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Abstract. The olivine carbonation reaction, in which carbon dioxide is chemically incorporated to form carbonate, is central to the emerging carbon sequestration method using ultramafic rocks. The rate of this retrograde metamorphic reaction is controlled, in part, by the available reactive surface area: as the solid volume increases during carbonation, the feasibility of this method ultimately depends on the maintenance of porosity and the creation of new reactive surfaces. We conducted in-situ dynamic xX-ray microtomography and nanotomography experiments to image and quantify the porosity generation during olivine carbonation. We designed a sample setup that included a thick-walled cup (made of porous olivine aggregates with a mean grain size of either ~5 or ~80 m) filled with loose olivine sands with grain sizes of 100-500 m. The whole sample assembly was reacted with a NaHCO3 aqueous solution at 200 °C, under a constant confining pressure of 13 MPa and a pore pressure of 10 MPa. Using synchrotron-based X-ray microtomography, the 3-dimensional (3-D) pore structure evolution of the carbonating olivine cup was documented until the olivine aggregates became disintegrated. The dynamic microtomography data show a volume reduction in olivine at the beginning of the reaction, indicating a vigorous dissolution process consistent with the disequilibrium reaction kinetics. In the olivine cup with a grain size of ~80 m (coarse-grained cup), dissolution fracturesplanes developed within 30 hours, before any precipitation was observed.  In the experiment with the olivine cup of ~5 m mean grain size (fine-grained cup), idiomorphic magnesite crystals were observed on the surface of the olivine sands. The magnesite shows a near constant growth throughout the experiment, suggesting that the reaction is self-sustained. Large fractures were generated as reaction proceeds and eventually disintegrate the aggregate after 140 hours. Detailed analysis show that these are expansion cracks caused by the volume mismatch in the cup walls, between the expanding interior and the near-surface which keeps a nearly constant surfacevolume. Nanotomography images of the reacted olivine cup reveal pervasive etch-pits and worm-holes in the olivine grains. We interpret this perforation of the solids to provide continuous fluid access, which is likely key to the complete carbonation observed in nature. Reactions proceeding through the formation of nano- to micron-scale dissolution channels provide a viable microscale mechanism in carbon sequestration practices. For the natural peridotite carbonation, a coupled-mechanism of dissolution and reaction-induced fracturing should account for the observed selfsustainability of the reaction.
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[bookmark: __Fieldmark__283_1027234670][bookmark: __Fieldmark__255_1562102060][bookmark: __Fieldmark__234_971907368][bookmark: __Fieldmark__104_919741][bookmark: __Fieldmark__306_1027234670][bookmark: __Fieldmark__274_1562102060][bookmark: __Fieldmark__250_971907368][bookmark: __Fieldmark__113_919741][bookmark: __Fieldmark__342_1027234670][bookmark: __Fieldmark__306_1562102060][bookmark: __Fieldmark__281_971907368][bookmark: __Fieldmark__118_919741][bookmark: __Fieldmark__359_1027234670][bookmark: __Fieldmark__319_1562102060][bookmark: __Fieldmark__292_971907368][bookmark: __Fieldmark__123_919741][bookmark: __Fieldmark__401_1027234670][bookmark: __Fieldmark__357_1562102060][bookmark: __Fieldmark__326_971907368][bookmark: __Fieldmark__133_919741]In order to explain this discrepancy between the theory and the observation, numerous studies have been conducted aiming to find a mechanism to maintain the access for reacting fluid during olivine alteration reactions. In 1985, Macdonald and Fyfe examined naturally altered peridotite and proposed that the large volume change associated with the reaction could generate high local stresses and strains, which would cause episodic cracking. This idea has then been applied to olivine carbonation by Kelemen and Matter (2008), who proposed a positive feedback loop where fractures could be generated during the volume-expanding reaction, porosity and permeability can be maintained or even increased, which in turn would accelerate the carbonation processes (cf. Rudge et al., 2010). In 2011, Kelemen et al. showed that in natural peridotites cross-cutting hierarchical fracture networks filled by syn-kinematic carbonate and quartz veins extend to microscopic scales. These cross-cutting networks indicate coeval carbonate crystallization and fracturing. Several studies also showed that the forces generated by the volume increase should be enough to fracture peridotite (Iyer et al., 2008; Jamtveit et al., 2009, 2011; Ulven et al., 2014).
[bookmark: __Fieldmark__455_1027234670][bookmark: __Fieldmark__145_919741][bookmark: __Fieldmark__373_971907368][bookmark: __Fieldmark__407_1562102060][bookmark: __Fieldmark__479_1027234670][bookmark: __Fieldmark__428_1562102060][bookmark: __Fieldmark__156_919741][bookmark: __Fieldmark__391_971907368][bookmark: __Fieldmark__499_1027234670][bookmark: OLE_LINK7][bookmark: OLE_LINK8][bookmark: __Fieldmark__536_1027234670][bookmark: __Fieldmark__436_971907368][bookmark: __Fieldmark__478_1562102060][bookmark: __Fieldmark__178_919741][bookmark: __Fieldmark__552_1027234670][bookmark: __Fieldmark__188_919741][bookmark: __Fieldmark__491_1562102060][bookmark: __Fieldmark__446_971907368]While reaction-induced fracturing is accepted as a way to maintain fluid access, the mechanical details of the process are poorly understood. As for the mechanism that generates stresses, ‘crystallization pressure’ (also termed ‘force of crystallization’) has been proposed (e.g. Scherer, 2004; Weyl, 1959; Winkler and Singer, 1972). In this model, the precipitation/crystallization of reaction products exert pressure around the growing crystals, and fracturing takes place when that pressure exceeds the local minimum principal stress (Kelemen and Hirth, 2012). Salt crystallization (Scherer, 2004) is a common example where high crystallization forces due to the nucleation of precipitates in pore space cause samples to ‘burst from the inside’ (see Figure 1a). However, studies have shown that the crystallization force is low in the olivine carbonation system (e.g. van Noort et al., 2017). Because of the lack of experimental evidence of crystallization forces during olivine alteration, Zhu et al. (2016) proposed an ‘expansion cracking’ mechanism as an alternative model after successfully producing reaction-induced fractures in an in-situ synchrotron X-ray microtomography study. In the ‘expansion cracking’ model, tensile stresses are generated due to the volume mismatch between regions with different precipitation rates, leading to cracks forming in regions that expand slower than their surroundings (see Figure 1b).
[bookmark: __Fieldmark__665_1027234670][bookmark: __Fieldmark__598_1562102060][bookmark: __Fieldmark__548_971907368][bookmark: __Fieldmark__211_919741][bookmark: __Fieldmark__682_1027234670][bookmark: __Fieldmark__611_1562102060][bookmark: __Fieldmark__561_971907368][bookmark: __Fieldmark__216_919741][bookmark: __Fieldmark__704_1027234670][bookmark: __Fieldmark__629_1562102060][bookmark: __Fieldmark__575_971907368][bookmark: __Fieldmark__222_919741][bookmark: __Fieldmark__737_1027234670][bookmark: __Fieldmark__658_1562102060][bookmark: __Fieldmark__602_971907368][bookmark: __Fieldmark__229_919741][bookmark: __Fieldmark__756_1027234670][bookmark: __Fieldmark__673_1562102060][bookmark: __Fieldmark__613_971907368][bookmark: __Fieldmark__236_919741]Beyond fracturing, dissolution has been recognized as an important part of the olivine alteration process (e.g. Velbel, 2009; Velbel and Ranck, 2008; Wilson and Jones, 1983) and proposed as a mechanism to explain the observed complete carbonation of peridotite. In 1978, Grandstaff showed that dissolution could significantly increase the surface area through etch-pitting. Wilson (2004) suggested that the weathering of olivine is controlled by etch-pitting and channel formation due to preferential dissolution, which assists the migration of fluid and promote further reaction. Andreani et al. (2009) suggested that permeability may be maintained during peridotite carbonation by the development of preferential flow zones. Lisabeth et al. (2017a, 2017b) observed relevant structures in dunite samples that have been reacted under controlled stress conditions, and interpreted them as a pattern of secondary porosity bands formed by dissolution coupled to locally intensified compressional stresses.
[bookmark: __Fieldmark__807_1027234670][bookmark: __Fieldmark__720_1562102060][bookmark: __Fieldmark__658_971907368][bookmark: __Fieldmark__246_919741][bookmark: __Fieldmark__827_1027234670][bookmark: __Fieldmark__736_1562102060][bookmark: __Fieldmark__670_971907368][bookmark: __Fieldmark__251_919741][bookmark: __Fieldmark__845_1027234670][bookmark: __Fieldmark__750_1562102060][bookmark: __Fieldmark__681_971907368][bookmark: __Fieldmark__261_919741]Previous investigations of olivine carbonation were largely based on the interpretation of naturally deformed samples (e.g. Macdonald and Fyfe, 1985), thermodynamic modelling (e.g. Kelemen and Hirth, 2012) or comparison with reaction systems other than olivine (e.g. leucite to analcime in Jamtveit et al., 2009). While these approaches led to significant advancements, there are limitations to the understanding of the mechanisms responsible for porosity generation during olivine carbonation that these approaches can provide. The history of natural fault rocks is inevitably complex, and thermodynamic arguments and numerical models can only indicate a potential, while the actual progress of chemical reactions is strongly affected by interfacial structures, which vary considerably in different mineral systems. Thus, it is critical to complement such studies with laboratory experiments on olivine carbonation.
[bookmark: __Fieldmark__890_1027234670][bookmark: __Fieldmark__791_1562102060][bookmark: __Fieldmark__718_971907368][bookmark: __Fieldmark__269_919741][bookmark: OLE_LINK10][bookmark: OLE_LINK12][bookmark: __Fieldmark__984_1027234670][bookmark: __Fieldmark__881_1562102060][bookmark: __Fieldmark__807_971907368][bookmark: __Fieldmark__288_919741][bookmark: __Fieldmark__1001_1027234670][bookmark: __Fieldmark__894_1562102060][bookmark: __Fieldmark__816_971907368][bookmark: __Fieldmark__293_919741][bookmark: __Fieldmark__1025_1027234670][bookmark: __Fieldmark__914_1562102060][bookmark: __Fieldmark__832_971907368][bookmark: __Fieldmark__298_919741][bookmark: __Fieldmark__1056_1027234670][bookmark: __Fieldmark__941_1562102060][bookmark: __Fieldmark__855_971907368][bookmark: __Fieldmark__310_919741]Synchrotron-based X-ray tomography is an advanced non-destructive method to capture three-dimensional images of materials. Where processes affecting these materials are followed through time, a 4-dimensional (3 spatial dimensions + time) dataset is captured. By using X-ray transparent reaction cells (Fusseis et al., 2014b), the technique enables the investigation of fluid-rock interaction at controlled and geologically relevant conditions. We examined the carbonation process of olivine on the basis of 4-dimensional images acquired by X-ray microtomographic imaging with synchrotron radiation at the Advanced Photon Source. Zhu et al. (2016) hypothesized that large grains would be preferred sites for precipitation of new crystals, and the contrast in the grain size produced the volume mismatch due to a preferred precipitation on the larger grains and led to the fracturing of the sample. To further test the hypothesis, in this current study, we conducted a new experiment using an olivine aggregate with larger grain size (80-100 μm) compared to the previous experiment reported by Zhu et al., (2016; 0-20 μm). We also performed advanced 3D analyses and quantification of the micro- and nano-tomography data obtained by Zhu et al. (2016). In an advancement of the results presented by Zhu et al. (2016), here we present direct evidence for the coupled mechanisms of dissolution and precipitation-driven fracturing during olivine carbonation and demonstrate their importance in sustaining the reaction progress at different spatial and temporal scales. We further show direct evidence of how reaction-induced fracturing operates, i.e. how stress is generated through volume-increasing reactions. A better understanding of olivine carbonation directly applies to the geological sequestration of CO2  (Gislason et al., 2010; Mani et al., 2008). The principle of in-situ carbon mineralization is the conversion of silicate and hydroxide minerals to form carbonate minerals as a stable sink for CO2 (Power et al., 2013). Peridotite, because of its wide occurrence and high reactivity, is considered one of the best potential feedstocks for CO2 mineralization (Andreani et al., 2009; Beinlich and Austrheim, 2012); the estimated rate of CO2 consumption peridotite carbonation could be as high as 2×109 tons·km-3 per year (Kelemen and Matter, 2008). As the dominant constituent of peridotite, olivine becomes the most important mineral for CO2 mineralization. Our study provides new insights into carbon sequestration using ultramafic rocks, and our findings on the mechanism of fracture generation during olivine carbonation could provide guidance to industrial applications.
2 Experimental Setup
2.1 Sample Configuration
In Zhu et al. (2016), the contrast in grain size between the loose grains and the cup wall aggregate is hypothesized as the cause of the non-uniform precipitation which is crucial to the generation of fractures in the experiment. Here, we use coarse-grained olivine aggregate in the cup wall to reduce the contrast in grain size between the cup wall and the fillings and further test their hypothesis. 
[bookmark: OLE_LINK21][bookmark: OLE_LINK11]The sample assembly consists of a millimeter-sized synthesized San Carlos olivine cup, filled with loose San Carlos olivine sand (grain size 100500 μm, see Figure 2a) and then covered by a lid made of the same material as the cup. Both the olivine cup and its lid are taken from a sintered pellet made from pulverized San Carlos olivine with a grain size of 80-100 μm. This coarse-grained olivine cup is referred to as large grain cup (LGC) in the following discussion. Data obtained from the LGC experiment will be compared to the results of an olivine carbonation experiment conducted by Zhu et al. (2016) at the same experimental conditions, on a fine-grained (grains sizes between 0-20 μm) cup. The fine-grained olivine cup is referred to as small grain olivine cup (SGC) in the following discussion. 
The cup, which was fabricated by hot-pressing in a procedure described in Zhu et al. (2016), has inner and outer diameters of 1 and 1.8 mm respectively, with a resulting wall thickness of 0.4 mm. It has an initial porosity of 10%. ~0.4 mm. The initial porosity of the cup is ~10%. Both LGC and SGC samples were sintered for 4 hours at 1400°C, the LGC sample came out weaker (less cohesive) compared to the SGC sample, and the initial porosity of LGC is slightly higher than that of SGC.  
The loose grains inside the cup allowed the inspection of magnesite growth on free olivine surfaces. The sample assemblies (i.e., olivine cup + loose grains) were jacketed and loaded into an xX-ray transparent pressure cell (Figure 3). A confining pressure of 13 MPa and a pore fluid of NaHCO3 aqueous solution (1.5 mol·L-1) at 10 MPa were applied to the sample. The pore pressure downstream is regulated by a pressure regulator while the upstream is controlled by a syringe pump to form a semi-open system. Both upstream and downstream pore pressures were maintained at 10MPa throughout the experiment. A small axial load is applied independently from the confining pressure by locking the piston at a fixed position. The pressure cell was then heated to 200 °C to initiate the reaction. These conditions were kept constant during the entire microtomography experiment. The reaction of the LGC sample was stopped at 36 hours after considerable secondary porosity generation was observed. No magnesite precipitation was detected in LGC. The SGC sample was reacted for 7 days until intense fracturing was observed. Significant magnesite precipitation was detected in SGC (Zhu et al., 2016).
2.2 Micro- and Nano-tomography
[bookmark: __Fieldmark__1241_1027234670][bookmark: __Fieldmark__1111_1562102060][bookmark: __Fieldmark__1016_971907368][bookmark: __Fieldmark__398_919741]Third-generation synchrotron facilities produce electromagnetic radiation bright enough to allow rapid imaging even inside experimental vessels, thereby enabling studies of dynamic processes ranging over periods from seconds to days, while acquiring individual 3-dimensional (3-D) data sets in fractions of a second. Synchrotron X-ray microtomography has therefore become one of the most powerful tools in structural geology and rock mechanics studies (see Fusseis et al., 2014a for a review and Bedford et al., 2017 for a recent application). 
[bookmark: __Fieldmark__1279_1027234670][bookmark: __Fieldmark__1145_1562102060][bookmark: __Fieldmark__1047_971907368][bookmark: __Fieldmark__407_919741][bookmark: __Fieldmark__1296_1027234670][bookmark: __Fieldmark__1158_1562102060][bookmark: __Fieldmark__1056_971907368][bookmark: __Fieldmark__416_919741]In this experiment, synchrotron-based X-ray absorption microtomography has been used to record the dynamic carbonation of olivine in 4 dimensions. We used an X-ray transparent cell (Fusseis et al., 2014b), mounted in the upstream experimental station at beamline 2BM of the Advanced Photon Source of Argonne National Laboratory, 25 m from the source. There, a polychromatic beam filtered by 1 mm aluminum, 15 mm silicon and 8 mm borosilicate glass yielded a photon flux with an energy peak at 65 KeV (Zhu et al., 2016). A Cooke pco.edge sCMOS camera with 2560×2160 pixels (pixel size 6.5×6.5 μm2) was used in a flying scan mode. The sample-detector distance was 300 mm, which introduced a clear phase contrast signal to the data (Cloetens et al., 1996). The camera recorded projections from a 10 μm thick LuAG:Ce single crystal scintillator, magnified through a 10× Mitutoyo long-working distance lens yielding a pixel size of 0.65 μm. Projections were collected with an exposure time of 50 ms while the sample was rotated over 180 ° with 1.2 °·s-1. 1500 projections were collected in 150 s. For the LGC sample, 115 3-D microtomographic data sets were acquired over 36 hours, together forming a 4D data set, with time as the fourth dimension. For the SGC sample, 379 data sets were acquired over 7 days. From these 379 datasets, 19 were chosen for further detailed quantitative analysis. All acquired microtomographic data were reconstructed using the code Tomopy (Gürsoy et al., 2014) into stacks of 2160 images each, with dimensions of 2560×2560 pixels per image. Each of these image stacks contains a 3-dimensional representation of the sample mapped onto a 32-bit image, with the grey values reflecting the local absorption of X-rays (Fusseis et al., 2014a). Where the refractive indices change in the sample, i.e. on edges, this absorption signal is locally overlain by a phase contrast signal (Cloetens et al., 1996). The time series dataset covers the entire duration of the experiment.
After the in-situ acquisition of the microtomography images, a fragment of the cup wall from the SGC was taken to conduct nano-scale imaging. Nanotomography was conducted using a transmission X-ray microscope (TXM) at the beamline 32-ID of the Advanced Photon Source of Argonne National Laboratory. A monochromatic beam of X-ray with an energy of 8 keV was used. An X-ray objective lens corresponding to a Fresnel zone plate with 60nm outermost zone width was used to magnify radiographs onto a detection system assembly comprising a LuAG scintillator, a Zeiss 5X optical microscope objective lens and an Andor Neo sCMOS camera. Nanotomography yields a pixel size of ~60 nm after binning.
2.3 Image Processing Procedures
ADDIN CSL_CITATION { "citationItems" : [ { "id" : "ITEM-1", "itemData" : { "DOI" : "10.1002/2016GL070834", "ISSN" : "19448007", "abstract" : "\u00a92016. American Geophysical Union. All Rights Reserved.Mineral carbonation, a process that binds CO2 in the form of carbonates by silicate weathering, is widespread on the Earth's surface. Because of the abundance of silicate rocks and the permanence of the carbonated solids, sequestering CO2 via mineral carbonation has generated lots of interests. However, it is unclear how the fluid-rock reaction proceeds to completion in spite of an increasing solid volume. We conducted a mineral carbonation experiment in which a sintered olivine aggregate reacted with a sodium bicarbonate solution at reservoir conditions. Time-resolved synchrotron X-ray microtomographic images show cracks in polygonal patterns arising in the surface layers and propagating into the interior of the olivine aggregate. The nanotomography data reveal that the incipient cracks intersect at right angles. We infer that stretching due to nonuniform volume expansion generates polygonal cracking of the surfaces. Our data shed new lights on the processes that control hydration and carbonation of peridotite.", "author" : [ { "dropping-particle" : "", "family" : "Zhu", "given" : "Wenlu", "non-dropping-particle" : "", "parse-names" : false, "suffix" : "" }, { "dropping-particle" : "", "family" : "Fusseis", "given" : "Florian", "non-dropping-particle" : "", "parse-names" : false, "suffix" : "" }, { "dropping-particle" : "", "family" : "Lisabeth", "given" : "Harrison P.", "non-dropping-particle" : "", "parse-names" : false, "suffix" : "" }, { "dropping-particle" : "", "family" : "Xing", "given" : "Tiange", "non-dropping-particle" : "", "parse-names" : false, "suffix" : "" }, { "dropping-particle" : "", "family" : "Xiao", "given" : "Xianghui", "non-dropping-particle" : "", "parse-names" : false, "suffix" : "" }, { "dropping-particle" : "", "family" : "Andrade", "given" : "Vincent", "non-dropping-particle" : "De", "parse-names" : false, "suffix" : "" }, { "dropping-particle" : "", "family" : "Karato", "given" : "Shun Ichiro", "non-dropping-particle" : "", "parse-names" : false, "suffix" : "" } ], "container-title" : "Geophysical Research Letters", "id" : "ITEM-1", "issue" : "18", "issued" : { "date-parts" : [ [ "2016" ] ] }, "page" : "9535-9543", "title" : "Experimental evidence of reaction-induced fracturing during olivine carbonation", "type" : "article-journal", "volume" : "43" }, "uris" : [ "http://www.mendeley.com/documents/?uuid=9be4b03d-9b05-4296-b7e5-b0d12c62077a" ] } ], "mendeley" : { "formattedCitation" : "(Zhu et al., 2016)", "manualFormatting" : "Zhu et al. (2016)", "plainTextFormattedCitation" : "(Zhu et al., 2016)", "previouslyFormattedCitation" : "(Zhu et al., 2016)" }, "properties" : {  }, "schema" : "https://github.com/citation-style-language/schema/raw/master/csl-citation.json" }Zhu et al. (2016) conducted simplified analyses and measurements on 2-dimensional image slices (see Figure 2b) through the 3-D microtomography datasets of fine-grained aggregate acquired in this experiment. In this study, we present the results of a true 3-dimensional volume quantification of the microstructural changes in the sample (i.e., spatio-temporal changes in grain and pore volumes).
For the fine-grained aggregate, in each of the 19 reconstructed volumetric datasetsZhu et al. (2016) conducted preliminary analyses and measurements on 2-dimensional (2-D) image slices (see Figure 2b) of SGC through the 3-D microtomography datasets acquired. Here, we present the results of a true 3-D volume quantification of the microstructural changes in the SGC sample (i.e., spatio-temporal changes in grain and pore volumes) and compared them with the results obtained from LGC sample in this study. 
In both the SGC and the LGC samples, a sub-region that included both, the cup wall near-surface as well as the capcup wall’s interior was chosen for detailed inspection. Within that sub-region from all datasets. For each sample, two subvolumes (see subvolume 1 and 2 from Figure 4) with athe dimension of 400×400×400 voxels (260×260×260 µm3) were cropped out from the region of interests in the cup wall in all datasets. Subvolume(see Figure 4, subvolume 1 and 2 from SGC and subvolume 3 and 4 from LGC). In the SGC sample, subvolume 2 was further cropped to a volume of 247×400×400 voxels (160.55×260×260 µm3) to eliminate the boundary of the cup wall. 
[bookmark: __Fieldmark__1474_1027234670][bookmark: __Fieldmark__1321_1562102060][bookmark: __Fieldmark__1215_971907368]Image segmentation is the separation and extraction of phases of interests from the 3D data sets for further analysis and quantification. A large range of segmentation algorithms exist ADDIN CSL_CITATION { "citationItems" : [ { "id" : "ITEM-1", "itemData" : { "DOI" : "10.1016/j.advwatres.2008.01.022", "ISBN" : "0309-1708", "ISSN" : "03091708", "abstract" : "Three-dimensional imaging and image processing has become an important part for investigations of fluid distribution and flow in porous media. We describe two methods of computed tomography with different characteristics, namely X-ray- and neutron-based. We give an overview of image processing sequences and their methods. We investigated image enhancement with a focus on filters using partial differential equations, classification and structure identification that we used to prepare our images for quantitative evaluations. These methods are demonstrated on a partially saturated sand sample. Finally, we show an application with soil aggregates where investigations using synchrotron X-rays and thermal neutrons have led to new insights and refined fluid distribution and flow models. \u00a9 2008 Elsevier Ltd. All rights reserved.", "author" : [ { "dropping-particle" : "", "family" : "Kaestner", "given" : "A.", "non-dropping-particle" : "", "parse-names" : false, "suffix" : "" }, { "dropping-particle" : "", "family" : "Lehmann", "given" : "E.", "non-dropping-particle" : "", "parse-names" : false, "suffix" : "" }, { "dropping-particle" : "", "family" : "Stampanoni", "given" : "M.", "non-dropping-particle" : "", "parse-names" : false, "suffix" : "" } ], "container-title" : "Advances in Water Resources", "id" : "ITEM-1", "issue" : "9", "issued" : { "date-parts" : [ [ "2008" ] ] }, "page" : "1174-1187", "title" : "Imaging and image processing in porous media research", "type" : "article-journal", "volume" : "31" }, "uris" : [ "http://www.mendeley.com/documents/?uuid=e956ea31-39d6-48d5-870e-a80cc7110174" ] } ], "mendeley" : { "formattedCitation" : "(Kaestner et al., 2008)", "manualFormatting" : "(e.g. Kaestner et al., 2008)", "plainTextFormattedCitation" : "(Kaestner et al., 2008)", "previouslyFormattedCitation" : "(Kaestner et al., 2008)" }, "properties" : {  }, "schema" : "https://github.com/citation-style-language/schema/raw/master/csl-citation.json" }(e.g. Kaestner et al., 2008). In global binary thresholding, images are segmented by identifying the grey value range representing a phase and assigning all voxels within that range a single value (usually 1) while all other voxels are classified as matrix (and assigned a different single value, usually 0) ADDIN CSL_CITATION { "citationItems" : [ { "id" : "ITEM-1", "itemData" : { "DOI" : "10.1007/978-3-642-10343-8", "ISBN" : "978-3-642-10342-1", "abstract" : "Image Analysis in Earth Sciences is a graduate level textbook for researchers and students interested in the quantitative microstructure and texture analysis of earth materials. Methods of analysis and applications are introduced using carefully worked examples. The input images are typically derived from earth materials, acquired at a wide range of scales, through digital photography, light and electron microscopy. The book focuses on image acquisition, pre- and post-processing, on the extraction of objects (segmentation), the analysis of volumes and grain size distributions, on shape fabric analysis (particle and surface fabrics) and the analysis of the frequency domain (FFT and ACF). The last chapters are dedicated to the analysis of crystallographic fabrics and orientation imaging. Throughout the book the free software Image SXM is used.", "author" : [ { "dropping-particle" : "", "family" : "Heilbronner", "given" : "Ren\u00e9e", "non-dropping-particle" : "", "parse-names" : false, "suffix" : "" }, { "dropping-particle" : "", "family" : "Barrett", "given" : "Steve", "non-dropping-particle" : "", "parse-names" : false, "suffix" : "" } ], "container-title" : "Image Analysis in Earth Sciences: Microstructures and Textures of Earth Materials", "id" : "ITEM-1", "issued" : { "date-parts" : [ [ "2014" ] ] }, "number-of-pages" : "1-520", "publisher" : "Springer Berlin Heidelberg", "publisher-place" : "Berlin, Heidelberg", "title" : "Image Analysis in Earth Sciences", "type" : "book" }, "uris" : [ "http://www.mendeley.com/documents/?uuid=5bed99ca-bdec-4a86-a476-1f5ead078058" ] } ], "mendeley" : { "formattedCitation" : "(Heilbronner and Barrett, 2014)", "plainTextFormattedCitation" : "(Heilbronner and Barrett, 2014)", "previouslyFormattedCitation" : "(Heilbronner and Barrett, 2014)" }, "properties" : {  }, "schema" : "https://github.com/citation-style-language/schema/raw/master/csl-citation.json" }(Heilbronner and Barrett, 2014). Image segmentation is the separation and extraction of phases of interests from the 3-D data sets for further analysis and quantification. A large range of segmentation algorithms exist (e.g. Kaestner et al., 2008). In global binary thresholding, images are segmented by identifying the grey value range representing a phase and assigning all voxels within that range a single value (usually 1) while all other voxels are classified as matrix (and assigned a different single value, usually 0) (Heilbronner and Barrett, 2014).  Global binarization was conducted in Avizo Fire 8 to isolate pores from solids.
AtIn the SGC sample, at the given spatial resolution, we could not resolve the new crystals precipitated within the cup wall and only the pore space was segmented there. Pixels with grey values that fall in the range (-0.00031, -0.000077) were assigned to pore space. We used the segmented data to quantify the change in the spatial distribution of pores during the experiment. Each subvolume (Figure 4) was further divided into smaller cubes (side lengths ~26 μm) in which the average porosity is calculated to examine where changes in porosity occurred. In the LGC sample, grey values that fall in the range (-0.00031, -0.000095) were assigned to pore space.
In the nanotomography data, the grey value range between (2.97672×10-9, 0.13161) was assigned to pore space. In these data, the olivine is represented by grey values between (0.30846, 1.3161). Voxels with intermediate grey values (0.13161, 0.30846) were assigned to reaction precipitates (e.g. magnesite).
3 Data analysis and results
In our experiments, weWe have observed the development of secondary pore spaceporosity during the reaction in both the coarse- and fine-grained olivine aggregate experiment LGC and SGC experiments (Figure 5). However, detailedDetailed examination has further revealed the differences between the formationsthat the porosity generation in LGC is significant different from that in SGC.
3.1 Dissolution in the LGC sample
As reaction proceeded, olivine grains in the LGC sample shrank in size and secondary pores were produced (Figure 5a). This suggests that dissolution dominated the carbonation reaction in LGC, with little precipitation detected. The secondary pore space formed first at the center of the cup wall and grew outwards (Figure 5a), which is opposite to that in SGC where fractures grew from the surface of cup wall inwards (Figure 5b). 
Planar fractures formed within 36 hours of reaction in LGC (Figure 6), and the experiment was stopped shortly after the formation of these poresfractures. Because of the lack of precipitation, these planar fractures could not be induced by the non-uniform volume expansion as in the SGC sample (Zhu et al., 2016).  Under a constant confining pressure, volume reduction in olivine grains (i.e., dissolution) likely shortened the LGC sample length as reaction proceeded. Because the axial piston was kept at a fixed position during the experiment, this shortening in sample length resulted a decrease in axial stress. Because the LGC sample is mechanically weak (less cohesion), even though the reduction in axial stress is small, it could be sufficient to cause fracture LGC in the manner of dilation bands under triaxial extension (e.g., Zhu et al., 1997). Detailed examination of the 3D images revealed the disappearance of small grains along the plane which is clear evidence of dissolution. Thus we refer to these planar cracks as dissolution-assisted fractures under triaxial extension. The dissolution-assisted fractures were not observed in the SGC sample because it is much stronger owing to its fine grain size (e.g. Eberhardt et al., 1999; Singh, 1988). The triaxial extension stress condition would be no longer present once precipitation started (after ~36 hours) and sample volume expansion took place.
3.2 Lack of precipitation in the LGC sample
Evidences from direct observation and quantitative analysis have shown that the LGC sample is lack of precipitation.
Within the duration of the reaction, hardly any precipitation was observed in the cup wall. In the microtomographic images, the surface layer of the loose olivine grains remained free of precipitates. Both sides of the cup wall remained straight and showed no spalling due to precipitation-caused non-uniform stretching. The sample did not experience any expansion as seen in the SGC sample.
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Comparing the histogram of SGC sample with the LGC sample, the shape of the histograms from the LGC sample (Figure 7a) is clearly asymmetric compared to the bell-shaped histograms in the SGC sample (Figure 7b). The slope on the precipitation side of the LGC histogram is steep and becomes steeper as reaction proceeds, indicating dissolution of olivine with little to no precipitation. The slope on the pore side of the LGC histogram becomes shallower, owing to the secondary porosity generation due to the dissolution of olivine. 
Data from the SGC sample showed that the histograms became uniformly flatter and wider over the duration of the experiment, with an increase in the number of both the darkest and brightest voxels at the expense of the voxels with intermediate grey values (Figure 8).. These systematic changes in the absorption behaviour can only be caused by the sample reacting and indeed reflect the dissolution of olivine, the generation of pore space and the precipitation of reaction products, in addition to phase contrast around newly generated edges in the sample. The best fit curves to the histograms evolved systematically during the reaction and intersected in a relatively narrow grey value range (0.000077, 0.000055) (Figure 87). Voxels with grey values darker than -0.000077 correspond to fluid-filled pores, whose volume proportion increases throughout the reaction process.
3.3 Porosity evolution of LGC compared to SGC
Pore space development in LGC is significantly different from SGC. As shown in Figure 5 and 6, the secondary pore space in the LGC developed simultaneously at the interior and the near surface of the sample. However, in the SGC sample, pore space first occurred in area close to the surface and propagated inwards.
To further examine the difference in porosity generation of the LGC and SGC sample during the reaction, pore spaces within the subvolumes are segmented from the images and calculated. Figure 8 compares the porosity of subvolume 1 and 2 (Zhu et al., 2016) from SGC and subvolume 3 and 4 from LGC samples. As shown by the figure, initial porosity of the LGC and SGC sample are similar. The rate of porosity increase in the LGC sample is similar to the SGC during the first 36 hours after the reaction started. Porosity of the LGC sample are increasing throughout the duration of the experiment while porosity of the SGC shows a decrease after 90 hours of reaction. In the LGC sample, the porosity increased ~5% and is likely resulted from dissolution. This is consistent with other studies that the precipitate do not occur in olivine carbonation within 36 hours of reaction (e.g. Lisabeth et al., 2017a).
We then further evaluated the porosity distribution within the subvolumes by quantifying the porosity of 2D tangential slice along the samples’ radial direction. Figure 9 compares the porosity distribution of subvolume 2 from the SGC sample with subvolume 4 from the LGC sample. The subvolume 4 shows a homogeneous increase in porosity of ~5% throughout the entire subvolume. Subvolume 2, while showing an increase of porosity during the first 30 hours of the reaction, starts to show a porosity decrease in areas close to the center of the cup wall after 81 hours of reaction. Comparison of the subvolumes from SGC and LGC revealed that the porosity generation within the LGC sample is relatively homogeneous while the porosity generation within the SGC sample starts to show contrast between the cup’s near surface and its interior after 81 hours of reaction. Results from the porosity evaluation further support that the LGC sample is dominated by dissolution with no presence of precipitation.
3.4 Fractures in LGC vs. SGC
As discussed in 3.1, the planar fractures observed in the LGC sample are likely a result of the dissolution-assisted extensional crack. This is different from the stretching-induced fractures in SGC (see Zhu et al. 2016) where non-uniform precipitation is indispensable. The dissolution and-assisted fracturing arein LGC and the stretching-induced fracturing in SGC both observed to generategenerated secondary pore space during the experiments, but the dissolution featurefractures in LGC differs distinctively from the reaction-induced fracturesthose on SGC in many ways: 
· Firstly, the dissolution feature-assisted fracturing is a single, planar feature in 3‑D with no obvious secondary fractures branching out, while the fractures observed in the fine-grained aggregateSGC sample formed a network of intersecting cracks.  Figure 910a shows the morphology of the dissolution plane and the fracture network in 3D. It’s obviousshown in Figure 10b that the fractures intersected with each other and formed a complex wedge shape network with the vertex pointing towards the sample’s interior. The dissolution feature-assisted fracturing mainly developed alonealong a plane and show less intersection with other features.
· Secondly, the LGC sample dominated by dissolution features shows clear evidence for shrinkage of larger grains and disappearance of smaller grains at the interior of the aggregate (Figure 5a). The fine-grained aggregate exhibitSGC sample exhibits patches that develop during the reaction which are evidences for the reaction product precipitation. (Zhu et al., 2016).
· Thirdly, the development of micron-scale dissolution is simultaneous, with the shrinkage of grains occurring both at the surface and the interior of the cup wall (Figure 65 and 9b6a). In contrast, development of the reaction-induced fracturing is successive with most fractures occurred first at the surface and migrated towards the interior of the cup wall. This caused the observed wedge shape of the fracture network (Figure 9a10b). Development of the fractures also exhibits hierarchical sequence with main fractures appearedappearing first. The secondary fractures branch out from the main fracture and divide the sample into smaller patchesdomains (Figure 72 from Zhu et al., 2016). 
· What’s more, no precipitates were observed along planar dissolution features in the LGC sample, the cup wall remains straight throughout the experiment. But for the fine-grained aggregateSGC, the cup wall shows clear spalling which is a sign of nonenon-uniform expansion that links to precipitation in this experiment.
3.5 Dissolution and fracturing of individual olivine grain
The reaction affected not only the aggregate but also the individual olivine grains. Both the dissolution feature and reactioninduced fracturing are observed at grain scale. in the SGC sample. Figure 1011 shows a series of image slices through a nanotomography dataset, moving through an olivine grain in the cup wall. The grains clearly exhibit channels (etch pits) in the reaction zone. In video S1 (supplementary materials) it can be seen that these channels penetrate into, and even through olivine grains. As we do not observe any precipitation filling or clogging the tubes, it is therefore reasonable to think that the channels start as etch-pits and grow deeper with the advancing of dissolution and eventually become the through going channels observed here. The tubular shape and the depth of penetration indicate that they are ‘worm hole’ features, likely resulting from dissolution. The shape and the width of these channels vary, with wider inner channel diameters below the surface suggesting more extensive dissolution at depth. On average, most typical tubes have an inner diameter of around 720nm.
The fracturing is also observed on individual grains at nano-meter scale. Figure 1112 shows nanotomographic evidence for hierarchical fracturing within olivine grains. The secondary fractures developed from the primary fracture and formed in a direction that is perpendicular to the earlier ones.
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4 Discussion
We claim that our experimental observations indicate the activity of two different mechanisms that both create fluid pathways effectively. These are dissolution-dominated fluid pathway generation at micro-meter scale in the case of the coarse-grained aggregateLGC experiment and at nano-meter scale in the case of fine-grained aggregateSGC, and reaction-induced fracturing in the case of the fine-grained aggregateSGC. We detail our interpretation in the following sections.
4.1 Dissolution and etch-pitting
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 ,                                                                                                                                                                              (1)
where Q is the volume flow/rate of discharge, r is the radius of the tube, 𝜂 is the viscosity of the fluid, ∆P is the pressure difference over the flow length ∆L. Darcy’s Law stated that the rate of discharge is proportional to the viscosity of the fluid and the pressure drop over a given distance, i.e., for a tube with a radius in r:
,	                                                                                                                                                                       (2)
where k is the permeability of the tube. Combining the two equations, k can then be derived as:
	                                                                                                                                                                                     (3)
In this experiment, r is ~6 pixels (360 nm). This yields a permeability of ~1.6×10-14 m2, which is high enough to transmit reacting fluids through these channels. Considering the density of ‘worm hole’ features over the grain, the permeability contributed by the channels could be reduced by two orders of magnitude but is still able to transmit fluid.
These intragranular channels contrast the transgranular fractures. But the development of these etch-pitting dissolution channels also provide fluid path for the reaction and allow a more extensive degree of alteration of the grain. They weaken the grains, make them more susceptible to disintegration and provide nucleation sites of the later fracturing. While sparse in our data, we think that over geological time scales the contribution by dissolution channel to bulk permeability and the advance of the reaction would be significant. However, on the time scale of our experiments, these features alone are insufficient to explain the observed self-sustainability of the reaction considering the scale and density of the dissolution channels and we argue that the main contribution must come from volume mismatch cracking in our laboratory study.
4.2 Reaction-induced fracturing
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[bookmark: __Fieldmark__2571_1027234670][bookmark: __Fieldmark__1804_1562102060][bookmark: __Fieldmark__1561_971907368][bookmark: __Fieldmark__814_919741][bookmark: __Fieldmark__2586_1027234670][bookmark: __Fieldmark__1815_1562102060][bookmark: __Fieldmark__1568_971907368][bookmark: __Fieldmark__819_919741]To generate the expansion cracks via surface stretching, the volume mismatch must be substantial, which requires to keep the near surface region free of precipitates. Zhu et al. (2016) suggested that the loose olivine grains inside the sample cup worked as precipitate traps/attractors in this experiment. Because the rate of crystal growth decreases drastically as the curvature of the substrate increases (García et al., 2013; Ziese et al., 2013), large grains in general are preferred sites for precipitation of new crystals. With a size contrast of ~2 orders magnitude, the loose olivine grains (100-500 μm) in the immediate vicinity of the inner cup surface fulfilled the function of precipitate traps and thereby kept precipitation level at the surface of the olivine cup wall low. 
We tested the idea of volume mismatch cracking by conducting the LGC experiment. Now the size contrast between the grains forming the aggregate in the cup wall and the loose grains inside the cup was significantly reduced, and we expected less efficient precipitate trapping, and consequently little to no reaction-induced cracks. The experimental results support this idea. The only planar features observed in the new microtomography experiment are planar dissolution featuresassisted cracking (Figure 6 and 10a). 
A detailed examination of the dissolution channel shown in Fig. 6 revealed no evidence of precipitates there. This places doubt on the crystallization pressure being responsible for fracturing during olivine carbonation. If not, what could be an alternative explanation for the observed fracturing? To further address this question, we examined the porosity evolution and distribution in the 3-D tomographic datasets. 
Despite the histogram analysis revealed a bulk increase in the porosity of the cup wall during the experiment, the distribution of these newly generated pores was inhomogeneous in the sample (Figure 139 and 14). This perturbed the initially homogeneous porosity distribution.  This effect became particularly apparent in subvolume 2, which started to exhibit higher porosity where it was closest to the outer surface of the sample after 68 hours (see Video S2, S3, S4 for details). The difference in porosity distribution within the sample became more pronounced as the reaction proceeded, with porosity in the outer surface of the cup wall increasing while the porosity inside the cup decreased. In our interpretation, this change in the pore volume reflects a contrast in the precipitation rate where precipitation proceeded more slowly in the outer part compared to the inner part of the sample wall, leading to different rates of expansion and the generation of tensile stresses.
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[bookmark: __Fieldmark__6767_1027234670]In summary, two fundamental observations from our experiments are inconsistent with the “internal cracks generated by crystallization pressure” mechanism induced fracturing” model and form strong arguments against the existence of any significanthigh crystallization forces (i.e., sufficient to break the surrounding rock) (Figure 10, 1311, 14). Firstly, if the cracks were generated directly by crystallization pressure, we should expect them to initiate in region with intense precipitation and porosity reduction. However, in the outer layer of our sample where the fractures are observed, no precipitates formed prior to the fracturing. Secondly, on the nanoscale, the channels formed by dissolution show hollow and smooth inner surfaces and no precipitation of magnesite (or any other minerals) which shows evidences of low crystallization pressure.
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4.3 Coupled-mechanisms of dissolution and precipitation-driven fracturing
[bookmark: __Fieldmark__2827_1027234670][bookmark: __Fieldmark__1983_1562102060][bookmark: __Fieldmark__1692_971907368][bookmark: __Fieldmark__990_919741]The findings of this study can be summarized in a mechanism that couples dissolution and precipitation during olivine carbonation. If dissolution and precipitation are heterogeneously distributed in a rock, non-uniform volume expansion can cause breaking of the host rock via surface stretching. In nature, heterogeneity in the porosity and permeability of a rock formation is common, which may cause non-uniform concentration of reaction and distribution of precipitation (Wells et al., 2017). As shown in our study, the resulting volume mismatch could lead to expansion fractures. The fractures provide new fluid pathways and expose fresh reactive surfaces to sustain the carbonation. In a long-term, fluid pathways may be provided by “worm-hole” etch pitting. Dissolution channels could deteriorate rock strength over longer time scales (Figure 1415).
In a field study on serpentinization of peridotites at ocean ridges, Rouméjon and Cannat (2014) show that the reaction-induced fracturing occurs in the early stages of serpentinization (probably before 20% of serpentinization) while the rest of the volume increase is accommodated by the serpentine itself and dissolution processes dominate until completion of the reaction. Clearly, natural processes are more complex. Laboratory studies are not capable of simulating nature settings due to the vastly different length and time scale. Instead, we focus on understanding the underlying mechanism of porosity generation during olivine carbonation reaction. Using the coupled dissolution and fracturing model described above, we postulate that at the beginning of a carbonation reaction, dissolution plays an important role in maintaining porosity. As reaction progresses, no-uniform expansion of the rock due to precipitation could lead to fractures. Once the host rock is fractured, accelerated reaction takes place to achieve 100% carbonation. 
In general, several different mechanisms seem to facilitate olivine alterationcarbonation and contribute to sustaining it. On relatively short time scales, rapid reaction-induced tensile fracturing could be the dominating mechanism that maintains the reaction, whereas on a longer timescale, dissolution and the formation of channel-like structures may dominate. 
5 Conclusions
Using synchrotron-based micro- and nano-tomography, we documented and quantified the reaction progress during olivine-fluid interaction on the micron scale. This allowed us to identify mechanism that sustain the reaction despite its large positive volume change. 
In summary, our experiment results suggest:
· The reaction-induced fracturing observed in our experiments results from non-uniform volume expansion. Tensile stresses arise from heterogeneous precipitation and the resulting contrast in the expansion. between a faster expanding interior and a slower expanding near-surface. 
· Even though the dissolution cannot be used alone to explain the sustainability of the experimental-time-scale olivine carbonation, it provides evidence that dissolution etch-pits can provide fluid path and fresh reaction surface for the reaction to proceed. This helps in explaining the naturally occurring complete alteration of peridotite, as the time scale for natural carbonation ranges from thousands to million years. Even if the dissolution channelizing would only allow slow fluid flow, it could still induce significant alteration given time. 
· The coupled-mechanism of dissolution and reaction-induced fracturing accounts for maintaining the reaction processes during olivine carbonation. It explains on different time and space scale about the formation of observed natural outcrops of completely carbonated peridotite. 
· [bookmark: OLE_LINK3][bookmark: OLE_LINK4]The results from our experimental study also provide new insights into the application of CO2 mineral sequestration.
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Figure 1: Illustration of the mechanisms of reaction-induced fracturing during olivine-fluid interaction. a) The crystallization pressurization describedmodel describes the development of fractures caused by crystallization forces exerted on the surroundings due to growth of precipitates. Salt crystallization ADDIN CSL_CITATION { "citationItems" : [ { "id" : "ITEM-1", "itemData" : { "DOI" : "10.1016/j.cemconres.2003.12.034", "ISBN" : "1609258568", "ISSN" : "00088846", "abstract" : "The thermodynamic and kinetic factors influencing crystallization pressure are reviewed for cases including capillary rise and evaporation, cyclic wetting and drying, and hydration of cement. Under equilibrium conditions, where the crystal is surrounded by a film of solution, high stresses are expected only in small pores, but when that film is discontinuous (as may occur during drying), high stresses can arise even in large pores. High crystallization pressure requires a substantial supersaturation of the pore liquid. In the case of sodium sulfate, supersaturation results from the difference in solubility between the anhydrate and decahydrate phases; for ettringite, supersaturation may develop following the cooling from elevated temperatures. During the hydration of Portland cement, crystallization pressure may result from the growth of ettringite and/or calcium hydroxide. \u00a9 2004 Elsevier Ltd. All rights reserved.", "author" : [ { "dropping-particle" : "", "family" : "Scherer", "given" : "George W.", "non-dropping-particle" : "", "parse-names" : false, "suffix" : "" } ], "container-title" : "Cement and Concrete Research", "id" : "ITEM-1", "issue" : "9", "issued" : { "date-parts" : [ [ "2004", "9" ] ] }, "page" : "1613-1624", "title" : "Stress from crystallization of salt", "type" : "article-journal", "volume" : "34" }, "uris" : [ "http://www.mendeley.com/documents/?uuid=f4ef4e11-b43a-4303-bd2e-36257644398a" ] } ], "mendeley" : { "formattedCitation" : "(Scherer, 2004)", "plainTextFormattedCitation" : "(Scherer, 2004)", "previouslyFormattedCitation" : "(Scherer, 2004)" }, "properties" : {  }, "schema" : "https://github.com/citation-style-language/schema/raw/master/csl-citation.json" }(Scherer, 2004)(Scherer, 2004) is a typical example of the crystallization pressure induced fracturing. The fractures first appear at areas where precipitation is most concentrated and propagate outwards. b) The surface cracking model describes the development of fractures as a result of a contrast in expansion which causes stretching at the surface. A difference in the precipitation rate between the periphery and interior of the sample causes them to expand in different rates with the insideinterior expanding faster than the outsidesurface. This builds up the tensile stress at the surface that fractures the sample and leads to a development of a polygonal fracture network. The fractures propagate from the surface towards the insideinwards.
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Figure 2: Illustration of sample configuration. a) The sample is composed a sintered olivine aggregate cup with loose olivine sand fillings (grain size 100500 μm). Quantitative microtomographic analyses are conducted on the tangential (pink), radial (orange) and cross (blue) section of the sample. b) Example of the tomographic images that was used in the 2D examination of Zhu et al. (2016).
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[image: ]Figure 3: Experimental setup for dynamic microtomography. Inside the x-ray transparent pressure cell, the confining pressure, pore pressure and temperature can be controlled independently. The synchrotron radiation imaging records radiographs of the sample at in-situ conditions with ongoing reaction at different angular positions with the sample being rotated.
Figure 4: The sub-region of the fine-grained aggregate sample examined in detail. Positions of the two subvolumes in the cup wall. Subvolume of a) SGC and b) LGC, where quantitative 3D microstructure analyses were performed. In the SGC sample, subvolume 1 (bottom box) is located at the center of the cup wall. Subvolume 2 (top box) is located adjacent to the outer rim of the wall. In the LGC sample, both subvolume 3 (bottom box) and subvolume 4 (top box) are located at the center of the cup wall.
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Figure 5: Reconstructed images showing horizontalthe cross section view of the samples.sample undergoing olivine carbonation. a) Coarse-grained aggregates exhibitIn the LGC sample, original olivine grains shrink, and secondary pore space appears (yellow arrows), suggesting dissolution features in which grain of olivine shrank and formed secondary pore spaces. Most of the large pore spaces concentrate at the interior of the cup wall (highlighted by yellow dash lines). b) Fine grained aggregates show thatb) In the SGC sample, the fractures first developed at the surface of the cup and propagated from the outer rim into the cup wall (highlighted by yellow dash lines). Larger pore space distributes mainly near the rim.
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Figure 6: a) Dissolution feature in the cross-sectional images of the LGC sample. 3D examination reveals that these dissolution features (blue arrowheads) are associated with planar fractures (yellow arrowheads) appeared in b) the radial and c) the tangential section images. The boarder color of each section corresponds to color code given in Figure 2.
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Figure 7: Best-fits for the grey value distribution histograms of the sample at different stages of the reaction. in a) subvolume 4 from LGC sample and b) subvolume 2 from SGC sample. Different colors represent time lapses as shown. Pores, olivine, and precipitates are identified based on their grey value ranges. Higher values correspond to lighter grey (solids). The more negative a value is, the darker the grey color becomes (e.g., pores are black). b) Segmentation of pore space in subvolume 1 (at 146 hours). In the 2D cross-sectional images (marked as planes x, y, z), the red areas represent segmented pore spacesHistograms of SCG sample were calculated from a 2D image (Zhu et al., 2016), whereas the histograms of LGC sample were calculated from 3D datasets.


[image: ]
Figure 8: Comparison of porosity evolution in LGC (this study) versus SGC reported by Zhu et al. (2016).
[image: ]
Figure 9: 3D volumePorosity profile of a) LGC and b) SGC along the radial direction of the sample cup. Different colors indicate reaction time lapse.
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Figure 10: The 3D geometry (in red) of a) dissolution-assisted fracture network in the fine-grained aggregate andLGC is distinctively different from b) the dissolution feature in the coarse grain aggregate. The fracture network shows a complex ofstretching-induced fractures propagating from the surface towards the interior. The dissolution feature appear to be planar without the formation of complex network.in SGC. Both displayed volumevolumes are 260×260×260 µm3 in size.
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Figure 1011: Reconstructed images from the nanotomography data of the SGC sample’s cup wall demonstrate the existence of etch-pits and dissolution channels (white arrows) formed in the olivine grain. The precipitates (darker grey) partially fill the pore space (black) between olivine grains (lighter grey). The yellow dash line (in the upper left image) marks the orientation of the cross-sections. (right and lower left images). The vertical distance between each 2D cross-section is ~600 nm. Reacting fluid causes a preferential dissolution of the grain which develops small channels that dig into the grain. These features provide a fluid path and eventually break grains, exposing new reactive surfaces.
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[bookmark: _GoBack]Figure 12: Network of microcracks (red) in the reaction olivine cup wall from SGC shows a polygonal pattern. The dissolution channels make the grain (light grey) more susceptible and a stress concentration is also likely to occur around the etch pits.
[image: ]
Figure 13: Volume change of an individual olivine grain (total volume of olivine and precipitates) during carbonation reaction in the SGC experiment. The precipitates are idiomorphic and referred to as magnesites (see Zhu et al., 2016). This observed volume change results from a combination of the dissolution of olivine and precipitation of magnesites. Fluctuations of the grain volume manifest the altering dominance of dissolution versus precipitation.
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Figure 134: Pores distribution within the subvolumes from SGC sample. For subvolume 1 which contains more inner part of the sample, porosity is relatively homogenous among the volume. For subvolume 2, as it contains more outer part of the sample, a concentration of high porosity can be found in the outer edge compare to the inner edge of the subvolume. This contrast in porosity also reflects a non-uniform precipitation which generates stress that fractures the rock.
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Figure 1415: Illustration of porosity generation mechanisms during the olivine carbonation reactions. A combined mechanism of surface cracking and the dissolution channelization plays an important role in the porosity generation. Heterogeneity in the micro-structure of the material would cause nonenon-uniform distribution of precipitation. This would lead to the generation of surface cracking via volume mismatch and generate secondary porosity. Dissolution also produces pore spaces and fluid pathways through etch-pitting channelization which makes the grains susceptible for the cracking on a longer time scale.
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