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Abstract  7 

Natural fault patterns, formed in response to a single tectonic event, often display significant 8 
variation in their orientation distribution. The cause of this variation is the subject of some 9 
debate: it could be ‘noise’ on underlying conjugate (or bimodal) fault patterns or it could be 10 
intrinsic ‘signal’ from an underlying polymodal (e.g. quadrimodal) pattern. In this contribution, 11 
we present new statistical tests to assess the probability of a fault pattern having two (bimodal, 12 
or conjugate) or four (quadrimodal) underlying modes and orthorhombic symmetry. We use 13 
the eigenvalues of the 2nd and 4th rank orientation tensors, derived from the direction cosines 14 
of the poles to the fault planes, as the basis for our tests. Using a combination of the existing 15 
fabric eigenvalue (or modified Flinn) plot and our new tests, we can discriminate reliably 16 
between bimodal (conjugate) and quadrimodal fault patterns. We validate our tests using 17 
synthetic fault orientation datasets constructed from multimodal Watson distributions, and 18 
then assess six natural fault datasets from outcrops and earthquake focal plane solutions. We 19 
show that five out of six of these natural datasets are probably quadrimodal and orthorhombic. 20 
The tests have been implemented in the R language and a link is given to the authors’ source 21 
code.   22 

 23 

1. Introduction  24 

1.1 Background  25 

Faults are common structures in the Earth’s crust, and they rarely occur in isolation. Patterns 26 
of faults, and other fractures such as joints and veins, control the bulk transport and mechanical 27 
properties of the crust. For example, arrays of low permeability (or ‘sealing’) faults in a rock 28 
matrix of higher permeability can produce anisotropy of permeability and preferred directions 29 
of fluid flow. Arrays of weak faults can similarly produce anisotropy – i.e. directional variations 30 
– of bulk strength. It is important to understand fault patterns, and quantifying the geometrical 31 
attributes of any pattern is an important first step. Faults, taken as a class of brittle shear 32 
fractures, are often assumed to form in conjugate arrays, with fault planes more or less evenly 33 
distributed about the largest principal compressive stress, σ1, and making an acute angle with 34 
it. This model, an amalgam of theory and empirical observation, predicts that conjugate fault 35 
planes intersect along the line of σ2 (the intermediate principal stress) and the fault pattern 36 
overall displays bimodal symmetry (Figure 1a). A fundamental limitation of this model is that 37 
these fault patterns can only ever produce a plane strain (intermediate principal strain ε2 = 0), 38 
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with no extension or shortening in the direction of σ2. This kinematic limitation is inconsistent 39 
with field and laboratory observations that document the existence of polymodal or 40 
quadrimodal fault patterns, and which produce triaxial strains in response to triaxial stresses 41 
(e.g. Aydin & Reches, 1982; Reches, 1978; Blenkinsop, 2008; Healy et al., 2015; McCormack & 42 
McClay, 2018). Polymodal and quadrimodal fault patterns possess orthorhombic symmetry 43 
(Figure 1b & 1c).    44 

 45 

Figure 1. Schematic diagrams to compare conjugate fault patterns displaying bimodal 46 
symmetry with quadrimodal and polymodal fault patterns displaying orthorhombic symmetry.  47 
a-c) Block diagrams showing patterns of normal faults and their relationship to the principal 48 
stresses.  d-f) Stereographic projections (equal area, lower hemisphere) showing poles to fault 49 
planes for the models shown in a-c. Natural examples of all three patterns have been found in 50 
naturally deformed rocks.   51 

Fault patterns are most often visualised through maps of their traces and equal-angle 52 
(stereographic) or equal-area projections of poles to fault planes or great circles.  Azimuthal 53 
projection methods (hereafter ‘stereograms’) provide a measure of the orientation distribution, 54 
including the attitude and the shape of the overall pattern. However, these plots can be 55 
unsatisfactory when they contain many data points, or the data are quite widely dispersed. 56 
Woodcock (1977) developed the idea of the fabric shape, based on the fabric or orientation 57 
tensor of Scheidegger (1965). The eigenvalues of this 2nd rank tensor can be used in a modified 58 
Flinn plot (Flinn, 1962; Ramsay, 1967) to discriminate between clusters and girdles of poles. 59 
These plots can be useful for three of the five possible fabric symmetry classes – spherical, axial 60 
and orthorhombic – because the three fabric eigenvectors coincide with the three symmetry 61 
axes. However, there are issues with the interpretation of distributions that are not uniaxial 62 
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(Woodcock, 1977). We address these issues in this paper. Reches (Reches, 1978; Aydin & 63 
Reches, 1982; Reches, 1983; Reches & Dieterich, 1983) has exploited the orthorhombic 64 
symmetry of measured quadrimodal fault patterns to explore the relationship between their 65 
geometric/ kinematic attributes and tectonic stress. More recently, Yielding (2016) measured 66 
the branch lines of intersecting normal faults from seismic reflection data and found they 67 
aligned with the bulk extension direction – a feature consistent with their formation as 68 
polymodal patterns. Bimodal (i.e. conjugate) fault arrays have branch lines aligned 69 
perpendicular to the bulk extension direction.   70 

1.2 Rationale  71 

The fundamental underlying differences in the symmetries of the two kinds of fault pattern –72 
(i) bimodal and bilateral or (ii) and polymodal and orthorhombic – suggest that we should test 73 
for this symmetry using the orientation distributions of measured fault planes. The results of 74 
such tests may provide further insight into the kinematics and/or dynamics of the fault-forming 75 
process. This paper describes new tests for fault pattern orientation data, and includes the 76 
program code for each test written in the R language (R Core Team, 2017). The paper is 77 
organised as follows: the next section (2) reviews the kinematic and mechanical issues raised 78 
by conjugate and polymodal fault patterns, and in particular, the implications for their 79 
orientation distributions. Section 3 describes the datasets used in this study, including 80 
synthetic and natural fault orientation distributions. Section 4 presents tests for assessing 81 
whether an orientation distribution has orthorhombic symmetry, including a description of the 82 
mathematics and the R code.  The examples used include synthetic orientation datasets of 83 
known attributes (with and without added ‘noise’) and natural datasets of fault patterns 84 
measured in a range of rock types.  A Discussion of issues raised is provided in Section 5, and is 85 
followed by a short Summary. The R code is available from http://www.mcs.st-86 
andrews.ac.uk/~pej/2mode_tests.html 87 

 88 

2. Bimodal (conjugate) versus quadrimodal fault patterns  89 

Conjugate fault patterns should display bimodal or bilateral symmetry in their orientation 90 
distributions on a stereogram, and ideally show evidence of central tendency about these two 91 
clusters (Figure 1d; Healy et al., 2015). Quadrimodal fault patterns should show orthorhombic 92 
symmetry and, ideally, evidence of central tendency about the four clusters of poles on 93 
stereograms (Figure 1e). More general polymodal patterns should show orthorhombic 94 
symmetry with an even distribution of poles in two arcs (Figure 1f). For data collected from 95 
natural fault planes some degree of intrinsic variation, or 'noise', is to be expected. Two natural 96 
example datasets are shown in Figure 2. The Gruinard dataset is from a small area (~ 5 m2) in 97 
one outcrop of Triassic sandstone, and shows poles to deformation bands with small normal 98 
offsets (mm-cm). The Flamborough dataset is taken from Peacock & Sanderson (1992; their 99 
Figure 2a) and shows poles to normal faults in the Cretaceous chalk along a coastline section of 100 
about 1.8 km. The authors clearly state that the approximately E-W orientation of the coastline 101 
may have generated a sampling bias in the measured data (i.e. a relative under-representation 102 
of E-W oriented fault planes). Both datasets illustrate the nature of the problem addressed in 103 
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this paper: given variable, incomplete and noisy data of different sample sizes, how can we 104 
assess the symmetry of the underlying fault pattern? 105 

 106 

Figure 2. Stereographic projections (equal area, lower hemisphere) showing two natural fault 107 
datasets. a) Poles to deformation bands (small offset faults; n=75) measured in Triassic 108 
sandstones at Gruinard Bay, NW Scotland (Healy et al., 2006a, b).  These data were collected 109 
from a small contiguous outcrop, approximately 10 m2 in area. b) Poles to faults measured in 110 
Cretaceous chalk at Flamborough Head, NE England (n=346). These data have been taken from 111 
a figure published in Peacock & Sanderson (1992) and re-plotted in the same format as those 112 
from Gruinard.  113 

 114 

3. Datasets used in this study  115 

3.1. Synthetic datasets  116 

We use two sets of synthetic data to test our new statistical methods, both based on the Watson 117 
orientation distribution (Fisher et al., 1987 section 4.4.4; Mardia & Jupp, 2000 section 9.4.2). 118 
This is the simplest non-uniform distribution for describing undirected lines, and has 119 
probability density 120 

 𝑓𝑓(±𝒙𝒙;𝝁𝝁, 𝜅𝜅)  ∝ 𝑒𝑒𝑒𝑒𝑒𝑒{𝜅𝜅(𝝁𝝁𝑻𝑻𝒙𝒙)2} 121 

where κ is a measure of concentration (low κ = dispersed, high κ = concentrated) and µ is the 122 
mean direction. To obtain a synthetic conjugate fault pattern dataset of size n we combined two 123 
datasets of size n/2, each from a Watson distribution, the two mean directions being separated 124 
by 60°. We generated synthetic bimodal datasets with κ = 10, 20, 50 and 100 and n=52 and 360 125 
(Figure 3). This variation in κ provides a useful range of concentrations encompassing those 126 
observed in measured natural data, and can be considered as a measure of 'noise' within the 127 
distribution. Many natural datasets are often small due to limitations of outcrop size, and the 128 
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two sizes of synthetic distribution (n=52 and 360) allow for this fact. For synthetic polymodal 129 
fault patterns, we generated quadrimodal datasets of size n by combining four Watson 130 
distributions of size n/4 with their mean directions separated by 60° in dip (as above) and 52° 131 
in strike (see Healy et al., 2006a, b). By varying n from 52 to 360 we cater for comparisons with 132 
smaller and larger natural datasets, and as for the synthetic bimodal datasets, we varied κ  in 133 
the range 10, 20, 50 and 100 (Figure 4). 134 

 135 

Figure 3. Stereographic projections (equal area, lower hemisphere) showing the eight 136 
synthetic datasets designed to model conjugate (bimodal) fault patterns in this study.  a-d) 137 
Synthetic fault datasets derived from equal mixtures of two Watson distributions with mean 138 
pole directions separated by an inter-fault dip angle of 60 degrees. These models represent a 139 
‘low fault count’ scenario, with n = 52 and κ (the Watson dispersion parameter) varying from 140 
10 to 100. e-h) These models represent a ‘high fault count’ scenario, with n = 360 and κ varying 141 
from 10 to 100. 142 

 143 
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 144 

Figure 4. Stereographic projections (equal area, lower hemisphere) showing the eight 145 
synthetic datasets designed to model quadrimodal fault patterns in this study.  a-d) Synthetic 146 
fault datasets derived from equal mixtures of four Watson distributions with mean pole 147 
directions separated by an inter-fault dip angle of 60 degrees and a strike separation of 52 148 
degrees. These models represent a ‘low fault count’ scenario, with n = 52 and κ (the Watson 149 
dispersion parameter) varying from 10 to 100. e-h) These models represent a ‘high fault count’ 150 
scenario, with n = 360 and κ varying from 10 to 100. 151 

 152 

3.2. Natural datasets  153 

We use six natural datasets of fault plane orientations from regions that have undergone or are 154 
currently undergoing extension - i.e. we believe the majority of these faults display normal 155 
kinematics (Figure 5). The Gruinard dataset (Figure 5a) is from Gruinard Bay in NW Scotland 156 
(UK), and featured in previous publications (Healy et al., 2006a, b). The most important thing 157 
about this dataset is that the fault planes were all measured from a small area (~5 m2) of 158 
contiguous outcrop of a single sandstone bed. This means it is highly unlikely that the 159 
orientation data are affected by any local stress variations and subsequent possible rotations. 160 
The data were measured in normal-offset deformation bands with displacements of a few 161 
millimetres to centimetres. The next three datasets have been digitised from published papers 162 
on normal faults in Utah (Figure 5b; Chimney Rock; Krantz, 1989), northern England (Figure 163 
5c; Flamborough; Peacock & Sanderson, 1992) and Italy (Figure 5d; Central Italy; Roberts, 164 
2007). In each case, the published stereograms were digitised to extract Cartesian (x,y) 165 
coordinates of the poles to faults, and these were then converted to plunge and plunge direction 166 
using the standard equations for the projection used (e.g. Lisle & Leyshon, 2004). Slight 167 
differences in the number of data plotted for each of these three with respect to the original 168 
publication arise due to the finite resolution of the digitised image of the stereograms. The last 169 
two datasets for the Aegean and Tibet (Figure 5e & f) are derived from earthquake focal 170 
mechanisms using the CMT catalogue (Ekström et al., 2012). In each case the steepest dipping 171 
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nodal plane was selected in the absence of convincing evidence for low-angle normal faulting 172 
in these regions.  173 

 174 

Figure 5. Stereographic projections (equal area, lower hemisphere) showing the six natural 175 
datasets used in this study. All plots show poles to faults, the majority of which are inferred to 176 
be normal. a) Data from deformation bands measured in faulted Triassic sandstones at 177 
Gruinard Bay, Scotland (Healy et al., 2006a; 2006b). b) Data from faults and measured in 178 
sandstones at Chimney Rock in the San Rafael Swell, Utah, USA.  Data digitised from Krantz 179 
(1989). c) Data from faults measured in cliffs of Cretaceous chalk at Flamborough Head, NE 180 
England. Data digitised from Peacock & Sanderson (1992). d) Data from faults measured in the 181 
Apennines of Central Italy. Data digitised from Roberts (2007). e) Data from focal mechanism 182 
nodal planes derived from the CMT catalogue for the Aegean region (Ekström et al., 2012). f) 183 
Data from focal mechanism nodal planes derived from the CMT catalogue for the Tibet region 184 
(Ekström et al., 2012).      185 

   186 

4. Testing for orthorhombicity  187 

4.1 Eigenvalue fabric (modified Flinn) plots  188 
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 189 

Figure 6. Graphs showing the ratios of eigenvalues of the orientation matrices for the synthetic 190 
datasets (Flinn, 1962; Ramsay, 1967; Woodcock, 1977).  a) Synthetic conjugate (i.e. bimodal; 191 
filled red symbols) and quadrimodal (hollow blue symbols) fault data. Note that the conjugate 192 
and quadrimodal data lie either side of the line k = 1, where k = loge(S1/S2)/loge(S2/S3). b) 193 
Eigenvalue ratios from a Monte Carlo simulation of conjugate fault orientations using the two 194 
Watson mixture model. 1000 simulations were run for each of four different κ values (10, 20, 195 
50 and 100; a total of 4000 data points), corresponding to the range of the discrete datasets 196 
shown in a). c) Eigenvalue ratios from a Monte Carlo simulation of quadrimodal fault 197 
orientations using the four Watson mixture model. 1000 simulations were run for each of four 198 
different κ values (10, 20, 50 and 100; a total of 4000 data points), corresponding to the range 199 
of the discrete datasets shown in a).      200 

We calculated the 2nd rank orientation tensor (Woodcock, 1977) for each of the synthetic 201 
datasets shown in Figures 3 and 4 (bimodal and quadrimodal, respectively). The eigenvalues of 202 
this tensor (S1, S2 and S3, where S1 is the largest and S3 is the smallest) are used to plot the data 203 
on a modified Flinn diagram (Figure 6), with loge(S2/S3) on the x-axis and loge(S1/S2) on the y-204 
axis. The points corresponding to the bimodal (shown in red) and quadrimodal (shown in blue) 205 
datasets lie in distinct areas. Bimodal (conjugate) fault patterns lie below the 1:1 line, on which 206 
S1/S2 = S2/S3. This is due to the S3 eigenvalue being very low (near 0) for these distributions, 207 
which for high values of κ begin to resemble girdle fabric patterns confined to the plane of the 208 
eigenvectors corresponding to eigenvalues S1 and S2 (Woodcock, 1977). In contrast, the 209 
quadrimodal patterns lie above the 1:1 line, as S3 for these distributions is large relative to the 210 
equivalent bimodal pattern (i.e. for the same values of κ and n). The modified Flinn plot 211 
therefore provides a potentially rapid and simple way to discriminate between bimodal 212 
(conjugate) and quadrimodal fault patterns.  Note, however, that the spread of the bimodal 213 
patterns in Figure 6a along the x-axis is a function of the κ value of the underlying Watson 214 
distribution, with low values of κ – low concentration, highly dispersed – lying closer to the 215 
origin. Dispersed or noisy bimodal (conjugate) patterns may therefore lie closer to 216 
quadrimodal patterns (see Discussion below).  217 

4.2 Randomisation tests using 2nd and 4th rank orientation tensors  218 

4.2.1 Underlying distributions 219 

To get a suitable general setting for our tests, we formalise the construction of the bimodal and 220 
quadrimodal datasets considered in Section 3.1. Whereas the datasets considered in Section 3.1 221 
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necessarily have equal numbers of points around each mode, for datasets arising from the 222 
distributions here, this is true only on average. The very restrictive condition of having a 223 
Watson distribution around each mode is relaxed here to that of having a circularly-symmetric 224 
distribution around each mode.  225 

Suppose that axes ±x1, … ±xn are independent observations from some distribution of axes. If 226 
the parent distribution is thought to be multi-modal then two appealing models are:  227 

(i) The bimodal equal mixture model can be thought of intuitively as obtained by ‘pulling 228 
apart’ a unimodal distribution into two equally strong modes angle α apart. More precisely, 229 
the probability density is: 230 

𝑓𝑓2(±𝐱𝐱;  {±𝝁𝝁𝟏𝟏, ±𝝁𝝁𝟐𝟐}) =  1
2

{𝑔𝑔(±𝐱𝐱;  ±𝝁𝝁𝟏𝟏)  + 𝑔𝑔(±𝐱𝐱;  ±𝝁𝝁𝟐𝟐)},  (1) 231 

where ±µ1 and ±µ2 are axes angle α apart, and g(.; ±µ) is the probability density function of 232 
some axial distribution that has rotational symmetry about its mode ±µ; 233 

(ii) The quadrimodal equal mixture model can be thought of intuitively as obtained by 234 
‘pulling apart’ a bimodal equal mixture distribution into two bimodal equal 235 
mixture distributions with planes angle γ apart, so that it has four equally strong modes. 236 
More precisely, the probability density is: 237 

𝑓𝑓4(±𝐱𝐱;  {±𝝁𝝁𝟏𝟏, ±𝝁𝝁𝟐𝟐}, 𝛾𝛾) =  1
4
∑ 𝑔𝑔�±𝐱𝐱;  ±𝝁𝝁𝜺𝜺,𝜼𝜼�𝜺𝜺,𝜼𝜼 ,   (2) 238 

where 239 

𝝁𝝁𝝐𝝐,𝜼𝜼 = �̌�𝑐(𝑐𝑐𝝂𝝂𝟏𝟏 +  𝜖𝜖𝜖𝜖𝝂𝝂𝟐𝟐) +  𝜂𝜂�̌�𝜖𝝂𝝂𝟑𝟑      (3) 240 

with𝑐𝑐 = cos(𝛼𝛼 2⁄ ) , 𝜖𝜖 = sin(𝛼𝛼 2⁄ ) , �̌�𝑐 = cos(𝛾𝛾 2⁄ ) , �̌�𝜖 = sin (𝛾𝛾 2)⁄  , cos(𝛼𝛼) =  𝝁𝝁𝟏𝟏′ 𝝁𝝁𝟐𝟐and (𝜖𝜖, 𝜂𝜂)  runs 241 
through {±1}2. If γ = 0, then (3) reduces to (2).  242 

The problem of interest is to decide whether the parent distribution is (1) or (2). 243 

 244 

4.2.2 The tests  245 

Given axes ±x1, … ±xn we denote by ±𝝂𝝂�1 and ±𝝂𝝂�𝟑𝟑 , respectively, the principal axes of the 246 
orientation tensor corresponding to the largest and smallest eigenvalues, S1 and S3. We can also 247 
define  248 

 𝑆𝑆11 =  𝑛𝑛−1 ∑ (𝝂𝝂�1′ 𝐱𝐱𝑖𝑖)4𝑛𝑛
𝑖𝑖=1 , 𝑆𝑆33 =  𝑛𝑛−1 ∑ (𝝂𝝂�3′ 𝐱𝐱𝑖𝑖)4𝑛𝑛

𝑖𝑖=1 .  249 

S1 and S3 are the 2nd moments of ±x1, … ±xn along the 1st and 3rd principal axes, respectively, 250 
whereas S11 and S33 are the 4th moments along these principal axes. Therefore, both S1 – S3 and 251 
S11 – S33 are measures of anisotropy of ±x1, … ±xn. 252 

Some algebra shows that 253 

𝛵𝛵1 −  𝛵𝛵3 = cos(𝛾𝛾) {𝐸𝐸[𝑒𝑒2] − 𝐸𝐸[𝜈𝜈2]},          (4) 254 
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where Τ1 and Τ3 are the population versions of S1 and S3, respectively, and ±𝑒𝑒 and ±𝜈𝜈 are the 255 
components of ±𝐱𝐱 in the quadrimodal equal mixture model (2) along its 1st and 3rd principal 256 
axes, respectively. Then (4) gives 257 

cos(𝛾𝛾) ≈  
𝑆𝑆1 −  𝑆𝑆3

𝐸𝐸[𝑒𝑒2] − 𝐸𝐸[𝜈𝜈2]  258 

and therefore, it is sensible to:  259 

reject bimodality for small values of S1 – S3.  (5)  260 

Further algebra shows that 261 

𝛵𝛵11 −  𝛵𝛵33 = cos(𝛾𝛾) {𝐸𝐸[𝑒𝑒4] − 𝐸𝐸[𝜈𝜈4]},   (6) 262 

where Τ11 and Τ33 are the population versions of S11 and S33, respectively. Then (6) gives  263 

cos(𝛾𝛾) ≈  
𝑆𝑆11 −  𝑆𝑆33

𝐸𝐸[𝑒𝑒4] − 𝐸𝐸[𝜈𝜈4]  264 

and so, it is sensible to:  265 

reject bimodality for small values of S11 – S33. (7)  266 

The significance of tests (5) or (7) is assessed by comparing the observed value of the statistic 267 
with the randomisation distribution. This is achieved by creating a further B pseudo-samples 268 
(for a suitable positive integer B), in each of which the ith observation is obtained from ±x𝑖𝑖 by 269 
rotating ±𝑒𝑒𝑖𝑖about the closer of the 2 fitted modes through a uniformly distributed random 270 
angle. The p-value is taken as the proportion of the B+1 values of the statistic that are smaller 271 
than (or equal to) the observed value.  272 

 273 

4.3 Results for synthetic datasets 274 

Table 1 gives the p-values and corresponding decisions (at the 5% level) obtained by applying 275 
the tests to some synthetic datasets simulated from the bimodal equal mixture model. Table 2 276 
does the same for some datasets simulated from the quadrimodal equal mixture model. In each 277 
case, both tests come to the correct conclusion.  278 

True number 
of modes 

  S1 − S3 test S11 − S33 test 

κ n p-value # of modes p-value # of modes 
2 10 52 0.37 2 0.51 2 
2 10 360 0.27 2 0.33 2 
2 20 52 0.66 2 0.69 2 
2 20 360 0.20 2 0.25 2 
2 50 52 0.45 2 0.48 2 
2 50 360 0.35 2 0.42 2 
2 100 52 0.34 2 0.41 2 
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2 100 360 0.60 2 0.63 2 
 279 

Table 1. p-values and corresponding decisions at 5% significance level of randomisation tests 280 
of bimodality for bimodal equal mixtures of synthetic Watson distributions. n=total sample size. 281 
B=999 further randomisation samples per data set (see text for details). 282 

 283 

True number 
of modes 

  S1 − S3 test S11 − S33 test 

κ n p-value # of modes p-value # of modes 
4 10 52 0.00 > 2 0.00 > 2 
4 10 360 0.00 > 2 0.00 > 2 
4 20 52 0.00 > 2 0.00 > 2 
4 20 360 0.00 > 2 0.00 > 2 
4 50 52 0.00 > 2 0.00 > 2 
4 50 360 0.00 > 2 0.00 > 2 
4 100 52 0.00 > 2 0.00 > 2 
4 100 360 0.00 > 2 0.00 > 2 

 284 

Table 2. p-values and corresponding decisions at 5% significance level of randomisation tests 285 
of bimodality for quadrimodal equal mixtures of Watson distributions. n=total sample size. 286 
B=999 further randomisation samples per data set (see text for details). 287 

 288 

4.4 Results for natural datasets  289 

Table 3 gives the p-values and corresponding decisions (at the 5% level) obtained by applying 290 
the tests to the natural datasets discussed in Section 3.2. For each dataset, the two tests come 291 
to the same conclusion, which is plausible in view of Figure 5. Figure 7 shows the fabric 292 
eigenvalue plot for these datasets.  293 
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 294 

Figure 7.  Eigenvalue ratio plot for the natural datasets shown in Figure 5. All but one dataset 295 
(Central Italy) lies above the line for k=1. The best-constrained quadrimodal fault dataset 296 
(Gruinard) has the highest ratio of loge(S1/S2).  297 

 298 

Field 
location 

 S1 − S3 test S11 − S33 test 

n p-value # of modes p-value # of modes 
Gruinard 75 0.00 > 2 0.00 > 2 
Chimney 
Rock 

86 0.99 2 1.00 2 

Flamborough 346 0.00 > 2 0.00 > 2 
Central Italy 1182 0.00 > 2 0.00 > 2 
Aegean 156 0.00 > 2 0.00 > 2 
Tibet 168 0.00 > 2 0.00 > 2 

 299 

Table 3. p-values and corresponding decisions at 5% significance level of randomisation tests 300 
of bimodality for natural data sets. n=total sample size. B=999 further randomisation samples 301 
per data set (see text for details). 302 

 303 

5. Discussion  304 

In the analysis described above and the tests we performed with synthetic datasets, we 305 
assumed that bimodal and quadrimodal Watson orientation distributions provide a reasonable 306 
approximation to the distributions of poles to natural fault planes. In terms of the underlying 307 
statistics this is unproven, but we know of no compelling evidence in support of alternative 308 
distributions. New data from carefully controlled laboratory experiments on rock or analogous 309 
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materials might provide important constraints for the underlying statistics of shear fracture 310 
plane orientations.  311 

We have tested our new methods on synthetic and natural datasets. Arguably, six natural 312 
datasets are insufficient to establish firmly the primacy of polymodal orthorhombic fault 313 
patterns in nature (Figure 7). However, we reiterate the key recommendation from Healy et al. 314 
(2015): to be useful for this task, fault orientation datasets need to show clear evidence of 315 
contemporaneity among all fault sets, through tools such as matrices of cross-cutting 316 
relationships (Potts & Reddy, 2000). In addition, as shown above, larger datasets (n>200) tend 317 
to show clearer patterns. Scope exists to collect fault or shear fracture orientation data from 318 
sources other than outcrops: Yielding (2016) has measured normal faults in seismic reflection 319 
data from the North Sea and Ghaffari et al. (2014) measured faults in cm-sized samples 320 
deformed in the laboratory and then scanned by X-ray computerised tomography.  321 

The Chimney Rock dataset is probably not orthorhombic according to the two tests, and lies 322 
close to the line for k=1 on Figure 7. It is interesting to note that the Chimney Rock data, and 323 
other fault patterns from the San Rafael area of Utah, are considered as displaying 324 
orthorhombic symmetry by Krantz (1989) and Reches (1978). However, a subsequent re-325 
interpretation by Davatzes et al. (2003) has ascribed the fault pattern to overprinting of earlier 326 
deformation bands by later sheared joints. This may account for the inconsistent results of our 327 
tests when compared to the position of the pattern on the eigenvalue plot. The Central Italy 328 
dataset (taken from Roberts, 2007) is very large (n=1182) and the data were measured over a 329 
wide geographical area. The dataset lies below the line for k=1 on the fabric eigenvalue plot 330 
(Figure 7), which might suggest it is bimodal. However, for fault planes measured over large 331 
areas there is a significant chance that regional stress variations may have produced 332 
systematically varying orientations of fault planes.    333 

A final point concerns dispersion (noise) in the data. Synthetic datasets of bimodal (conjugate) 334 
and quadrimodal patterns with low values of κ, the Watson concentration parameter, fall into 335 
overlapping fields on the eigenvalue fabric plot. We ran 1000 Monte Carlo simulations of 336 
bimodal and quadrimodal Watson distributions each with n=52 poles, and κ = 5 and 10, and the 337 
results are shown in Figure 8. Bimodal (conjugate) datasets for these dispersed and sparse 338 
patterns lie across the 1:1 line on the fabric plot (Figure 8a; κ = 5 in blue, κ = 10 in yellow). 339 
Quadrimodal datasets for these parameters are also noisy, with some fabrics lying below the 340 
1:1 line (Figure 8b; κ = 5 in blue, κ = 10 in yellow). Under these conditions of low κ (dispersed) 341 
and low n (sparse), it can be difficult to separate bimodal (conjugate) from quadrimodal fault 342 
patterns. However, we assert that this may not matter: a noisy and dispersed 'bimodal' 343 
conjugate fault pattern is in effect similar to a polymodal pattern i.e. slip on these dispersed 344 
fault planes will produce a bulk 3D triaxial strain.  345 
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 346 

Figure 8. Eigenvalue ratio plots of synthetic data to illustrate the impact of dispersion on the 347 
ability of this plot to discriminate between conjugate (bimodal) and quadrimodal fault data.  a) 348 
Monte Carlo ensemble of 2000 conjugate fault populations (mixtures of two equal Watson 349 
distributions), with κ varying from 5 (dark blue) to 10 (yellow). b) Monte Carlo ensemble of 350 
2000 quadrimodal fault populations (mixtures of four equal Watson distributions), with κ 351 
varying from 5 (dark blue) to 10 (yellow). c) Data from a) and b) merged onto the same plot 352 
and enlarged to show the region close to the origin. Note the considerable overlap between the 353 
conjugate (bimodal) data with the quadrimodal data, especially for κ = 5 (dark blue).     354 

To assess the relative performance of the two tests presented in this paper, we generated 355 
synthetic bimodal and quadrimodal distributions and compared the resulting p-values from 356 
applying both the S1-S3 and S11-S33 tests to the same data. The results are shown in Figure 9, 357 
displayed as cross-plots of p(S1-S3) versus p(S11-S33). While there is a slight tendency for the p-358 
values from the S11-S33 test to exceed those of the S1-S3 test (i.e. the points tend on average to 359 
plot above the 1:1 line), neither of the tests can be said to ‘better’ or more ‘accurate’. We 360 
therefore recommend the S1-S3 test as simpler and sufficient.  361 

 362 

Figure 9. Eigenvalue ratio plots comparing the relative performance of the two tests proposed 363 
in this paper. The red lines denote p-values for either test at p=0.05, and the diagonal black line 364 
is the locus of points where p(S1-S3) = p(S11-S33). a) For bimodal synthetic datasets with size 365 
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(N) varying from 32-360 and concentration (κ) varying from 5-100, both tests perform well 366 
and reject the majority of the datasets (p >> 0.05). The p-values for the S11-S33 test are, on 367 
average, slightly higher than those for the S1-S3 test across a range of dataset sizes and 368 
concentrations. b) For quadrimodal synthetic datasets, many of the p-values are < 0.05, and this 369 
especially true for the larger datasets (higher N, green/yellow). Smaller datasets (blue) can 370 
return p-values > 0.05.  371 

 372 

6. Summary 373 

Bimodal (conjugate) fault patterns form in response to a bulk plane strain with no extension in 374 
the direction parallel to the mutual intersection of the two fault sets. Quadrimodal and 375 
polymodal faults form in response to bulk triaxial strains and constitute the more general case 376 
for brittle deformation on a curved Earth (Healy et al., 2015). In this contribution, we show that 377 
distinguishing bimodal from quadrimodal fault patterns based on the orientation distribution 378 
of their poles can be achieved through the eigenvalues of the 2nd and 4th rank orientation 379 
tensors. We present new methods and new open source software written in R to test for these 380 
patterns. Tests on synthetic datasets where we controlled the underlying distribution to be 381 
either bimodal (i.e. conjugate) or quadrimodal (i.e. polymodal, orthorhombic) demonstrate that 382 
a combination of fabric eigenvalue (modified Flinn) plots and our new randomisation tests can 383 
succeed. Applying the methods to natural datasets from a variety of extensional normal-fault 384 
settings shows that 5 out of the 6 fault patterns considered here are probably polymodal. The 385 
most tightly constrained natural dataset (Gruinard) displays clear orthorhombic symmetry and 386 
is unequivocally polymodal. Most map-scale natural faults evolve and grow through 387 
interaction, splaying and coalescence, and in some cases through reactivation under stress 388 
rotation. Variation within fault orientation datasets is therefore inherent. Statistical tests can 389 
help to discern this variation and guide the interpretation of any underlying pattern. We 390 
encourage other workers to apply these tests to their own data and assess the symmetry in the 391 
brittle fault pattern and to consider what this means for the causative deformation.   392 
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