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1 Classical homogeneous Green’s function representation

1.1 Definition of the homogeneous Green’s function

Consider an inhomogeneous lossless acoustic medium with mass density ρ(x) and compressibility κ(x). Here x denotes

the Cartesian coordinate vector x= (x1,x2,x3); the x3 axis is pointing downward. In this medium a space (x) and time (t)

dependent source distribution q(x, t) is present, with q defined as the volume-injection rate density. The acoustic wave field,5

caused by this source distribution, is described in terms of the acoustic pressure p(x, t) and the particle velocity vi(x, t). These

field quantities obey the equation of motion and the stress-strain relation, according to

ρ∂tvi+ ∂ip= 0, (1)

κ∂tp+ ∂ivi = q. (2)

Here ∂t and ∂i stand for the temporal and spatial differential operators ∂/∂t and ∂/∂xi, respectively. Latin subscripts (except10

t) take on the values 1 to 3 and Einstein’s summation convention applies to repeated subscripts. When q is an impulsive source

at x= xA and t= 0, according to

q(x, t) = δ(x−xA)δ(t), (3)

then the causal solution of equations (1) and (2) defines the Green’s function, hence

p(x, t) =G(x,xA, t). (4)15

By eliminating vi from equations (1) and (2) and substituting equations (3) and (4), we find that the Green’s functionG(x,xA, t)

obeys the following wave equation

∂i(ρ
−1∂iG)−κ∂2tG=−δ(x−xA)∂tδ(t). (5)

Wave equation (5) is symmetric in time, except for the source on the right-hand side, which is anti-symmetric. Hence, the time-

reversed Green’s function G(x,xA,−t) obeys the same wave equation, but with opposite sign for the source. By summing the20
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wave equations for G(x,xA, t) and G(x,xA,−t), the sources on the right-hand sides cancel each other, hence, the function

Gh(x,xA, t) =G(x,xA, t)+G(x,xA,−t) (6)

obeys the homogeneous equation

∂i(ρ
−1∂iGh)−κ∂2tGh = 0. (7)

Therefore Gh(x,xA, t), as defined in equation (6), is called the homogeneous Green’s function.5

1.2 Reciprocity theorems

We define the temporal Fourier transform of a space- and time-dependent quantity u(x, t) as

u(x,ω) =

∞∫
−∞

u(x, t)exp(iωt)dt, (8)

where ω is the angular frequency and i the imaginary unit. To keep the notation simple, we denote quantities in the time and

frequency domain by the same symbol. In the frequency domain, equations (1) and (2) transform to10

−iωρvi+ ∂ip= 0, (9)

−iωκp+ ∂ivi = q. (10)

We introduce two independent acoustic states, which will be distinguished by subscripts A and B. Rayleigh’s reciprocity

theorem is obtained by considering the quantity ∂i{pAvi,B−vi,ApB}, applying the product rule for differentiation, substituting

equations (9) and (10) for both states, integrating the result over a spatial domain V enclosed by boundary S with outward15

pointing normal ni, and applying the theorem of Gauss (de Hoop, 1988; Fokkema and van den Berg, 1993). Assuming that

in V the medium parameters ρ(x) and κ(x) in the two states are identical, this yields Rayleigh’s reciprocity theorem of the

convolution type∫
V

{pAqB − qApB}dx=

∮
S

1

iωρ
{pA(∂ipB)− (∂ipA)pB}nidx. (11)

We derive a second form of Rayleigh’s reciprocity theorem for time-reversed wave fields. In the frequency domain, time-20

reversal is replaced by complex conjugation. When p is a solution of equations (9) and (10) with source distribution q (and

real-valued medium parameters), then p∗ obeys the same equations with source distribution −q∗ (the superscript ∗ denotes

complex conjugation). Making these substitutions for state A in equation (11) we obtain Rayleigh’s reciprocity theorem of the

correlation type (Bojarski, 1983)∫
V

{p∗AqB + q∗ApB}dx=

∮
S

1

iωρ
{p∗A(∂ipB)− (∂ip

∗
A)pB}nidx. (12)25
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1.3 Representation of the homogeneous Green’s function

We choose point sources in both states, according to qA(x,ω) = δ(x−xA) and qB(x,ω) = δ(x−xB), with xA and xB both

in V. The fields in states A and B are thus expressed in terms of Green’s functions, according to

pA(x,ω) =G(x,xA,ω), (13)

pB(x,ω) =G(x,xB ,ω), (14)5

with G(x,xA,ω) and G(x,xB ,ω) being the Fourier transforms of G(x,xA, t) and G(x,xB , t), respectively. Making these

substitutions in equation (12) and using source-receiver reciprocity of the Green’s functions gives (Porter, 1970; Oristaglio,

1989; Wapenaar, 2004; van Manen et al., 2005)

Gh(xB ,xA,ω) =

∮
S

1

iωρ(x)

(
{∂iG(x,xB ,ω)}G∗(x,xA,ω)−G(x,xB ,ω)∂iG∗(x,xA,ω)

)
nidx, (15)

where Gh(xB ,xA,ω) is the homogeneous Green’s function in the frequency domain. It is defined as10

Gh(x,xA,ω) =G(x,xA,ω)+G∗(x,xA,ω) = 2<{G(x,xA,ω)}, (16)

where < denotes the real part. Equation (15) is an exact representation for the homogeneous Green’s function Gh(xB ,xA,ω).

When S is sufficiently smooth and the medium outside S is homogeneous, the two terms under the integral in equation (15)

are nearly identical (but with opposite signs), hence

Gh(xB ,xA,ω) =−2
∮
S

1

iωρ(x)
G(x,xB ,ω)∂iG

∗(x,xA,ω)nidx. (17)15

The main approximation is that evanescent waves are neglected at S (Zheng et al., 2011; Wapenaar et al., 2011).

2 Single-sided homogeneous Green’s function representations

2.1 Modification of the configuration

We replace the arbitrary closed boundary S by a combination of two boundaries S0 and SA, as indicated in Figure 1. Here

S0 may be curved, but SA is a horizontal boundary, with n= (0,0,1). The depth level of the focal plane SA is defined as20

x3,A (which is equal to the x3-coordinate of the point xA). The domain between boundaries S0 and SA is called VA. For this

configuration, reciprocity theorems (11) and (12) are replaced by∫
VA

{pAqB − qApB}dx=

∫
S0

1

iωρ
{pA(∂ipB)− (∂ipA)pB}nidx+

∫
SA

1

iωρ
{pA(∂3pB)− (∂3pA)pB}dx (18)

and ∫
VA

{p∗AqB + q∗ApB}dx=

∫
S0

1

iωρ
{p∗A(∂ipB)− (∂ip

∗
A)pB}nidx+

∫
SA

1

iωρ
{p∗A(∂3pB)− (∂3p

∗
A)pB}dx, (19)25
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Figure 1. Modified configuration. The boundary S consists of the combination of boundaries S0 and SA.

respectively. In the following we use these reciprocity theorems as the basis for deriving several versions of single-sided

homogeneous Green’s function representations, each time by applying decomposition to one or more of the integrals in these

theorems.

2.2 Single-sided homogeneous Green’s function representation: general formulation

Substituting equations (A37) and (A38) for the boundary integrals at SA into equations (18) and (19), we obtain5 ∫
VA

(
pAqB − qApB

)
dx=

∫
S0

1

iωρ

(
pA(∂ipB)− (∂ipA)pB

)
nidx−

∫
SA

2

iωρ

(
(∂3p

+
A)p
−
B +(∂3p

−
A)p

+
B

)
dx (20)

and, ignoring evanescent waves,∫
VA

(
p∗AqB + q∗ApB

)
dx=

∫
S0

1

iωρ

(
p∗A(∂ipB)− (∂ip

∗
A)pB

)
nidx−

∫
SA

2

iωρ

(
(∂3p

+
A)
∗p+B +(∂3p

−
A)
∗p−B

)
dx. (21)

For state A we consider the focusing function f1(x,xA,ω) = f+1 (x,xA,ω)+ f−1 (x,xA,ω), introduced in section 3.1 in

“Green’s theorem in seismic imaging across the scales”. This focusing function is defined in a truncated version of the medium,10

which is identical to the actual medium in VA, but reflection free above S0 and below SA. Hence, the condition for the validity

of equations (A36), (A37) and (A38) is fulfilled at SA. The focusing conditions at the focal plane SA are

[∂3f
+
1 (x,xA,ω)]x3=x3,A

= 1
2
iωρ(xA)δ(xH−xH,A), (22)

[∂3f
−
1 (x,xA,ω)]x3=x3,A

= 0. (23)

For state B we consider the Green’s function G(x,xB ,ω) =G+(x,xB ,ω)+G−(x,xB ,ω), with its source at xB anywhere15

in the half-space below S0. Note that the superscripts + and − in f±1 (x,xA,ω) and G±(x,xB ,ω) refer to the propagation

direction (downward or upward) at the observation point x. The source of the Green’s function at xB is omnidirectional.

Substituting qA(x,ω) = 0, p±A(x,ω) = f±1 (x,xA,ω), qB(x,ω) = δ(x−xB) and p±B(x,ω) =G±(x,xB ,ω) into equations (20)
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and (21), using equations (22) and (23), gives

G−(xA,xB ,ω)+χ(xB)f1(xB ,xA,ω) (24)

=

∫
S0

1

iωρ(x)

(
{∂iG(x,xB ,ω)}f1(x,xA,ω)−G(x,xB ,ω)∂if1(x,xA,ω)

)
nidx

and

G+(xA,xB ,ω)−χ(xB)f∗1 (xB ,xA,ω) (25)5

=−
∫
S0

1

iωρ(x)

(
{∂iG(x,xB ,ω)}f∗1 (x,xA,ω)−G(x,xB ,ω)∂if∗1 (x,xA,ω)

)
nidx,

respectively, where χ is the characteristic function of the domain VA. It is defined as

χ(xB) =


1, for xB between S0 and SA,

1
2
, for xB on S= S0 ∪SA,

0, for xB outside S.

(26)

Summing equations (24) and (25) and using source-receiver reciprocity for the Green’s function on the left-hand side yields

G(xB ,xA,ω)+χ(xB)2i={f1(xB ,xA,ω)} (27)10

=

∫
S0

2

ωρ(x)

(
{∂iG(x,xB ,ω)}={f1(x,xA,ω)}−G(x,xB ,ω)={∂if1(x,xA,ω)}

)
nidx,

where = denotes the imaginary part. Taking the real part of both sides of this equation, using equation (16), gives the single-

sided representation of the homogeneous Green’s function

Gh(xB ,xA,ω) =

∫
S0

2

ωρ(x)

(
{∂iGh(x,xB ,ω)}={f1(x,xA,ω)}−Gh(x,xB ,ω)={∂if1(x,xA,ω)}

)
nidx. (28)

2.3 Single-sided homogeneous Green’s function representation: assuming a homogeneous upper half-space15

From here onward we assume that S0 is a horizontal boundary, with n= (0,0,−1). Substituting equations (A39) and (A40) for

the boundary integrals at S0 and equations (A47) and (A48) for the volume integrals into equations (20) and (21), we obtain∫
VA

(
p+Aq

−
B + p−Aq

+
B − q

+
Ap
−
B − q

−
Ap

+
B

)
dx=

∫
S0

2

iωρ

(
(∂3p

+
A)p
−
B +(∂3p

−
A)p

+
B

)
dx−

∫
SA

2

iωρ

(
(∂3p

+
A)p
−
B +(∂3p

−
A)p

+
B

)
dx (29)

and, ignoring evanescent waves,20 ∫
VA

(
p+∗A q+B + p−∗A q−B + q+∗A p+B + q−∗A p−B

)
dx=

∫
S0

2

iωρ

(
(∂3p

+
A)
∗p+B +(∂3p

−
A)
∗p−B

)
dx−

∫
SA

2

iωρ

(
(∂3p

+
A)
∗p+B +(∂3p

−
A)
∗p−B

)
dx. (30)

5



We apply these theorems to the situation in which the upper half-space above S0 is homogeneous (for the Green’s function

as well as for the focusing function). For state A we consider again the focusing function f1(x,xA,ω) = f+1 (x,xA,ω)+

f−1 (x,xA,ω), defined in a truncated version of the medium. For state B we consider the Green’s function G(x,xB ,ω) =

G+,+(x,xB ,ω)+G
−,+(x,xB ,ω)+G

+,−(x,xB ,ω)+G
−,−(x,xB ,ω), with its source at xB anywhere in the half-space below

S0. Note that we introduced two superscripts. The first superscript refers again to the propagation direction at the observation5

point x. The second superscript refers to the radiation direction of the source at xB . Substituting q+A(x,ω) = q−A(x,ω) = 0,

p±A(x,ω) = f±1 (x,xA,ω), q+B(x,ω) = δ(x−xB), q−B(x,ω) = 0 and p±B(x,ω) =G±,+(x,xB ,ω) into equations (29) and (30),

using equations (22) and (23) and G+,+(x,xB ,ω) = 0 for x at S0 (because the upper half-space is homogeneous), gives

G−,+(xA,xB ,ω)+χ(xB)f
−
1 (xB ,xA,ω) =

∫
S0

2

iωρ(x)
G−,+(x,xB ,ω)∂3f

+
1 (x,xA,ω)dx (31)

and10

G+,+(xA,xB ,ω)−χ(xB){f+1 (xB ,xA,ω)}∗ =−
∫
S0

2

iωρ(x)
G−,+(x,xB ,ω){∂3f−1 (x,xA,ω)}∗dx. (32)

Next, substituting q+A(x,ω) = q−A(x,ω) = 0, p±A(x,ω) = f±1 (x,xA,ω), q+B(x,ω) = 0, q−B(x,ω) = δ(x−xB) and p±B(x,ω) =

G±,−(x,xB ,ω) into equations (29) and (30), using equations (22) and (23) and G+,−(x,xB ,ω) = 0 for x at S0, gives

G−,−(xA,xB ,ω)+χ(xB)f
+
1 (xB ,xA,ω) =

∫
S0

2

iωρ(x)
G−,−(x,xB ,ω)∂3f

+
1 (x,xA,ω)dx (33)

and15

G+,−(xA,xB ,ω)−χ(xB){f−1 (xB ,xA,ω)}∗ =−
∫
S0

2

iωρ(x)
G−,−(x,xB ,ω){∂3f−1 (x,xA,ω)}∗dx. (34)

Summing equations (31)− (34), using source-receiver reciprocity for the Green’s function on the left-hand side andG+,+(x,xB ,ω) =

G+,−(x,xB ,ω) = 0 for x at S0, we obtain

G(xB ,xA,ω)+χ(xB)2i={f1(xB ,xA,ω)}

=

∫
S0

2

iωρ(x)
G(x,xB ,ω)∂3

(
f+1 (x,xA,ω)−{f−1 (x,xA,ω)}∗

)
dx. (35)20

Taking the real part of both sides gives the single-sided representation of the homogeneous Green’s function for the situation

that the upper half-space is homogeneous

Gh(xB ,xA,ω) = 4<
∫
S0

1

iωρ(x)
G(x,xB ,ω)∂3

(
f+1 (x,xA,ω)−{f−1 (x,xA,ω)}∗

)
dx. (36)

We conclude by deriving source-receiver reciprocity relations for the decomposed Green’s functions G±,±(x,xB ,ω). We

consider equation (29), but replace VA by the entire space R3. In this situation there are only outgoing waves at S. Hence,25

equation (29) simplifies to∫
R3

(
p+Aq

−
B + p−Aq

+
B − q

+
Ap
−
B − q

−
Ap

+
B

)
dx= 0. (37)
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First we substitute q+A = δ(x−xA), q−A = 0, p±A =G±,+(x,xA,ω), q+B = δ(x−xB), q−B = 0 and p±B =G±,+(x,xB ,ω). This

gives

G−,+(xB ,xA,ω) =G−,+(xA,xB ,ω). (38)

Next, we substitute q+A = δ(x−xA), q−A = 0, p±A =G±,+(x,xA,ω), q+B = 0, q−B = δ(x−xB) and p±B =G±,−(x,xB ,ω). This

gives5

G+,+(xB ,xA,ω) =G−,−(xA,xB ,ω). (39)

Finally, we substitute q+A = 0, q−A = δ(x−xA), p±A =G±,−(x,xA,ω), q+B = 0, q−B = δ(x−xB) and p±B =G±,−(x,xB ,ω).

This gives

G+,−(xB ,xA,ω) =G+,−(xA,xB ,ω). (40)

Note that equation (39) does not include a minus sign, unlike the corresponding relation for the flux-normalised decomposed10

Green’s functions (Wapenaar, 1996a). This is due to the definition of q± in equation (A46). As a result of this definition, we

have the following simple expression for the full Green’s function

G(x,xA,ω) =G+,+(x,xA,ω)+G−,+(x,xA,ω)+G+,−(x,xA,ω)+G−,−(x,xA,ω). (41)

Appendix A: Decomposition of the integrals in the reciprocity theorems

A1 Matrix-vector wave equation15

By eliminating v1 and v2 from equations (9) and (10), we obtain the following matrix-vector wave equation in the space-

frequency domain

∂3q=Aq+d, (A1)

where

q=

 p

v3

 , d=

0

q

 , A=

 0 A12

A21 0

 , (A2)20

with

A12 = iωρ, (A3)

A21 = iωκ− 1

iω
∂α 1

ρ
∂α (A4)

(Corones, 1975; Ursin, 1983; Fishman and McCoy, 1984; Wapenaar and Berkhout, 1989; de Hoop, 1996). Here ∂α stands

for the spatial differential operator ∂/∂xα. Greek subscripts take on the values 1 and 2 and Einstein’s summation convention25

applies to repeated subscripts. The notation in the right-hand side of equation (A4) should be understood in the sense that

differential operators act on all factors to the right of it. Hence, operator ∂α 1
ρ∂α, applied via equation (A1) to p, stands for

∂α(
1
ρ∂αp).
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A2 Decomposition of the matrix-vector wave equation

For the decomposition of the matrix-vector wave equation, we first recast the operator matrix A into a more symmetric form.

To this end we define an operatorH2, according to

H2 =−iω
√
ρA21

√
ρ= k2 +

√
ρ∂α 1

ρ
∂α
√
ρ, (A5)

with5

k2 =
ω2

c2
, c=

1
√
ρκ
. (A6)

After some bookkeeping it follows thatH2 can be written as a 2D Helmholtz operator

H2 = k2s + ∂α∂α (A7)

(Wapenaar and Berkhout, 1989; de Hoop, 1992), with the scaled wavenumber ks obeying

k2s =
ω2

c2
− 3(∂αρ)(∂αρ)

4ρ2
+

(∂α∂αρ)

2ρ
(A8)10

(Brekhovskikh, 1960). We now rewrite operator matrix A as

A=

 0 iωρ

− 1
iω
√
ρH2

1√
ρ 0

 . (A9)

The decomposition of this matrix is not unique. Flux-normalized decomposition is discussed by de Hoop (1996) and Wapenaar

(1996b). Here we discuss a symmetric form of pressure-normalized decomposition, modified after Wapenaar and Berkhout

(1989). We decompose the matrix as follows15

A=LHL−1, (A10)

with

L=

 1 1

1
ωρH

s
1 − 1

ωρH
s
1

 , H=

iHs1 0

0 −iHs1

 , L−1 = 1

2

1
(

1
ωρH

s
1

)−1
1 −

(
1
ωρH

s
1

)−1
 . (A11)

Here

Hs1 =
√
ρH1

1√
ρ
, (A12)20

whereH1 is the square-root of the Helmholtz operator, according to

H1H1 =H2. (A13)

We decompose the wave vector q and the source vector s as follows

q=Lp, p=L−1q, (A14)

d=Ls, s=L−1d, (A15)25
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with

p=

p+
p−

 , s=

s+
s−

 . (A16)

Substitution of equations (A14) and (A15) into the matrix-vector wave equation (A1), using equation (A10), yields

∂3p=Bp+ s, (A17)

with5

B =H−L−1∂3L, (A18)

or

∂3

p+
p−

=

iHs1 0

0 −iHs1

p+
p−

− 1

2

 (
1
ρH

s
1

)−1
∂3
(
1
ρH

s
1

)
−
(
1
ρH

s
1

)−1
∂3
(
1
ρH

s
1

)
−
(
1
ρH

s
1

)−1
∂3
(
1
ρH

s
1

) (
1
ρH

s
1

)−1
∂3
(
1
ρH

s
1

)
p+

p−

+

s+
s−

 . (A19)

This is a system of coupled one-way wave equations for downgoing and upgoing waves, p+ and p−, respectively. With the

definitions of q and p in equations (A2) and (A16), respectively, and L in equation (A11), it follows from equation (A14) that10

p= p+ + p−. (A20)

Hence, the decomposed fields p+ and p− are indeed pressure-normalised downgoing and upgoing waves.

A3 Symmetry properties of the operators

For an operator U , of which the entries are operators containing space-dependent medium parameters and differential operators

∂1 and ∂2, we introduce its transpose U t and its adjoint (i.e., complex conjugate transpose) U† via15 ∫
A

(Uf)tgdx=

∫
A

f(U tg)dx (A21)

and∫
A

(Uf)∗gdx=

∫
A

f∗(U†g)dx, (A22)

where A is an infinite horizontal integration boundary at arbitrary depth x3, and f = f(x) and g = g(x) are space-dependent

functions with sufficient decay along A towards infinity. For the Helmholtz operatorH2, defined in equation (A7), we have20

Ht2 =H2, (A23)

meaningH2 is a symmetric operator. Since we consider a lossless medium, we also have

H†2 =H∗2 =H2, (A24)

meaningH2 is also a self-adjoint operator.
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The square-root operator H1, defined in equation (A13), is a pseudo-differential operator. It obeys the following symmetry

property

Ht1 =H1, (A25)

meaningH1 is a symmetric operator (Wapenaar and Grimbergen, 1996). Ignoring evanescent waves, we have

H†1 =H∗1 ≈H1. (A26)5

Hence, this operator is not self-adjoint. In the following we replace approximation signs by equal signs whenever the only

approximation is the negligence of evanescent waves. Operator Hs1, defined in equation (A12), obeys the following symmetry

properties(
1
ρ
Hs1
)t

= 1
ρ
Hs1, (A27)(

1
ρ
Hs1
)†

= 1
ρ
Hs1. (A28)10

From these symmetry relations, we find that L, defined in equation (A11), obeys the following properties

LtNL=

 0 − 2
ω

(
1
ρH

s
1

)
2
ω

(
1
ρH

s
1

)
0

=

 0 − 2
ω

(
1
ρH

s
1

)t
2
ω

(
1
ρH

s
1

)t
0

 (A29)

and, ignoring evanescent waves,

L†KL=

 2
ω

(
1
ρH

s
1

)
0

0 − 2
ω

(
1
ρH

s
1

)
=

 2
ω

(
1
ρH

s
1

)†
0

0 − 2
ω

(
1
ρH

s
1

)†
 , (A30)

with15

N=

 0 1

−1 0

 , K=

0 1

1 0

 . (A31)

A4 Decomposition of the boundary integrals

For the boundary integrals along SA appearing in equations (18) and (19) we introduce the following compact notation (using
1
iωρ∂3p= v3)∫

SA

1

iωρ
{pA(∂3pB)− (∂3pA)pB}dx=

∫
SA

qtANqBdx (A32)20

and ∫
SA

1

iωρ
{p∗A(∂3pB)− (∂3p

∗
A)pB}dx=

∫
SA

q†AKqBdx, (A33)

respectively. With the decomposition of q defined in equation (A14), the properties of L formulated in equations (A29) and

(A30), and the definition of p in equation (A16) we obtain∫
SA

qtANqBdx=

∫
SA

ptAL
tNLpBdx=−

∫
SA

2

ω

(
p+A(

1
ρ
Hs1)tp−B − p

−
A(

1
ρ
Hs1)tp+B

)
dx (A34)
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and, ignoring evanescent waves,∫
SA

q†AKqBdx=

∫
SA

p†AL
†KLpBdx=

∫
SA

2

ω

(
p+∗A ( 1

ρ
Hs1)†p+B − p

−∗
A ( 1

ρ
Hs1)†p−B

)
dx. (A35)

Assuming that in state A there are no vertical derivatives of the medium parameters at SA, we find from equation (A19)5

∂3p
±
A =±iHs1p±A at SA. (A36)

Using this in equations (A34) and (A35) and substituting the results in equations (A32) and (A33), we obtain∫
SA

1

iωρ
{pA(∂3pB)− (∂3pA)pB}dx=−

∫
SA

2

iωρ

(
(∂3p

+
A)p
−
B +(∂3p

−
A)p

+
B

)
dx (A37)

and, ignoring evanescent waves,∫
SA

1

iωρ
{p∗A(∂3pB)− (∂3p

∗
A)pB}dx=−

∫
SA

2

iωρ

(
(∂3p

+
A)
∗p+B +(∂3p

−
A)
∗p−B

)
dx. (A38)10

When S0 in equations (18) and (19) is also a horizontal boundary, with n= (0,0,−1), we obtain (assuming that in state A

there are no vertical derivatives of the medium parameters at S0)∫
S0

−1
iωρ
{pA(∂3pB)− (∂3pA)pB}dx=

∫
S0

2

iωρ

(
(∂3p

+
A)p
−
B +(∂3p

−
A)p

+
B

)
dx (A39)

and, ignoring evanescent waves,∫
S0

−1
iωρ
{p∗A(∂3pB)− (∂3p

∗
A)pB}dx=

∫
S0

2

iωρ

(
(∂3p

+
A)
∗p+B +(∂3p

−
A)
∗p−B

)
dx. (A40)15

A5 Decomposition of the volume integrals

Assuming both S0 and SA are horizontal boundaries, we introduce the following compact notation for the volume integrals in

equations (18) and (19)∫
VA

{pAqB − qApB}dx=

∫
VA

(
dtANqB +qtANdB

)
dx (A41)

and20 ∫
VA

{p∗AqB + q∗ApB}dx=

∫
VA

(
d†AKqB +q†AKdB

)
dx, (A42)

respectively. With the decomposition of q and d defined in equations (A14) and (A15), the properties of L formulated in

equations (A29) and (A30), and the definition of p and s in equation (A16), we obtain∫
VA

(
dtANqB +qtANdB

)
dx=

∫
VA

(
stAL

tNLpB +ptAL
tNLsB

)
dx

=−
∫
VA

2

ω

(
s+A(

1
ρ
Hs1)tp−B − s

−
A(

1
ρ
Hs1)tp+B + p+A(

1
ρ
Hs1)s−B − p

−
A(

1
ρ
Hs1)s+B

)
dx (A43)

11



and, ignoring evanescent waves,∫
VA

(
d†AKqB +q†AKdB

)
dx=

∫
VA

(
s†AL

†KLpB +p†AL
†KLsB

)
dx5

=

∫
VA

2

ω

(
s+∗A ( 1

ρ
Hs1)†p+B − s

−∗
A ( 1

ρ
Hs1)†p−B + p+∗A ( 1

ρ
Hs1)s+B − p

−∗
A ( 1

ρ
Hs1)s−B

)
dx. (A44)

From s=L−1d, and the definitions of d, L−1 and s in equations (A2), (A11) and (A16), we find

s± =±
( 2

ωρ
Hs1
)−1

q. (A45)

We define new decomposed sources q+ and q−, according to

q± =± 2

ωρ
Hs1s±. (A46)10

Using this definition in equations (A43) and (A44) and substituting the results in equations (A41) and (A42), we obtain∫
VA

{pAqB − qApB}dx=

∫
VA

(
p+Aq

−
B + p−Aq

+
B − q

+
Ap
−
B − q

−
Ap

+
B

)
dx (A47)

and, ignoring evanescent waves,∫
VA

{p∗AqB + q∗ApB}dx=

∫
VA

(
p+∗A q+B + p−∗A q−B + q+∗A p+B + q−∗A p−B

)
dx. (A48)

12
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