA and xB in equation (33) and multiplying both sides with

a real-valued source spectrum s(ω), we obtain

p(xB ,xA,ω) + p∗(xB ,xA,ω) = 2<
∫
S0

F (x,xB ,ω)p(x,xA,ω)dx, (39)

with p(x,xA,ω) =G(x,xA,ω)s(ω) and5

F (x,xB ,ω) =
2

iωρ(x)
∂3
(
f+1 (x,xB ,ω)−{f−1 (x,xB ,ω)}∗

)
. (40)

Note that the operator F+
d (x,xB ,ω) in equation (23) is an approximation of the operator F (x,xB ,ω) in equation (40). It is

obtained by omitting the term {f−1 (x,xB ,ω)}∗ and replacing the term f+1 (x,xB ,ω) by its initial estimate, i.e, the Fourier

transform of the direct arrival of the Green’s function, Gd(x,xB ,−t). Figure 10 illustrates, in the time domain, the principle of

modified back propagation. In Figure 10a, the field p(x,xA, t) is back propagated to an arbitrary point xB inside the medium by10

operator F (x,xB , t). This operator can be obtained from reflection data at the surface and the initial estimate Gd(x,xB ,−t),

using the 3D Marchenko method. Figure 10b shows F (x,xB , t) (for fixed xB) and a snapshot of the back propagated field at a

time instant t1 > 0 for all xB . Note that the full field p(xB ,xA, t) is retrieved (downgoing and upgoing components, primaries

and multiples) and that hardly any artefacts are visible. The dashed lines in the snapshot in Figure 10b indicate the interfaces

to aid the interpretation of the snapshot. Note, however, that these interfaces need not be known to obtain this result: only a15

17



0

500

1000

1500

2000

2500

3000

-5000 -3000 -1000 1000 3000 5000

1000

1500

2000

0

0.5

1.0

1.5

2.0

2.5
-5000 -4000 -3000 -2000 -1000 0 1000 2000 3000 4000 5000a)	

xA

t=0

S0x xxxx

xB

t

p(x,xA, t)

p(x,xA, t) p(x,xA, t)

F (x,xB , t)

p(xB ,xA, t)

-2

-1

0

1

2

-4000 -2000 0 2000 4000

t=0

b)	

S0

F (x,xB , t)

t

Figure 10. Principle of modified back propagation. (a) The wave field p(x,xA, t) at the boundary S0 and illustration of its back propagation

to xB inside the medium. (b) The back propagation operator F (x,xB , t) (for variable x along S0 and fixed xB) and a snapshot of the back

propagated wave field p(xB ,xA, t) at t1 = 300 ms for all xB .

smooth subsurface model is required to define the initial estimate Gd(x,xB ,−t) of the focusing operator. All other events in

the focusing operator come directly from the reflection data at the surface.

This back propagation method has an interesting application in monitoring of induced seismicity. Assuming p(x,xA, t)

stands for the response to an induced seismic source at xA, this method creates, in a data-driven way, omnidirectional virtual

receivers at any xB to monitor the emitted field from the source to the surface. This application is extensively discussed in the5

companion paper (Brackenhoff et al., 2019).

3.4 Modified source-receiver redatuming

We modify the approach for source-receiver redatuming. First, in equation (39), we replace S0 by S′0 (just above S0), x by

x′ ∈ S′0, xA by x ∈ S0 and xB by xA. Next, we apply source-receiver reciprocity on both sides of the equation. This yields

p(x,xA,ω) + p∗(x,xA,ω) = 2<
∫
S′0

p(x,x′,ω)F (x′,xA,ω)dx′, (41)10

with F (x′,xA,ω) defined as in equation (40), with ∂3 replaced by ∂′3, similar as in equation (25). The field p(x,x′,ω) =

G(x,x′,ω)s(ω) represents the data at the surface. Equation (41) back propagates the sources from x′ on S′0 to xA. Source-

receiver redatuming is now defined as the following two-step process. In step one, apply equation (41) to create an omnidirec-

tional virtual source at any desired position xA in the subsurface. According to the left-hand side, the response to this virtual
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Figure 11. (a) Principle of modified source-receiver redatuming. (b) Snapshot of the wave field p(xB ,xA, t) at t2 = 500 ms for all xB .

source is observed by actual receivers at x at the surface. Isolate p(x,xA,ω) from the left-hand side by applying a time window

(a simple Heaviside function) in the time domain. In step two, substitute the retrieved response p(x,xA,ω) into equation (39)

to create virtual receivers at any position xB in the subsurface. Figure 11(a) illustrates the principle. The operators can be

obtained with the 3D Marchenko method. Figure 11b shows a snapshot of p(xB ,xA, t) at a time instant t2 > t1 > 0 for all xB

(the retrieved snapshot at t1 is indistinguishable from that in Figure 10b, which is why we chose to show a snapshot at another5

time instant). The dashed lines in the snapshot in Figure 11b indicate the interfaces to aid the interpretation of the snapshot, but

the interfaces need not to be known to obtain this result. This method has an interesting application in forecasting the effects

of induced seismicity. Assuming xA is the position where induced seismicity is likely to take place, this method forecasts the

response by creating, in a data-driven way, a virtual source at xA and virtual receivers at any xB that observe the propagation

and scattering of its emitted field from the source to the surface. Also this method is extensively discussed in the companion10

paper (Brackenhoff et al., 2019).

3.5 Modified imaging by double focusing

If we would apply imaging to the retrieved response p(xB ,xA,ω) + p∗(xB ,xA,ω) in a similar way as in equation (28), we

would obtain an image of the virtual sources instead of the reflectivity. Similar as in section 2.5 we need a process to obtain the

decomposed response p−,+(xB ,xA,ω). Our starting point is equation (34), in which we interchange xA and xB and choose15

both at SA, such that f−1 (xA,xB ,ω) = 0. Applying source-receiver reciprocity on the left-hand side and multiplying both sides

with a source spectrum s(ω), we obtain

p−,+(xB ,xA,ω) =

∫
S0

F+(x,xB ,ω)p−,+(x,xA,ω)dx, (42)
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Figure 12. Reflectivity images obtained by the double-focusing method. (a) Classical approach. (b) Modified approach.

with p−,+(x,xA,ω) =G−,+(x,xA,ω)s(ω) and

F+(x,xB ,ω) =
2

iωρ(x)
∂3f

+
1 (x,xB ,ω). (43)

Next, in equation (34), replace S0 by S′0 (just above S0), x by x′ ∈ S′0 and xB by x ∈ S0. Applying source-receiver reciprocity

on the right-hand side and multiplying both sides with a source spectrum s(ω), we obtain

p−,+(x,xA,ω) =

∫
S′0

p−,+(x,x′,ω)F+(x′,xA,ω)dx′− f−1 (x,xA,ω)s(ω), (44)5

with F+(x′,xA,ω) defined as in equation (43), with ∂3 replaced by ∂′3, similar as in equation (25). Substitution of equation

(44) into equation (42) yields

p−,+(xB ,xA,ω) =

∫
S0

∫
S′0

F+(x,xB ,ω)p−,+(x,x′,ω)F+(x′,xA,ω)dx′dx (45)

−
∫
S0

F+(x,xB ,ω)f−1 (x,xA,ω)s(ω)dx.

This is the modified version of equation (27), with the operators F+
d , which account for primaries only, replaced by opera-10

tors F+, accounting for primaries and multiples. These operators can be obtained with the 3D Marchenko method from the

reflection data p−,+(x,x′,ω) and a smooth model of the medium to define the initial estimate of f+1 . The second term on

the right-hand side can be removed by a time-window in the time domain, which leaves the redatumed reflection response

p−,+(xB ,xA,ω). The reflectivity imaging step to retrieve r(xA) is the same as that in equation (28) and is not repeated here.

Figure 12b shows an image obtained by applying equations (45) and (28) for all xA in the region of interest, for the same15

medium that was imaged with the classical double-focusing method (which for ease of comparison is repeated in Figure 12a).

Note that the artefacts, caused by the internal multiple reflections, have almost entirely been removed. In practical situations

the modified method may suffer from imperfections in the data, such as incomplete sampling, anelastic losses, out-of plane
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reflections, 3D spreading effects, etc. Several of these imperfections can be accounted for by making the method adaptive

(van der Neut et al., 2014). Promising results have been obtained with real data (Ravasi et al., 2016; Staring et al., 2018).

Other methods exist that deal with internal multiple reflections in imaging. Davydenko and Verschuur (2017) discuss

a method called full wavefield migration. This is a recursive method, starting at the surface, which alternately resolves

layer interfaces and predicts the multiples related to these interfaces. In contrast, equation (45) is non-recursive. The field5

p−,+(xB ,xA,ω) at SA is obtained without needing information about the layer interfaces between S0 and SA; a smooth model

suffices. Weglein et al. (1997, 2011), Jakubowicz (1998) and Ten Kroode (2002) propose methods that eliminate the internal

multiples directly from the reflection data at the surface, without needing model information. These methods work well for

first order internal multiples, but higher order internal multiples are predicted only with approximate amplitudes. Variants of

the Marchenko method have been developed that also aim to eliminate the internal multiples from the reflection data at the10

surface (Meles et al., 2015; van der Neut and Wapenaar, 2016; Zhang et al., 2019). The last reference shows that all orders

of multiples are, at least in theory, predicted with the correct amplitudes without needing model information. Once the inter-

nal multiples have been successfully eliminated from the reflection data at the surface, standard redatuming and imaging (for

example as described in section 2.5) can be used to form an accurate image of the subsurface, without artefacts caused by

multiple reflections.15

4 Conclusions

The classical homogeneous Green’s function representation, originally developed for optical image formation by holograms,

expresses the Green’s function plus its time-reversal between two arbitrary points in terms of an integral along a closed bound-

ary enclosing these points. It forms a unified basis for a variety of seismic imaging methods, such as time-reversal acoustics,

seismic interferometry, back propagation, source-receiver redatuming and imaging by double focusing. We have derived each20

of these methods by applying some simple manipulations to the classical homogeneous Green’s function representation, which

implies that these methods are all different sides of the same coin. As a consequence, they share the same advantages and

limitations. Because the underlying representation is exact, it accounts for all orders of multiple scattering. This property is,

to some extent, exploited by time-reversal acoustics in a medium with random scatterers and by seismic interferometry in a

layered medium below a free surface. However, in most cases multiple scattering is not correctly handled because in practi-25

cal situations data are not available on a closed boundary. We also discussed a single-sided homogeneous Green’s function

representation, which requires access to the medium from one side only, say from the earth’s surface. This single-sided repre-

sentation ignores evanescent waves, but it accounts for all orders of multiple scattering, similar as the classical closed-boundary

representation. We used the single-sided representation as the basis for deriving modifications of time-reversal acoustics, back

propagation, source-receiver redatuming and imaging by double focusing. These methods do account for multiple scattering30

and can be used to obtain accurate images of the source or the subsurface, without artefacts related to multiple scattering.

Another interesting application is the monitoring and forecasting of responses to induced seismic sources, which is discussed

in detail in a companion paper.
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