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Investigation of Antarctic soil organic matter stability
Humic acids of superficial horizons contain more aromatic carbon

Humic acids of isolated layers contain more free radicals

Abstract

In this study, the soil organic matter (SOM) was analyzed from different sample areas (surface
level and partially isolated supra-permafrost layer) of the tundra-barren landscape of the Fildes
Peninsula, King George Island, Western Antarctica. We found that the humic acids (HAs) of the
cryoturbated, buried areas had lower amounts of alkylaromatic and protonized aromatic
compounds. In contrast, the HAs from the surface layers contain less alkyl carbon components.
The free radical content was higher in the surface layers than in the buried layers due to the
presence of fresh organic remnants in superficial soil samples. New data on SOM quality from
these two representative Cryosols will enable more precise assessment of SOM stabilization rate
in sub-Antarctic tundras. Comparison of the *C-NMR spectra of the HAs and the bulk SOM
revealed that humification occurs in the Antarctic and results in accumulation of aromatic and
carboxylic compounds and reductions in alkylic ones.

Highlights

Soil organic matter from different areas in King George Island, Western Antarctica has been
studied. It was found the humic acids of cryoturbated buried horizons have lower amounts of
alkylaromatic and protonized aromatic compounds. At the same time humic acids of superficial
horizons contain more aromatic carbon. Humification in the Antarctic environments results in
accumulation of aromatic and carboxylic compounds and reductions in alkylic ones.

1. Introduction
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Polar soils play a key role in global carbon circulation and stabilization as they contain
maximum stocks of soil organic matter (SOM) within the whole pedosphere (Schuur et al, 2015).
Cold climate and continuous and discontinuous permafrost result in the stabilization of essential
amounts of organic matter in soils, biosediments, and grounds of the polar biome (Zubrzycki et al,
2014).

Global climate changes and permafrost degradation have led to the exposure of huge
pools of organic matter to microbial degradation (Schuur et al, 2015) and other environmental
risks. Polar SOM represents a vulnerable carbon source, susceptible to remobilization under
increasing temperatures (Schuur et al, 2015, Ejarque, Abakumov, 2016). In order to better
understand the implications of permafrost SOM for greenhouse gas emissions, accurate
knowledge of its spatial distribution, both in terms of quantity and quality (e.g. biodegradability,
chemical composition, and humification stage) is needed in addition to effective evaluation of
SOM’s temporal dynamics (Fritz et al, 2014, Vasilevitch et al, 2018 ).

Current estimations of soil organic carbon (SOC) stocks are around 1307 Pg throughout
the northern circumpolar region (Hugelius et al, 2014). These amounts surpass previous
estimates (Tarnocai et al, 2009) and grossly exceed the total carbon contained in the world’s
vegetation biomass (460 - 650 Pg) or in the atmosphere (589 Pg) (Tarnocai et al, 2009).
However, the aforementioned SOM/SOC stock estimations are still poorly constrained (Hugelius
et al, 2014). This uncertainty is largely caused by the estimates having been calculated from
observations that are highly spatially clustered (Hugelius et al, 2014) while extensive land areas
remain uncharacterized due to the logistic difficulties of reaching these sites. Additionally, the
calculation of these stocks are based on estimated data on soil bulk density and carbon values
derived from dichromate oxidation methods (Abakumov, Popov, 2005, Polyakov et al, 2017).

The stocks of SOM in the Antarctic are underestimated compared to the Arctic because
of the lack of the data for many parts of this continent, due to the high content of stones in the
soils and the high variability in the carbon content of the fine earth. Stocks of organic carbon in
the Antarctic soil have been reported as 0.5 kg/m? in its polar deserts, about 1.0 kg/m? in its
barrens, up to 3 - 5 kg/m? in the sub-Antarctic tundra, and up to 30 kg/m? in the penguin
rockeries of the maritime islands (Abakumov, 2010, Abakumov, Mukhametova, 2014,
Abakumov et al, 2016).

Stability and biodegradability are the key features of SOM that should be taken into
account when estimating current and future carbon stocks and organic matter quality and
dynamics. Stability is related to humification degree, as more advanced stages in the
humification process involve depletion of the labile molecules, as well as an increase in the bulk
aromaticity, which confers higher stability to the SOM. A number of proxies have been used to
trace humification rate and SOM stability, including aromaticity level (Vasilevitch et al, 2018,
Kniker, 2007). Also the ratio of C-Alkyl : C-Aryl and C-Alkyl : O-N-alkyl have been
successfully used to assess humification degree (Kinker, 2007). C/H ratio from humic acids
(HAS) has been used as an index of molecular complexity, as more degrees of conjugation imply
less hydrogenation of the carbon chains (Zaccone et al, 2007) and C/N has been used as a
measure of Histic material degradation (Lodygin et al, 2014). **C-NMR spectrometry provides
information on the diversity in carbon functional structures (carbon species) and has been used to
evaluate changes in SOM during decomposition and humification. More specifically, high
phenolic (150 ppm), carboxyl-C (175 ppm) and alkyl-C (30 ppm) groups, combined with low O-
alkyl carbons, have been associated with advanced humification stages (Zech et al, 1997). So far,
studies of SOM quality from polar environments have revealed generally lowly-decomposed
organic molecules (Dziadowiec, 1994, Lupachev et al, 2017), which preserve much of the
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chemical character of their precursor material due to slow progress of humification (Davidson
and Jansens, 2006). This is very important because polar soils are characterized by the specific
composition of the humification precursors.

The structure and molecular composition of the Antarctic SOM has been investigated
using *C-NMR methods (Beyer et al, 1997, Abakumov, 2017) and it was shown that in typical
organo-mineral soils the aliphatic carbon prevails over the aromatic one, owing to the non-
ligniferous nature of its precursor material (Calace et al, 1995). Also, analyses of cryptogam
extracts were conducted towards identification of individual organic precursors (Chapman et al,
1994). This feature was then shown to be typical for soils from different regions of the Antarctic
(Abakumov, 2010), including soil formed on the penguin rockeries (Abakumov, Fattakhova,
2015). The northern most soil of Arctic polar biome shows the same trend in organic molecules
organization: higher prevalence of aliphatic structures over aromatic ones. The diversity of the
individual components in aromatic and aliphatic areas is usually higher in Arctic soil because of
the increased diversity of humification precursors (Ejarque, Abakumov, 2016, Abakumov,
2010). The over-moistened Antarctic Histic soils under algae are characterized by a
predominance of proteins containing nitrogen compounds and a slight degradation of
carbohydrates in the SOM. A selective preservation of the alkyl moieties in the deeper soil layers
has been suggested, and little transformation processes of the SOM are detectable because soil
temperatures are not high enough to stimulate further microbial break-down, even in the summer
(Beyer et al, 1997). Previous reports on organic matter mainly focused on gelisols or cryosols
derived from bryophytes, algae, and vascular plants from stable habitats without pronounced
ornithogenic effects (Carvahlo et al., 2010). It has been shown that ornithochoria play an
essential role in redistribution of plant remnants in the Antarctic (Parnikoza et al, 2016) as birds
transport considerable amounts of variably composed organic material within its inland
landscapes. The presence of organic matter of ornithogenic origin plays an important role in the
formation of humic substances. However, published data on SOM composition for the Antarctic
are rare, and further studies that detail its structural compounds and their distribution are needed.
Recently, *C-NMR was successfully used to detail the soils found in endolithic communities in
Eastern Antarctica and revealed that endolithic organic matter is characterized by a low
prevalence of alkyl aromatic compounds (Mergelov et al, 2018).

This study aimed to compare the structural composition of the SOM from both superficial
and partially isolated (i.e. buried spots on the border with permafrost) areas and to evaluated the
stabilization rate of Antarctic Cryosols. To date, this type of investigation has only been
performed on Cryosols of the Kolyma lowland (Lupachev et al, 2017), where the organic matter
of modern and buried soils vary greatly in terms of their molecular composition and quality. The
objectives of the study were: (1) to evaluate the alterations in the elemental compositions of the
HAs under partial isolation (2) to assess the ratios of aromatic and aliphatic carbon species in the
topsoil and isolated areas; (3) to characterize the biochemical activity of the HAs (e.g. free
radical concentration).

2. Materials and Methods
2.1. Study sites

King George Island is the largest in the South Shetland archipelago and only around 5%
of its 1400 km? area is free of ice (Fig. 1) (Rakusa-Suszczewski, 2002). The Fildes Peninsula and
Ardley Island, together around 33 km?, comprise the largest ice-free area on King George Island
and the second largest of the South Shetland Islands. It has a gentle landscape consisting of old
coastal landforms with numerous rocky ridges and an average height of 30 m above main sea
level (AMSL) (Michel et al., 2014). According to Smellie (Smellie et al, 2014), this area mainly
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consists of lava with small exposures of tuffs, volcanic sandstones, and agglomerates. The
climate is cold and humid with a mean annual air temperature of -2.2°C and mean summer air
temperatures above 0°C for only up to four months (Wen et al., 1994). The mean annual
precipitation is 350 - 500 mm/year. The Fildes Peninsula and Ardley Island are among the first
areas in maritime Antarctica to become ice-free after the last glacial maximum (Birkenmajer,
1989). The Fildes Peninsula was covered by glaciers from 8000 to 5000 BP (Mausbacher et al,
1989, Haus et al, 2014). The patterned ground in this region dates from 720 to 2640 BP. In the
South Shetland Islands, permafrost is sporadic or non-existent at altitudes below 20 m AMSL
and occurs discontinuously in altitudes from 30 to 150 m AMSL (Bockheim et al, 2013).
Mosses, lichens, and algae are common to this area along with two vascular plants (Deschampsia
antarctica and Colobanthus quitensis). Penguins, seals, and seabirds inhabit the coastal areas and
greatly impact the soil development. Major cryogenic surface-forming processes in this region
include frost creep, cryoturbation, frost heaving and sorting, gravity, and gelifluction (Michel et
al, 2014). Eight separate sites on the Fildes Peninsula have been collectively designated an
Antarctic Specially Protected Area (ASPA 125) largely due to their paleontological properties
(Management plan, 2009). The average thickness of the soil is about 15 - 25 cm. Soils from King
George Island have been divided into six groups (WRB, 2014): Leptosols, Cryosols, Fluvisols,
Regosols, Histosols, and Technosols; this corresponds well with previously published data
(Navas et al, 2008).

Three soils were selected for humic substance isolation and further investigation in this study.
All soils have top humus layers with a high carbon content and distinguishable layers of
suprapermafrost accumulation of organic matter. All three soils are classified as Turbic Cryosols
(Histic, Stagnic) (WRB, 2014). Soil profiles 1, 2, and 3 (SP1, SP2, SP3) were collected from
locations described by the following coordinates: 62,14,391 S, 58,58,549 W, 62,13,140 S,
58,46,067 W; and 62,10,578 S, 58, 51,446 W respectively. Sampling depth was 0 - 10 cm for the
superficial layers and 50 - 55, 15 - 20, 20 - 25 for SP1, SP2, and SP3 respectively. Images of the
soil profiles are presented in Fig. 2. SP1 is from under the mixed lichen-bryophyta cover, SP2
and SP3 are formed under species of Bryophyta and Deshampsia antarctica correspondingly.

2.2. Basic characterization

Soil samples were air-dried, ground, and passed through 2-mm sieve. Routine chemical
analyses were performed using classical methods: C and N content were determined using an
element analyzer (Euro EA3028-HT Analyser) and pH in water and in salt suspensions using a
pH-meter (pH-150 M).

2.3. Extraction of humic acids (HAS)

HAs were extracted from each sample according to a published protocol (Shnitzer, 1982),
http://humic-substances.org/isolation-of-ihss-samples/). Briefly, the soil samples were treated
with 0.1 M NaOH (soil/solution mass ratio of 1:10) under nitrogen gas. After 24 hours of
shaking, the alkaline supernatant was separated from the soil residue by centrifugation at 1,516 x
g for 20 minutes and then acidified to pH 1 with 6 M HCI to precipitate the HAs. The
supernatant, which contained fulvic acids, was separated from the precipitate by centrifugation at
1,516 x g for 15 minutes. The HAs were then dissolved in 0.1 M NaOH and shaken for four
hours under nitrogen gas before the suspended solids were removed by centrifugation. The
resulting supernatant was acidified again with 6 M HCI to pH 1 and the HAs were again isolated
by centrifugation and demineralized by shaking overnight in 0.1 M HCI/0.3 M HF (soil/solution
ratio of 1:1). Next, the samples were repeatedly washed with deionized water until pH 3 was
reached and then finally freeze-dried. HA extraction yields were calculated as the percentage of
carbon recovered from the original soil sample (Vasilevitch et al, 2018, Abakumov et al, 2018).
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2.4, Characterization of humic acids (HAS)

Isolated HAs were characterized for their elemental composition (C, N, H, and S) using the
Euro EA3028-HT analyzer. Data were corrected for water and ash content. Oxygen content was
calculated by difference. The elemental ratios reported in this paper are based on weight. Solid-
state *C-NMR spectra of HAs were measured with a Bruker Avance 500 NMR spectrometer in
a 3,2-mm ZrO; rotor. The magic angle spinning speed was 20 kHz in all cases and the nutation
frequency for cross polarization was ul/2p 1/4 62.5 kHz. Repetition delay and number of scans
were 3 seconds. Groups of structural compounds were identified by their chemical shifts values:
alkyl C (—10 to 45 ppm), O/N-alkyl C (45 to 110 ppm), aromatic C (110 to 160 ppm), and
carbonyl/carboxyl/amide C (160 to 220 ppm) (Kniker, 2007). The C-NMR study was also
conducted in bulk soil samples towards characterizing changes in the initial soil material during
humification.

The ESR spectra (only for HAs due to low ash content) were recorded on a JES FA 300
spectrometer (JEOL, Japan) in X-diapason with a free-radical modulation amplitude of 0.06 mT
and a microwave power in the cavity of 1 mW. Magnesium powder with fixed radical
concentration was used as an external standard. The concentration of the paramagnetic centers in
powdered samples was determined by comparison to relative signal intensities of the external
standard using the program JES-FA swESR v. 3.0.0.1 (JEOL, Japan) (Chukov et al, 2017).

2.5. Statistics

Statistical data analysis was performed using the STATISTICA 10.0 software (ANOVA,
Statistica Base 12.6, Dell, Round Rock, TX, USA). One-way analysis of variance (ANOVA) was
applied to test the statistical significance of the differences between the data, based on estimation
of the significance of the average differences between three or more independent groups of data
combined by one feature (factor). Fisher’s Least Significance Test (LST) was used for post-hoc
analysis to provide a detailed evaluation of the average differences between groups. A feature of
this post-hoc test is inclusion of intra-group mean squares when assessing any pair of averages.
Differences were considered significant at the 95% confidence level. Concentrations of organic
and inorganic contaminants were determined with at least three replicates. The calculated
average concentrations are provided as mean + standard deviation (SD).

3. Results and Discussion

Total organic carbon (TOC) content was high in both the superficial and buried soil
layers (Table 1). This is indicative of the low degree of decomposition and transformation of the
precursor material and is comparable to the data on soils from the Yamal tundra (Ejarque,
Abakumov, 2016) and the Argentinian islands (Parnikoza et al, 2016). High TOC content is
typical for the Antarctic Peninsula compared to soils of the Eastern Antarctic (Beyer et al, 1997,
Mergelov et al, 2017). While both were elevated, the TOC was higher in the superficial levels
relative to the lower ones. Previous studies described high variability in the TOC content from
the soils of King George and Galindez Islands, mainly depending on the diversity of the ecotopes
and the sources of organic matter (Abakumov, 2010, Parnikoza et al, 2016). Isolated (buried) soil
spots are not connected with fresh sources of organic matter, explaining why the TOC content in
these layers is lower. The carbon to nitrogen ratio was narrowest in SP1, which was affected by
the scuas’ activity (evidenced by remnants of nests). This is in line with previous studies that
documented the well-pronounced ornithogenic effects on soil’s nitrogen content (Simas et al,
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2007, Parnikoza et al, 2016). Fine earth of soils investigated characterized by acid reaction,
which is expected for soils of this region.

In terms of elemental composition, soil HAs are comparable with those previously
reported for the Arctic and Antarctic soil. Current exposed organic layers contain HAs with
higher carbon and nitrogen and lower oxygen content (Table 2). Conversely, the HAs of isolated
soil patches show increased levels of oxidation. In comparison to soils of the tundra in the Komi
Republic (Vasilevitch et al, 2018), HAs found in this study were more oxidized, comparable to
those of the Kolyma Lowland (Lupachev et al, 2017) and previously published data from the
Fildes Peninsula (Abakumov, 2017).

Data on the distribution of carbon species in HAs (Table 3, fig. 3) and in bulk soil (Table
4, fig. 4) samples indicated that aromatic compound content is generally lower than the alkyl
components. This is a well-known peculiarity of the soils of the polar biome (McKnihct et al,
1994, Beyeret al, 1997). At the same time, the degree of aromaticity of the isolated HAs is three
fold higher than in the bulk organic matter. This suggests the presences of the humification
process in the soils of Antarctica since humification involves increasing the aromatic compound
content in macromolecules. This supports the classical humification hypothesis instead of new
arguments, which are critical for this approach (Lehman, Kleber, 2015). Our data shows that
SOM is on a continuum and HAs are the main acting constituent of this continuum; thereby
confirming that this model is applicable even in Antarctica. The degree of aromaticity was higher
in both isolated HAs and bulk soil samples from superficial levels compared to samples from
isolated patches. Carbonyl/carboxyl/amide area (160 - 220 ppm) was more prevalent in the HAs
of topsoils and less abundant in the organic matter of bulk samples (this region was presented
mainly by carboxylic and amid carbon in the interval between 160 - 185 ppm) (Kniker, 2007).
HAs extracted form SP1, located under the Deshampsia antarctica, exhibited wide peaks around
110 - 140 ppm (H-aryl, C-aryl, olefinic-C) and at 140 - 160 ppm (O-aryl and N-aryl-C), while
aromatic components of SP2 and SP3 were mainly represented by peaks between 110 - 140 ppm.
This difference can be explained by the organic remnants of Deshampsia antarctica serving as
the precursor for humification. All HA samples showed intensive areas of alkylic carbon (0 - 45
ppm), aliphatic C and N, and methoxyl C (45 - 110 ppm), O-alkyl of carbohydrates and alcohols
(60 - 95 ppm), and acetal and ketal carbon of carbohydrates (95 - 110 ppm). Carbon composition
of the bulk samples was different from isolated HAs as evidenced mainly by the presence of
alkyl carbon (0 - 45 ppm) and O- and N-alkyl carbon (45 - 110 ppm). Characteristic features of
the bulk organic matter include carboxylic carbon and aryl compound content was low relative to
isolated HAs. Only soils with prior ornithogenic interactions showed increases in carboxylic
peaks, which corresponds well to data on relic ornithogenic soil (Beyer et al, 1997).

The C-alkyl : O-N-alkyl ratio used to indicate the degree of organic matter transformation
was quite variable in all samples investigated. This can be caused by diversity in the origin and
composition of the humification precursors. In case of comparisons with humic and fulvic acids
of tundra soils (Vasilevitch et al, 2018), HAs of soils investigates are intermediated between
HAs and fulvic acids of tundra Histosols with partially decomposed organic matter. These data
are in line with a previous report (Hopkins et al, 2006) that showed soils of the Antarctic Dry
Valleys have low C-alkyl : O-alkyl-C ratio using solid-state *C-NMR spectroscopy) and,
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therefore can serve as a labile, high-quality resource for micro-organisms. Beyer et al (1997)
showed that both the CPMAS *C-NMR and the Py-FIMS spectra of the Terri-Gelic Histosol
were dominated by signals from carbohydrates and alkylic compounds, which is corroborated by
our findings. They also suggest that the 3C-NMR data reflected decomposition of carbohydrates
and enrichment of alkyl-C in deeper soil layers. In regards to the bulk SOM, this was true for
SP2 and SP3 but not for SP1 that formed under the vascular plant Deshampsia Antarctica.

A representative electrone spin resonanse ESR spectrum of HAs is presented in fig. 5 and
the ESR parameters are similar to HAs and FAs of temperate soils (Senesi, 1990, Senesi et al,
2003). The spectra show a single, wide line with a g-factor ranging from 1,98890 to 1,99999,
attributable to the presence of stable semiquinone free radicals in the HA-containing
macromolecules (Table 5). The free radical content was higher in the superficial levels than in
the isolated ones. This corresponds well with previous reports (Chukov et al, 2017, Abakumov et
al, 2015) that connected the isolation of buried organic matter in the supra-permafrost with
declining free radical content. This reveals the increased biochemical activity of HAs in topsoil.
Compared to data from Lupachev (2017), the differences between exposed and isolated areas are
less pronounced but, in general, the HAs of the Antarctic soils contain more unstable free
radicals on average than the tundra soils of the Kolyma Lowland (Lupachev et al, 2017). At the
same time they are comparable to the soils from the Yamal tundra (Chukov et al, 2017). Taken
together, the free radical content found in our study was lower than in anthropogenically affected
boreal and forest steppe soils of the East-European plains (Abakumov et al, 2018).

4. Conclusions

High TOC content was fixed for the three studies representatives of Turbic Cryosols on
King George Island, Northwest of the Antarctic Peninsula, Western Antarctic. High amounts of
TOC are characteristic for both superficial and partially isolated soil materials. HAs contained
three-fold more aromatic carbon than that in bulk SOM, which indicates that humification
appears and is active in soils of the Antarctic. Moreover, the amounts of aromatic carbon and
carboxyl groups were higher in the HAs of the superficial layer, which is likely caused by the
greater diversity of their organic precursors and more active humification than in sub-aerial
conditions. The HAs of the superficial sample layers contained lower concentrations of free
radicals, an indicator of active transformation in the topsoil. In general, the organic matter from
partially isolated areas is less stable in terms of carbon species and free radical content. This
likely results from the relative lack of fresh organic precursors and the different aeration and
hydration conditions of stagnification bordering the permafrost table.
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Table. 1. Basic characteristics of soils

Sample TOC, % N, % CIN PH20 PHcacL2 Color
27.63+0.23 | 5.18+0.42 5.33 6.35 5.30 10 YR 4/7
10
19.05+0.15 | 2.20+0.05 8.66 5.67 4.89 2.5 YR 4/4
1 [CRH]
20.04+0.17 | 1.16+0.09 17.13 4.80 4.80 10 YR 4/4
20
12.33+0.24 | 0.78%0.09 15.80 4.70 4.50 2.5YR4/3
2 [CRH]
10.16+0.09 | 0.84+0.07 11.98 4.90 4.21 10 YR 5/3
30
6.66+0.07 | 0.81+0.09 8.20 4.70 4.35 2.5YR5/3
3 [CRH]
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Table 2. Elemental composition (%) and atomic ratios in HAs

Sample Ne C N H @) C/IN H/C o/C
10 49.53+0.56 | 5.55+0.07 | 6.90+0.11 | 38.02+0.64 | 8.92 0.13 0.76
1 [CRH] 47.14+0.45 | 4.30+0.06 | 6.79+0.09 | 41.77+0.21 | 10.96 0.14 0.88
20 45.55+0.32 | 5.14+0.09 | 5.80+0.09 | 43.51+0.35 | 8.86 0.12 0.95
2 [CRH] 43.77+0.24 | 4.72+0.11 | 6.90+0.08 | 44.61+£0.21 | 9.27 0.15 1.01
30 49.99+0.41 | 4.78+0.08 | 6.56+0.08 | 38.67+0.34 | 10.45 0.13 0.77
3 [CRH] 44.45+0.034 | 3.99+0.07 | 6.77+0.10 | 44.79+0.25 | 11.14 0.15 1.01

P, One way

Anova,

superficial/buried 0.14 0.05 0.29 0.05 n.d. n.d. n.d.
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Table 3. Carbon species integration in molecules of the HAs, %

Carbonyl/
carboxyl/ O-N Alkyl/O-N Arom/Alkyl
Sample Ne amide Aromatic alkyl Alkyl Alkyl
Chemical shift,
ppm 220-160 160-110 | 110-45 | 45-0
10 11,38 33,59 39,86 | 14,18 0.35 2.36
1 [CRH] 10,75 30,45 31,86 | 26,05 0.81 1.16
20 19,24 23,34 2954 | 27,85 0.94 0.83
2 [CRH] 16,48 21,42 34,23 | 27,87 0.81 0.77
30 16,75 33,40 29,12 | 20,71 0.71 1.61
3 [CRH] 14.39 26.86 40.07 | 18.68 0.46 1.43
P, One way
Anova,
superficial/buried
0.02 0.03 0.02 0.73 n.d. n.d.
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Table 4. Carbon species integration in molecules of the bulk organic matter, %

Carbonyl/ Arom/Alkyl
carboxyl/ O-N Alkyl/O-
Sample Ne amide Aromatic alkyl Alkyl N Alkyl
220-160 160-110 | 110-45 | 45-0
10 7.24 11.37 46.20 | 35.19 0.76 0.32
1 [CRH] 18.23 10.29 4059 | 30.89 0.76 0.33
20 7.34 20.48 55.12 | 17.06 0.31 1.20
2 [CRH] 9.34 11.27 49.50 | 29.90 0.60 0.37
30 5.72 13.84 62.22 | 18.22 0.29 0.75
3 [CRH] 22.95 9.89 46.92 | 20.24 0.43 0.48
n.d.
P, One way Anova, superficial/buried 0.53 0.01 0.05 0.56 n.d.
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Table 5. Free radical concentration in humic acids of studied soils

Mass concentration of free

Soil horizon radical, 10% spin*g™ g-factor
10 3.67 2.0314

1 [CRH] 3.04 2.3150

20 3.51 2.0314

2 [CRH] 2.13 2.0303

30 6.10 2.0310

3 [CRH] 5.86 2.0314
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Fig.1. Location of the Fildes peninsula and sampling plots (SP1, SP2, SP3).

Fig.2. Soil morphology

Figure 3. 13-C NMR spectras of the HAs, isolated from soils (O, [CRH] labels - according table 1)
Figure 4. 13-C NMR spectras of bulk organic matter of soils ( O, [CRH] labels - according table 1)
Figure 5. Typical ESR spectrum of humic substances investigated
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Table 2. Elemental composition (%, mass percents) and atomic ratios in HAs

Table 3. Carbon species integration in molecules of the HAs, %
Table 4. Carbon species integration in molecules of the bulk organic matter, %

Table 5. Free radical concentration in humic acids of studied soils
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