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We thank the reviewers for the constructive and insightful comments as well as for the positive reception of our 

idea. We considered the reviews helpful in improving the clarity of our manuscript’s message and the quality of 

the underlying science, and in increasing the robustness of our conclusions. In the following, we provide 

individual responses to the reviewer’s concerns and start with a general outline of how we have updated and 

improved our manuscript, which is followed by detailed comments on specific issues, raised by the reviewers. 

Please note that the reviewer comments are indicated by italics. Additionally, we made a few minor changes to 

correct for some small errors that were not pointed out by the reviewers. At the end, we provide a track-changed 

version of our manuscript. 

 

General response to Reviewers 1 & 2 

We thank the anonymous referees for the constructive comments that helped to strengthen our final conclusions. 

We implemented these changes according to the suggestions of the reviewer. Particularly, both reviewers raise 

two similar points: 

 

First, the reviewers are concerned about the lack of an error propagation of the uncertainties, which are present 

in the interaction cross-sections as well as in the flux model, to the flux ratio. Reviewer 1 states: “[…] there is no 

discussion regarding the error in the physical models and simulations […]” and “Before drawing any 

conclusions, the authors should provide uncertainty estimations to all the simulations […] and propagate these 

errors to the final flux ratio.” Reviewer 2 states: “The main comment is that the systematic uncertainties of the 

calculations are not presented […]” 

We completely agree with the reviewer that the related uncertainties exist and should be propagated to the 

simulated flux and finally also to the flux ratio. 

We thus have reworked all affected figures (i.e. Fig. 2 onwards) to include an estimation of the error that derives 

from the model-inherent errors (i.e. flux model and interaction cross-sections). Moreover, the systematic errors 

are now explicitly stated in the manuscript (see Sect. 2.2 and Sect. 2.3) and the discussion treats the effect of the 

errors. We also added a Section in the Appendix (see Appendix C), to show our rationale behind the error 

propagation. 

 

Secondly, both reviewers mention the lack of experimental data. Reviewer 1 states: “This work would be of 

significant impact if the authors could provide […] real muon measurements associated to different rock types 

from the field.” Reviewer 2 states: “The paper is lack of experimental data […]” and “If the authors has any 

experimental data […] the calculations should be verified […]” 

We agree with the reviewers on the fact that our work would benefit if experimental data would confirm our 

theoretical findings. However, we acknowledge that we cannot offer quantitative measurements to test and 

constrain our model, mainly because the required data is not available. Nevertheless, our inferences are based on 
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the same theoretical framework that has already been used for other materials, including standard rock. Thus, we 

still gain insight into this problem, even without experimental data at hand.  

We address this point by adding a dedicated paragraph in our discussion section. 

 

A third point mentions the limitation of our approach to a volume averaging of element properties. Reviewer 1 

states: “[…], the methodology developed is limited to a volume averaging of element properties.” 

We apologise if we might not have completely and clearly conveyed the idea of our method. We would like to 

clarify that our rock model incorporates two different kinds of averaging. Element properties are averaged by 

their mass to crystal properties. Only then did we employ a volume averaging of these crystal properties to rock 

properties. That being said, we have to add that the volume averaging is a procedure, which is equivalent to the 

mass averaging. In fact, we derived the volume averaging approach through a mass averaging of crystal 

properties as can be seen from Eq. (B16) onwards. We justify this approach through our observations, where a 

rock is made up of several minerals that have their own spatial extent. In turn, each mineral has its own 

elemental composition and crystallographic structure. This approach allows for much more detailed models to be 

used for the description of rocks, than those that are based on bulk compositions which are only represented by 

oxide fractions. We suggest that this different view better serves the need in muon tomographic studies. 

We added clarifications in the main body of the manuscript, as well as at the end of Appendix B, to stress that a 

volumetric averaging and a mass averaging are equivalent procedures. The additional equations are presented in 

the supplementary material. 

 

A further issue concerns the significance of our findings in light of the prevalence of the flux model error. 

Reviewer 1 states: “[…] the incoming flux model is precise only to 10% […]” and “[…] what is the purpose of 

trying to recover an average density […] of 2.5% […]” 

We agree with the reviewer that in a standard, present-day muon tomographic experimental setup (i.e. measuring 

the muon flux on the “back”-side of the target and assuming a flux model for the muon flux in “front” of the 

target), the dominating systematic error originates generally from the flux model, such that the compositional 

error would be regarded as negligible. However, one could imagine an experimental setup, where the flux in 

front of the target is also measured. Thus, the necessity of imposing a flux model disappears and one is limited 

only by the measurement accuracy. It is also possible that the community measuring the muon flux will improve 

their models in a way that the errors associated with it become smaller. An extreme view would even be to draw 

inferences on rock composition from muon flux measurements. Either way, the basic problem, i.e. the sensitivity 

of the measured muon flux to compositional changes, persists in every application of this technology and it is 

only a question of the experimental/study design if this effect appears. Thus, this issue will resurface in the 

future as this technology will be constantly refined.  

As an example of how our calculations can be applied to an existing muon tomography experiment, we added a 

new figure (Fig. 8) that shows how large the error on an estimated thickness would be, by assuming a density 

modified standard rock instead of its realistic counterpart. 
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Lastly, reviewer 2 suggests extending the calculations to greater thicknesses as he states: “[…] the extension of 

the thickness range of flux comparison is suggested up to 3000-3500 meter-standard-rock equivalent.” 

We gladly follow this suggestion and extend our calculations up to 2 km of thickness, as 3500 metre-standard-

rock-equivalent roughly correspond to 1.5 km of arkose (the lowest density rock in our calculations) or 1 km of 

peridotite (our highest density rock). Thus, the upper boundary of 2 km encompasses the suggested thicknesses 

for all rocks. 

 

Line by Line responses to reviewer 2: 

Line 33: “[…] In the recent years the Sinmoe-dake volcano […], Unzen lava dome […] and most recently […] 

the Sakurajima volcano […] have been investigated in Japan. Furthermore, there are ongoing muography 

experiments at different Italian volcanoes, such as Etna […] or Stromboli […].” 

Response: We gladly incorporate these other studies in our introduction. 

 

Line 38: “500m” -> “500 m” or “500 metres” 

Response: Changed “500m” to “500 m”. 

 

Line 105: “ “I” denotes integrated flux in Eq. (1) and later the mean excitation energy the Appendix B. Maybe it 

is better to use “F” instead of “I” to denote the integrated flux in Equations (1) and (6).” 

Response: We thank the reviewer for this clarifying comment and gladly adapt our notation. 

 

Line 173: “2.5%” -> “2.5 %” or “2.5\,%” 

Response: Changed “2.5%” to “2.5 %” everywhere in the manuscript as well. 

 

Line 184: “+/-“ -> “$\pm$” 

Response: Changed “+/-“ to its equation alternative “±” 

 

Line 210: “600m” -> “600 m” or “600 metres” 

Response: Changed “600m” to “600 m”. 
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Line 249: “Eq. B2 is suggested to be explained in more details here. All the parameters have to be defined 

around it.” 

Response: We added a few lines explaining the rest of the parameters in equation B2. However, we think that a 

detailed explanation is outside the scope of our paper and the reader is referred to dedicated literature. 

 

Additional changes by authors: 

In addition to the above changes we corrected some inconsistencies, which we came across while revising our 

manuscript. 

First, we realised, that the flux values of the carbonates (i.e. Dolomite, Aragonite and Limestone) were generally 

too high. We found the reason for this to be the missing element Carbon in our calculations. This error has been 

remedied and the concerning figures have been altered. The general effect of this change was a shift of the 

affected rocks towards lower flux ratios. Dolomite falls now in line with Shale and Arenite and 

Limestone/Aragonite behave more similar to basalt, as their general {𝑍2 𝐴⁄ } – value suggests. We changed also 

the example, which before was dolomite, to limestone to exemplify the effect of a worst case of a compositional 

error. 

We corrected also the values in Table 1. These errors were due to a propagation of rounding errors. However, the 

magnitude of the corrections is mainly below 1 % of the nominal value and does thus not affect our final 

conclusions. 
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Abstract. In recent years, the use of radiographic inspection with cosmic-ray muons has spread into multiple research and 10 

industrial fields. This technique is based on the high-penetration power of cosmogenic muons. Specifically, it allows the 

resolution of internal density structures of large scale, geological objects through precise measurements of the muon 

absorption rate. So far, in many previous works, this muon absorption rate has been considered to depend solely on the 

density of traversed material (under the assumption of a standard rock) but the variation in chemical composition has not 

been taken seriously into account. However, from our experience with muon tomography in Alpine environments we find 15 

that this assumption causes a substantial bias on the muon flux calculation, particularly where the target consists of high 

{𝑍2 𝐴⁄ } (like basalts) or low {𝑍2 𝐴⁄ } (e.g. dolomites) rocks(like basalts and limestones) and where the material thickness 

exceeds 300 metres. In this paper, we derive an energy loss equation for different minerals and we additionally derive a 

related equation for mineral assemblages that can be used for any rock type on which mineralogical data is available. Thus, 

for muon tomography experiments in which high/low {𝑍2 𝐴⁄ } rock thicknesses can be expected, it is advisable to plan an 20 

accompanying geological field campaign to determine a realistic rock model. 

1 Introduction 

The discovery of the muon (Neddermeyer and Anderson, 1937) entailed experiments to characterise its propagation through 

different materials. The fact that muons lose energy proportionally to the mass density of the traversed matter (see Olive et 

al., 2014) inspired the idea of using their attenuation to retrieve information on the traversed material. This was first done by 25 

George (1955) for the estimation of the overburden upon building of a tunnel, and then later by Alvarez et al. (1970) to 

search for hidden chambers in the pyramids at Giza (Egypt). In a related study, Fujii et al. (2013) employed this technology 

to allocate the reactor of a nuclear power plant. Recently, Morishima et al. (2017) successfully accomplished Alvarez’ the 

quest of Alvarez’ team in the Egyptian Pyramids. 

 30 
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Besides these applications, which have mainly been designed for archaeological and civil engineering purposes, scientists 

have begun to deploy particle detectors to investigate and map geological structures. In recent years this has been done for 

various volcanoes in Japan (Nishiyama et al., 2014; Tanaka et al., 2005, 2014)., including the Shinmoe-dake volcano 

(Kusagaya and Tanaka, 2015), the Unzen lava dome (Tanaka, 2016) and most recently the Sakurajima volcano (Oláh et al., 

2018). Further experiments have been conducted in the Caribbean and, in France (Ambrosino et al., 2015; Jourde et al., 35 

2013, 2015; Lesparre et al., 2012; Marteau et al., 2015) and in Italy on the Etna (Lo Presti et al., 2018) and Stromboli 

(Tioukov et al., 2017). Recently, Barnaföldi et al. (2012) used this technology to examine karstic caves in the Hungarian 

mountains. Our group is presently carrying out an experimental campaign in the Central Swiss Alps for the purpose of 

imagining glacier-bedrock interfaces (Nishiyama et al., 2017). aiming at imaging the glacier-bedrock interface, where we are 

faced with a variety of lithologies ranging from granitic, over paragneisic to carbonatic rocks that have a thickness larger 40 

than 500m. 

 

Inferences about subsurface structures from observed muon flux (i.e. the number of recorded muons recorded normalised by 

the exposure time and the detector acceptance) necessitate a comparison of the measurement data with muon flux 

simulations for structures with various densities. Such a simulation consists of a cosmic-ray muon energy spectrum model 45 

and a subsequent transportation of these muons through matter. The former describes the abundance of cosmic-ray muons 

for different energies and zenith angles at the surface of the earth. This has been well documented in literature (see for 

example Lesparre et al., 2010). The differences between the models and experimental data, hence the systematic model 

uncertainty, can be as large as 150 % for vertical muons (Hebbeker and Timmermans, 2002). On the other hand, the 

attenuation of the muon flux is assumed to depend only on the density of the traversed material. In this context, however, 50 

potential effects of its chemical composition haves not been taken into account properlyspecifically. Instead, Pprevious 

works employ a certain representative rock, so-called “standard rock”, for which the rate of muon energy loss has been 

tabulated (e.g. Groom et al., 2001). 

 

The origin of this peculiar rock type can be traced back to Hayman et al. (1963), Miyake et al. (1964), Mandò and Ronchi 55 

(1952) and George (1952), who gave slightly different definitions of its physical parameters (mass density 𝜌, atomic weight 

𝐴 and atomic number 𝑍). A comprehensive compilation thereof can be found in Ttable 1 of Higashi et al. (1966). Various 

corrections to the energy loss equation were then added in the framework of following -up studies, which particularly 

includes a density effect correction (see for example Sternheimer et al., 1984). Richard-Serre (1971) listed next todata 

relevant for muon attenuation for: (i) soil from the CERN (European Organization for Nuclear Research) premises near 60 

Geneva (Switzerland) and (ii) Molasse-type material (e.g. Matter et al., 1980) also  and (iii) a “rock” that equals the one from 

Hayman et al. (1963). These latter authors assigned additional energy loss parameters to this particular rock type, which 

were similar to those of pure quartz. Lohmann et al. (1985) then adjusted these parameters to energy loss variables for 

calcium carbonate (i.e. limestonecalcite) and gave the standard rock its present representativeshape. Summed upIn summary, 
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this fictitious material consists of a density of crystalline quartz (i.e. 𝜌𝑞𝑡𝑧 = 2.65 𝑔 𝑐𝑚−32.65 g/cm3), a Z and A of 11 and 65 

22, respectively (which is almost sodium), and density effect parameters that have been measured on calcium carbonate.  

 

However, when the material’s Z and A differ greatly from standard rock parameters as for carbonates, basalts or peridotites, 

a substantial bias would be introduced to the calculation of the muon flux. Since sSuch a situation can be is easily 

encountered easily in geological conditions settings such as the European Alps where igneous intrusions, thrusted and folded 70 

sedimentary covers and recent Quaternary deposits can beare found in a rather narrow spaceclose vicinity (e.g. Schmid et al., 

1996). Currently, the authors areour collaboration is performing a muon tomography experiment in the Jungfrau region, in 

the Central Swiss Alps aiming at imaging the glacier-bedrock interface, with the main focus on resolving the shape of the 

boundary between glaciers and the underlying bedrock (Ariga et al., 2018; Nishiyama et al., 2017). There, we face a variety 

of lithologies ranging from gneissic to carbonatic rocks that have a thickness larger than 500 m (Mair et al., 2018). In this 75 

context, it turned out that the analyses based on the standard rock assumption might cause an over- or an underestimation of 

the bedrock position in our the related experiment. Such an uncertainty arising from the chemical composition of the actual 

rock has to be reduced at least to the level of the statistical uncertainty inherent in the measurement as well as in the 

systematic uncertainty of the muon energy spectrum model. 

In this studyTo achieve this, we investigate how different rock types potentially influence the results of a muon tomographic 80 

experiment. We particularly compare the lithologic effect on simulated data with standard rock data to estimate a systematic 

error that is solely induced by a too simplistic assumption on the composition of the bedrock. 

2 Methods 

2.1 Rock types 

In this study, we chose 10 different rock types that cover the largest range of natural lithologies, spanning the entire range 85 

from igneous to sedimentary rocks. The simplest rocks have a massive fabric in the sense that they do not exhibit any planar 

or porphyric texture. LTypical lithologies with these characteristics are igneous rocks andor massive limestones (not 

sandstones as they might have a planar fabric such as laminations and ripples). Exemplary thin sections of a granite and a 

limestone are shown in Fig. 1. Note that metamorphic rocks featuring strong heterogenic, metamorphic textures are not 

treated in the framework of this study for simplicity purposes and will be subject of a follow-up paperfuture research. Also, 90 

for simplicity purposes, we do not consider spatial variations in crystal sizes in our calculations (i.e. a porphyric 

fabrictexture). We justify this approach because a related inhomogeneity is likely to be averaged out if one considers a 

several metre-thick rock column. FurthermoreAdditionally, the rock is considered to consist only of crystalline components, 

i.e. glassy materials such as obsidian have to be treated separately. Porous media can be approximated by assigning one of 

the constituents as air or (in the case of a pore fluid) water. This is explicitly done for the case of arkoses (10% air) and 95 

sandstones arenites (11% air). 
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We compare the energy loss of muons in these rocks and hence the resultant muon flux attenuation depending on depth with 

those of the standard rock. The analysed lithologies, together with their relevant physical parameters, are listed in Table 1. 

Among these parameters, {𝑍/𝐴} and {𝑍2 𝐴⁄ }, i.e. the ratio of the atomic number (orand its square) to the mass number 100 

averaged over the entire rock, are most relevant to the energy loss of muons (Groom et al., 2001). The former is almost 

proportional to the ionisation energy loss that occurs predominantly at low energies, whereas the latter is mostly proportional 

to the radiation energy loss, that becomes dominant for muons faster than their critical energy at around 600 𝐺𝑒𝑉. The 

volumetric mineral fractions of these ten rocks can be found in Appendix A.  

2.2 Cosmic ray flux model 105 

We perform our calculations with the muon energy spectrum model proposed by Reyna (2006), at sea level and for vertical 

incident muons. This model describes the kinetic energy distribution of the muons before they enter the rock. The calculation 

of the integrated muon flux after having crossed a certain amount of material is done in two steps. First, the minimum energy 

required for muons to penetrate that a given thickness of rock is calculated considering the chemical composition effects (see 

Sect. 2.3). Afterwards, the energy spectrum model, 𝑑𝐹 𝑑𝐸⁄ , is integrated above the obtained minimum energy (which we call 110 

from here on “cut-off energy”, 𝐸𝑐𝑢𝑡) to infinity, i.e. 

𝐼𝐹𝑐𝑎𝑙𝑐 = ∫
𝑑𝐼𝐹(𝐸)

𝑑𝐸
 𝑑𝐸

∞

𝐸𝑐𝑢𝑡
.  (1) 

The integration is necessary as most detectors, which have been used for muon tomography, record only the integrated muon 

flux. As already stated in the introduction, we attribute a systematic uncertainty of ± 15 % to the integrand 𝑑𝐹 𝑑𝐸⁄ . All the 

calculations in this work have been verified with another flux model (Tang et al., 2006) and are presented in the 115 

supplementary material. 

2.3 Muon propagation in rocks 

As soon as muons penetrate a material, they start to interact with the material’s electrons and nuclei and lose part of their 

kinetic energy. The occurring processes can be categorised into an ionisation process, i.e. a continuous interaction with the 

material’s electrons, and radiative interactions with the material’s nuclei (i.e. bremsstrahlung, electron-positron pair 120 

production and photonuclear processes), which are of a stochastic nature. All these processes are governed by the material 

density 𝜌 and the atomic number Z and atomic weight A (see Groom et al., 2001 for details). Our general strategy for the 

calculation of the energy loss in a rock is to use its decomposition into energy losses for the corresponding minerals. 

TAccordingly, the energy loss of muons travelling a unit length, 𝑑𝐸 𝑑𝑥⁄ , in a rock can then be described by a volumetrically 

averaged energy loss through its mineral constituents 125 
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{
𝑑𝐸𝑟𝑜𝑐𝑘

𝑑𝑥
} = ∑ 𝜑j 〈

𝑑𝐸𝑚𝑖𝑛𝑒𝑟𝑎𝑙,𝑗

𝑑𝑥
〉𝑗  ,   (2) 

where 𝜑𝑗 is the volumetric fraction of the j-th mineral within the rock. The derivation of Eq. (2) can be found in Appendix B.  

In order to exploit this abstraction efficiently we have to assume a homogeneous mineral distribution within the rock. This is 

a strong simplification, considering for example effects related to a local intrusion, tectonic processes like folding and 

thrusting, or spatial differences in sedimentation patterns. These concerns can be addressed through averaging over a large 130 

enough volume. Figure 1 shows two typical thin-sections from rock samples of our experimental site that exhibit crystal 

sizes well below 14 mm - 5 mm. As muon tomography for geological purposes generally operates at scales of 10 m - 1000 m 

it is safe to assume that small-scale variations are averaged out. Thuse, the term on the right-hand side of Eq. (2), i.e. the 

energy loss across each mineral, can be written as: 

− 〈
𝑑𝐸𝑚𝑖𝑛𝑒𝑟𝑎𝑙

𝑑𝑥
〉 = ρmineral ∗ (〈𝑎〉 +  𝐸 ∗ 〈𝑏〉) ,  (3) 135 

where 〈𝑎〉 and 〈𝑏〉 are the ionisation and radiative energy losses across a given mineral, respectively. These two parameters 

are in turn calculated by averaging the contribution of each element (i.e. atom) constituting the mineral by their mass (see 

Eq. (B5) to Eq. (B15) in Appendix B for details). The density of the minerals, ρmineral , is estimated from its crystal 

structures (see Appendix A for more detailed instructions). Once the energy losses are obtained for all minerals, each 

contribution is summed up according to Eq. (2). The energy loss within the rock can then be expressed in a similar way, as in 140 

Eq. (3), (for a detailed discussion we refer to Appendix B): 

− {
𝑑𝐸𝑟𝑜𝑐𝑘

𝑑𝑥
} = ρrock ∗ ({𝑎} +  𝐸 ∗ {𝑏}) .  (4) 

Again, the values {𝑎}  and {𝑏}  indicate the averaged ionisation and radiative energy losses across the whole rock, 

respectively. Equation. (4), an ordinary nonlinear differential equation, is usually given as a final value problem, i.e. we 

know that the muon, after having passed through the rock column, still needs some energy to penetrate the detector, 𝐸𝑑𝑒𝑡. 145 

This can be turned into an initial value problem, by reversing the sign of Eq. (4) and defining the detector energy threshold 

as initial condition. 

{
𝑑𝐸𝑟𝑜𝑐𝑘

𝑑𝑥
} = ρrock ∗ ({𝑎} +  𝐸 ∗ {𝑏})   (5) 

𝐸(𝑥 = 0) = 𝐸𝑑𝑒𝑡   

The problem has been transformed into the one of finding the final energy, the cut-off energy, 𝐸𝑐𝑢𝑡 , after a predefined 150 

thickness of rock. This is a well investigated problem, for which a great variety of numerical solvers are available. In this 

work we employ a standard Runge-Kutta integration scheme (see for example Stoer and Bulirsh, 2002).  
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The energy loss equations are subject to systematic uncertainties, mainly because the experimentally determined interaction 

cross sections have an attributed error. According to Groom et al., (2001), the error on ionisation losses is “mostly smaller 

than 1 % and hardly ever greater than 2 %”. These authors also state, that in the case of compounds the uncertainties might 155 

be thrice as large. Therefore, we considered an ionisation loss uncertainty of ± 6 % as appropriate for our calculations. The 

errors on the cross sections of bremsstrahlung, pair-production and photonuclear interactions are ± 1 %, ± 5 % and ± 30 % 

respectively. Appendix C shows in detail how we propagated these errors to the cut-off energy, 𝐸𝑐𝑢𝑡 . 

3 Results 

Figures 2 and 3 shows the muon flux simulations as a function of rock thicknesses up to 12 km for igneous and sedimentary 160 

rocks, respectively. The depth-intensity relation is described by a power law, as it is the integration of the differential energy 

spectrum of muons, which also follows a power law.  

To better visualise the difference between the fluxes after having passed these ten rock types and the standard rock, we report 

in Fig. 3 the ratio between fluxes calculated after the different materials and that after the standard rock in Fig. 4: 

𝑓𝑟rock =
𝐼𝐹𝑐𝑎𝑙𝑐,𝑟𝑜𝑐𝑘

𝐼𝐹𝑐𝑎𝑙𝑐,𝑆𝑅
 .  (6) 165 

From Figs. 2 and 3 we can see that tThe attenuation of the muon flux expectedly depends predominantly on the rock density, 

as expectedwe can see in Figs. 2 to 4. Rocks exhibiting a high material density result in a larger muon flux attenuation than 

lithologies with a lower density. This however, only depicts the overall differences, including density and compositional 

variations, between real and standard rock. In this regard, Groom et al. (2001) apply an explicit treatment of density 

variations of known materials. Thus, the flux data can be simulated for a standard rock with the exact density as its real 170 

counterpart. Such a density normalisation enables us to isolate the compositional influence on the computed data. Figures 5 

and 6 show the muon flux simulations for each rock compared to a density normalised standard rock and Fig.ure 47 

summarises this information by representsing the ratio between muon fluxes after passing through real rocks and the muon 

flux after passing through a density normalised standard rock. It is important to note that the standard rock muon flux in each 

flux ratio has been normalised with respect to the density of the original rock (i.e. the peridotite is compared to a standard 175 

rock of density ρ = 3.340 𝑔 𝑐𝑚−3 𝑔/𝑐𝑚3, the limestone is comparted to a standard rock of density ρ = 2.711 𝑔 𝑐𝑚−3𝑔/𝑐𝑚3, 

etc.). One notices that the flux ratios are rather close together, mainly within 2.5 % of the standard rock flux, before they 

start to diverge towards larger (dolomite, shale and arenite) and smaller (igneous rocks, arkose, limestone and aragonite) flux 

ratios beyond 300 m thickness of penetrated rock. Even though the errors on the fluxes are relatively large and sometimes 

even overlap with the standard rock fluxes, the propagated errors on the flux ratios remain well bounded near their means. 180 

This effect is due to the correlation of the errors in the numerator and the denominator in Eq. (6). A detailed discussion of 

how uncertainties have been propagated is presented in Appendix C. 
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4 Discussion 

The differences in the calculated muon flux illustrated in Figs. 22 and 3 become even more pronounced in Fig. 34, where the 185 

fluxes are compared to the case where cosmic fluxes are attenuated by a standard rock. One notices a direct correlation with 

material density. This statement is reinforced by the fact that the granite (Fig. 2) has almost the same density as the standard 

rock, 2.6504 𝑔 𝑐𝑚−3 𝑔 𝑐𝑚3⁄  vs. 2.650 𝑔 𝑐𝑚3⁄ , and shows an overall similar flux magnitude as the standard rock, i.e. a flux 

ratio of 1. This can be explained by Eq. (4), as the energy loss is almost directly proportional to the density, while the 

presence of density in the ionisation loss term (i.e. {𝑎(𝐸, 𝜌, 𝐴, 𝑍)} ) is negligible compared to this factor. Thus, if the rock 190 

flux data is compared to a standard rock with equal density, this effect should be removed, and one is left with the bare 

composition difference only. 

 

A closer look to at Fig. 4 7 reveals that the muon fluxes for every rock below 300 m do not depart more than 2.5 % from 

their respective density modified standard rock flux. The chemical composition effect can thus be considered negligible 195 

when compared to the systematic uncertainty originating from the muon flux model. This is because ofWe explain this 

through the dominance of the ionisation energy loss in this thickness region. Muons that penetrate down to 300 m of rock are 

still slow enough to predominantly lose their kinetic energy for the ionisation of the rock’s electrons. As the number of 

electrons per unit volume is given by the product: 𝜌𝑟𝑜𝑐𝑘 ∗ {𝑍 𝐴⁄ }, ionisation losses are proportional to this term. When 

comparing a density normalised standard rock with a real rock, the only difference can emerge from the second part, i.e. 200 

{𝑍 𝐴⁄ }. According to Table 1Table 1, these values do not change more than 1 % with respect to each other. 

 

When the rock thicknesses become larger than 300 m, the flux ratios start to exceed +/- ± 2.5 % and the ratio patterns 

diverge. This corresponds to the point where radiative losses start to become the dominant energy loss processes. The latter 

are interactions of the muon with the nuclei of the atoms within the rock and its cross section is mainly proportional to the 205 

square of the nucleus’ charge (i.e. {𝑍2 𝐴⁄ }). Hence, rocks that exhibit a lower {𝑍2 𝐴⁄ }-value than a standard rock (i.e.e.g. 

dolomite, arenite and shale) attenuate the muon flux less (i.e. flux ratio > 1), while all igneous rocks as well as limestone, 

aragonite and arkose, that have a higher {𝑍2 𝐴⁄ }-value attenuate the muon flux more, which results in a lower flux ratio. 

 

The above results reflect only the most striking connections to the chemical composition of a rock. In reality however, the 210 

nature of muonic energy loss processes is much more complex as than what the shape of the flux ratios in Fig. 4 below 300 

m suggests. The actual ionisation energy loss, Eq. (B27), is an interplay of the mean excitation energy {𝐼}, i.e. the mean 

energy needed to ionise a material’s electrons, the material density 𝜌𝑟𝑜𝑐𝑘  , {𝑍 𝐴⁄ } and various correction terms that depend 

on these parameters. These additional factors are also responsible for the non-linear behaviour of the flux ratios between 100 

m and around 600 m, as effects from radiative losses start to become significant. However, as the resulting differences due to 215 

these processes remain smaller than 2.5%, a detailed discussion of these matters falls beyond the scope of this paper. 
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As we see above, the muon flux calculation is significantly biased when one employs the standard rock assumption and thus 

neglects the effect of the chemical composition, especially when the thickness of the rock is beyond 300 m. This systematic 

error would then later turn into an over- or an underestimation in the assessment of density structures. We can roughly 220 

estimate the error on a thickness estimation of a certain structure, by employing the following formula 

𝜀𝑑(𝑥ro(F)) =  
𝑥𝑆𝑅(𝐹)−𝑥𝑅𝑜(𝐹)

𝑥𝑅𝑜(𝐹)
 .  (7) 

Here, 𝑥𝑆𝑅(𝐹) and 𝑥𝑅𝑜(𝐹) denote the thickness of standard rock and a real rock respectively, needed to attenuate the cosmic 

ray muon flux to 𝐹. This is possible because the flux, as a function of rock thickness, is a strictly decreasing function. The 

domain of this function ranges from zero to infinite thickness, where its image takes the values from the initial flux, 𝐹0, to 225 

zero. On these two sets the function is a bijection and therefore an inverse function, 𝑥(𝐹), exists. Although its functional 

form might be unknown, it is still possible to interpolate between the simulated points. For our rocks, this is shown in Fig. 8. 

As an example, in case where the target is 600 m thick and made of limestone (𝜌 = 2.711 𝑔 𝑐𝑚−3), the standard rock 

assumption underestimates the flux by 7 % – 8 % and thus overestimates the thickness by around 15 m or 2.5 %. The same is 

valid for basalt and aragonite. 230 

In particular, in case where the target is 600 m thick and made of dolomite (𝜌 = 2.86 𝑔 𝑐𝑚3⁄ ) for example, the standard rock 

assumption underestimates the flux by 7.5% and thus overestimates the density by 0.07 𝑔 𝑐𝑚3⁄  or 2.5%. In cases where the 

determination of the thickness of the rock column is relevant, the effect would cause an underestimation of around 14 m, or 

2.5%. 

The above discussion concentrates on calculations of the mean values of model parameters. A full description encloses also 235 

the propagation of their uncertainties. The rather large error bounds on single flux calculations stems from the uncertainties 

in the flux model and in the interaction cross-sections. However, by taking a ratio, i.e. Eq. (6), of quantities with correlated 

errors, the resulting uncertainty on the ratio tends to cancel out. If the errors were propagated by linear operations, they 

would even cancel out perfectly. The small error-bars which are still present in Figs. 4, 7 and 8 can be seen as effects of the 

nonlinearity in the differential equation, Eq. (5). 240 

 

Because this is a pure sensitivity study, we cannot offer distinct measurements to verify our predictions. The reason for this 

is mainly because dedicated experimental campaigns have not yet been conducted and thus such data is not available. We 

suggest that future studies in this field will address the composition issue and try to experimentally constrain this theoretical 

model. Nevertheless, our inferences are based on the same conceptual framework that has already been used for other 245 

materials, including standard rock. As a result of this, we find significant differences if the rock parameters are changed, 

especially for rock thicknesses larger than 300 m. 
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5 Conclusions 

Our explorations results suggest that it is safe to use the standard rock approximation for all rock types up to thicknesses of 250 

~300 m, as the flux ratio will mainly remain within 2.5 % of the standard rock flux, which generally lies within the cosmic 

ray flux model error. However, we also find that beyond these thicknesses the use of the standard rock approximation and its 

density-modified version could lead to a serious bias. This mainly concerns basaltic and carbonate rocks. Their error keeps 

increasing withThe flux error for these rock types increases with growing material thickness up to a point where any 

inference based upon this approximation becomes difficult. It can be extrapolated, that these errors grow even further beyond 255 

600 m of material thickness up to a point where any inference based upon this approximation becomes difficult. This is, 

however, a thickness range where muon tomography becomes increasingly hard to perform, as lower fluxes have to be 

counterbalanced by larger detectors and longer exposure times. 

In order to account for the composition of rock, it is advisable to undertake a geological study of the region alongside the 

muon tomography measurements, especially when faced with basaltic rocks or carbonates, which includes at the least the 260 

analysis of local rock samples. Auxiliary data could comprise pycnometer rock density measurements (i.e. He-pycnometer or 

buoyancy experiments), chemical composition, and mineralogical information (i.e. X-Ray diffractometry/fluorescence 

measurements) as well as microfabric analyses (i.e. mineral and fabric identification on thin sections). This additional 

information may help to constrain solutions of a subsequent inversion to a potentially smaller set. The use of additional 

information, such as spatial information in the form of a geological map or a 3D model of the geologic architecture, is 265 

strongly encouraged, because it might greatly improve the state of knowledge about the physical parameters that are to be 

unravelled. 
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Appendix A 

To estimate the mineral density, we assume that it can be calculated by dividing the mass of the atoms within the crystal unit 270 

cell by the volume of the latter (see for example Borchart-Ott, 2009): 

𝜌𝑚𝑖𝑛𝑒𝑟𝑎𝑙 =
𝑄∗𝑀

𝑁𝐴∗𝑉𝑈𝑛𝑖𝑡 𝐶𝑒𝑙𝑙
 .   (A1) 

In this equation, M is the total molar mass of one mineral “formula unit”, Q is the number of formula units per unit cell and 

VUnit Cell is the volume of the unit cell. The latter is calculated by the volume formula of a parallelepiped: 

𝑉𝑈𝑛𝑖𝑡 𝐶𝑒𝑙𝑙 =  ‖𝑎⃗  ∙ (𝑏⃗⃗ × 𝑐)‖ .  (A2) 275 

Eq. (A2) can be rewritten as 

𝑉𝑈𝑛𝑖𝑡 𝐶𝑒𝑙𝑙 = ‖𝑎⃗‖‖𝑏⃗⃗‖‖𝑐‖√1 + 2 cos(𝛼) cos(𝛽) cos(𝛾) −  cos2(𝛼) −  cos2(𝛽) − cos2(𝛾) . (A3) 

Here, 𝑎⃗, 𝑏⃗⃗, 𝑐 denote the unit cell vectors, their lengths, ‖ ∙ ‖, is measured in Ångströms, i.e. 10−10 𝑚, whereas 𝛼, 𝛽, 𝛾 are the 

internal angles between those vectors. These six parameters can be looked up for each mineral in the crystallographic 

literature (e.g. Strunz and Nickel, 2001). 280 

 

The volumetric percentages of the minerals that constitute the 10 investigated rock types are shown in Table A1 and Table 

A2. They were chosen as a reasonable compromise from literature values (e.g. Best, 2003; Tuttle and Bowen, 1958; Folk, 

1980). 

  285 
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Appendix B 

Energy loss in elements 

The average spatial differential energy loss can be written in a rather simple form (Barrett et al., 1952): 

− (
𝑑𝐸(𝜌,𝐴,𝑍)

𝑑𝑥
 ) = 𝜌 ∗ (𝑎(𝐸, 𝜌, 𝐴, 𝑍) + 𝐸 ∗ 𝑏(𝐸, 𝐴, 𝑍)). (B1) 

Here,  𝜌, 𝐴, 𝑍 denote the mass density, atomic weight and atomic number of the penetrated material, while 𝐸 is the kinetic 290 

energy of the penetrating, charged particle and 𝑥 is the position coordinate. The function 𝑎(𝐸, 𝜌, 𝐴, 𝑍) in Eq. (B1) is the 

differential ionisation energy loss that accounts for the ionisation of electrons of the penetrated material. In the case of 

incident muons (i.e. electric charge 𝑞𝜇 =  −1 𝐶 and mass 𝑚𝜇 = 105.7 𝑀𝑒𝑉/𝑐2), the relationships expressed in Eq. (B1) 

takes the form (see e.g. Olive et al., 2014 for a detailed explanation): 

𝑎(𝐸, 𝜌, 𝐴, 𝑍) = 𝐾
𝑍

𝐴

1

𝛽2  [
1

2
 𝑙𝑛 (

2𝑚𝑒𝑐2𝛽2𝛾2𝑄𝑚𝑎𝑥(E)

𝐼(𝑍)2 ) − 𝛽2 −
𝛿(𝜌,𝑍,𝐴)

2
+

1

8

𝑄𝑚𝑎𝑥
2 (E)

(γmμ𝑐2)
2] + 𝛥 |

𝑑𝐸

𝑑𝑋
| (𝑍, 𝐴) . (B2) 295 

In this equation, 𝛽, 𝛾 are the relativistic factors and are, therefore, a function of the kinetic energy 𝐸. The constant 𝑚𝑒 

denotes the mass of the electron and 𝑐 is the speed of light. 𝑄𝑚𝑎𝑥 is the highest possible kinetic recoil energy of scattered 

electrons in the medium, while 𝐾 is a constant incorporating information about the electron density. The function 𝛿(𝜌, 𝑍, 𝐴) 

is a correction factor, which considers the mechanisms where the material becomes polarised at higher muon energies, with 

the consequence that the energy loss is weaker (Sternheimer, 1952). The last term in Eq. (B2) is another correction factor, 300 

which considers bremsstrahlung from atomic electrons (not the incident muon, which would be the term in Eq. (3)) that also 

appears at higher muon energies. A more detailed explanation of this equation and its parameters can for example be found 

in Olive et al., (2014).  In contrast to Eq. (B2), the function 𝑏(𝐸, 𝐴, 𝑍) describes all the radiative processes that become 

dominant at higher velocities (above ~ 600 𝐺𝑒𝑉 𝑐−1 ~600 GeV/c for muons). This term includes energy losses due to 

bremsstrahlung, electron-positron pair production as well as photonuclear interactions. These different contributions can be 305 

written independently from each other: 

𝑏(𝐸, 𝐴, 𝑍) = 𝑏𝑏𝑟𝑒𝑚𝑠(𝐸, 𝐴, 𝑍) + 𝑏𝑝𝑎𝑖𝑟(𝐸, 𝐴, 𝑍) + b𝑝ℎ𝑜𝑡𝑜𝑛𝑢𝑐𝑙(𝐸, 𝐴, 𝑍). (B3) 

Each process in Eq. (B3) is computed by integrating its differential cross-section with respect to every possible amount of 

transferred energy: 

𝑏𝑝𝑟𝑜𝑐𝑒𝑠𝑠 =
𝑁𝐴

𝐴
∫ 𝜈

𝑑𝜎𝑝𝑟𝑜𝑐𝑒𝑠𝑠

𝑑𝜈
𝑑𝜈

1

0
.  (B4) 310 

Here, 𝑁𝐴 is the Avogadro number and 𝜈 =  𝜀 𝐸⁄  the fractional energy loss (whereas 𝜀 is the absolute energy loss) for this 

process. The differentialSpecific cross-sections for bremsstrahlung (Kelner et al., 1995, 1997), and photonuclear (Bezrukov 
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and Bugaev, 1981) and pair-production (Nikishov, 1978) energy losses are used by Groom et al. (2001) for the calculations 

of their tables.,  As this pair-production cross-section involves the calculation of many computationally extensive 

dilogarithms, an equivalent whereas the pair-production cross-section (Kelner, 1998; Kokoulin and Petrukhin, 1969, 1971), 315 

which is used in GEANT4 (Agostinelli et al., 2003) by default,. is used in our study. The latter has been taken from the 

GEANT4 simulation toolkit for computational purposes, as the pair-production cross-section (Nikishov, 1978) applied in the 

study of Groom et al. (2001) involves the calculation of many computationally extensive dilogarithms. 

Energy loss in minerals 

Since the above equations are valid for pure elements, their adjustments are needed for compounds (e.g. minerals) and 320 

mixtures thereof (e.g. rocks). Generally, it is advised to use the physical parameters for materials that have already been 

measured (see Seltzer and Berger, 1982 for a compilation). However, except for calcium carbonate (i.e., calcite) and silicon 

dioxide (i.e. quartz), no other minerals have been investigated. This also means that there is no standard approach available 

for considering natural rocks. Fortunately, for such materials a theoretical framework has been proposed (see for example 

Appendix A of Groom et al., 2001). The basic idea is to consider the compound as a single “weighted average”-material and 325 

the energy loss therein as a mass weighted average of its constituents’ energy loss: 

〈
𝑑𝐸𝑚𝑖𝑛𝑒𝑟𝑎𝑙

𝑑𝜒
〉 =  ∑ 𝑤𝑖 (

𝑑𝐸𝑒𝑙𝑒𝑚𝑒𝑛𝑡,𝑖

𝑑𝜒
)𝑖  .  (B5) 

The weights 𝑤𝑖  are calculated according to the atomic weights 𝐴𝑖 of the elements: 

𝑤𝑖 =
𝑛𝑖𝐴𝑖

∑ 𝑛𝑘𝐴𝑘𝑘
=

𝑚𝑒𝑙𝑒𝑚𝑒𝑛𝑡,𝑖

𝑚𝑚𝑖𝑛𝑒𝑟𝑎𝑙
 ,.  (B6) 

These weights 𝑤𝑖and can then now be used to calculate an average 〈𝑍 𝐴⁄ 〉 value: 330 

〈
𝑍

𝐴
〉 =  ∑ 𝑤𝑖

Z𝑖

𝐴𝑖
𝑖  .  (B7) 

Equivalently, the average 〈𝑍2 𝐴⁄ 〉 value can be calculated according to  

〈
𝑍2

𝐴
〉 =  ∑ 𝑤𝑖

Z𝑖
2

𝐴𝑖
𝑖  .  (B8) 

One more change must be made to the ionisation loss Eq. (B2) in order to appropriately account for the change in the atomic 

structure that emerged due to chemical bonding of the elementary constituents. This is reflected in a modified mean 335 

excitation energy 〈𝐼〉, which can be calculated by taking the exponential of the function 

ln〈𝐼〉 =  
∑ 𝑤𝑖

𝑍𝑖
𝐴𝑖

𝑖 ln(𝐼𝑖)

∑ 𝑤𝑗

𝑍𝑗

𝐴𝑗
𝑗

 ,  (B9) 
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which is basically a weighted geometric average of the elementary mean excitation energies 

〈𝐼〉 =  √∏ 𝐼𝑖

𝑤𝑖
𝑍𝑖
𝐴𝑖

𝑖

∑ 𝑤𝑗
𝑍𝑗
𝐴𝑗𝑗

 .  (B10) 

One has to pay attention that the mean excitation energies for some elements, 𝐼𝑖 , can change quite significantly when they are 340 

part of a chemical bond. A guideline to address this issue can be found in Seltzer and Berger (Seltzer and Berger, 1982). 

Equations (B7) to (B10) are still a consequence of Eq. (B5). However, there is one term in the function 𝛿(𝜌, 𝑍 𝐴⁄ ) in Eq. 

(B2) that is calculated differently from Eq. (B5). Namely This concerns the logarithm of the plasma energy of the compound, 

which for an element is given by (e.g. Olive et al., 2014): 

ln(ℏ𝜔𝑝) = ln (28.816 ∗ √𝜌
𝑍

𝐴
).  (B11) 345 

According to Eq. (B5) the plasma energy for a compound should be calculated the same way as the mean excitation energy 

in Eq. (B9). However, Sternheimer et al. (1982) and Fano (1963) explicitly tell advise us to use the arithmetic mean within 

the logarithm when dealing with an atomic mixture (i.e. a molecule), yielding 

ln〈ℏ𝜔𝑝〉 = ln (28.816 ∗ √𝜌𝑚𝑖𝑛𝑒𝑟𝑎𝑙 〈
𝑍

𝐴
〉).  (B12) 

This results in the modified ionisation energy loss: 350 

〈𝑎(𝐸, 𝜌𝑚𝑖𝑛𝑒𝑟𝑎𝑙 , 𝐴, 𝑍)〉 = 𝐾 〈
𝑍

𝐴
〉

1

𝛽2  [
1

2
 𝑙𝑛 (

2𝑚𝑒𝑐2𝛽2𝛾2𝑄𝑚𝑎𝑥(E)

〈𝐼(𝑍)〉2 ) − 𝛽2 −
𝛿(𝜌𝑚𝑖𝑛𝑒𝑟𝑎𝑙,〈

𝑍

𝐴
〉)

2
+

1

8

𝑄𝑚𝑎𝑥
2 (E)

(γmμ𝑐2)
2] + 𝛥 |

𝑑𝐸

𝑑𝑋
| (〈

𝑍

𝐴
〉) . 

  (B13) 

The radiation loss for the compound, on the other hand, is only a linear combination of the radiation losses of its elementary 

constituents, Eq. (B3), yielding: 

〈𝑏〉 = ∑ 𝑤𝑖𝑏𝑖𝑖  .  (B14) 355 

The resulting Eq. (B15) 

− 〈
𝑑𝐸𝑚𝑖𝑛𝑒𝑟𝑎𝑙

𝑑𝑥
〉 = ρmineral ∗ (〈𝑎〉 +  𝐸 ∗ 〈𝑏〉) ,  (B15) 

has now the same form as the energy loss Eq. (B1) for elements and can be solved accordingly. 
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Energy loss in rocks 

To obtain an energy loss equation for rocks, a similar procedure as for forming minerals out ofthrough the assembly of 360 

elements can be applied. Starting from Eq. (B5) we consider the energy loss for a rock as mass weighted average of the 

energy losses of its mineral constituents 

〈
𝑑𝐸𝑟𝑜𝑐𝑘

𝑑𝜒
〉 =  ∑ 𝑞𝑗 〈

𝑑𝐸𝑚𝑖𝑛𝑒𝑟𝑎𝑙,𝑗

𝑑𝜒
〉𝑗  ,  (B16) 

where 𝑞𝑗 are the mass fractions of the j-th mineral within the rock, analogous to Eq. (B6), 

qj =
𝑛𝑗𝐴𝑗

∑ 𝑛𝑙𝐴𝑙𝑙
=

𝑚𝑚𝑖𝑛𝑒𝑟𝑎𝑙,𝑗

𝑚𝑟𝑜𝑐𝑘
 .  (B17) 365 

Using 𝑑𝜒 = 𝜌 ∗ 𝑑𝑥, Eq. (B16) then takes the following form: 

1

𝜌𝑟𝑜𝑐𝑘
〈

𝑑𝐸𝑟𝑜𝑐𝑘

𝑑𝑥
〉 =  ∑

qj

ρmineral,j
〈

𝑑𝐸𝑚𝑖𝑛𝑒𝑟𝑎𝑙,𝑗

𝑑𝑥
〉𝑗  .  (B18) 

By inserting Eq. (B17) into Eq. (B18), one obtains 

1

𝜌𝑟𝑜𝑐𝑘
〈

𝑑𝐸𝑟𝑜𝑐𝑘

𝑑𝑥
〉 =

1

mrock
∑

mmineral,j

ρmineral,j
〈

𝑑𝐸𝑚𝑖𝑛𝑒𝑟𝑎𝑙,𝑗

𝑑𝑥
〉𝑗  .  (B19) 

Multiplying both sides with 𝜌𝑟𝑜𝑐𝑘 and applying the definition of the density, 𝜌 = 𝑚 𝑣⁄ , that can also be written as 𝑣 = 𝑚 𝜌⁄ , 370 

Eq. (B19) becomes 

〈
𝑑𝐸𝑟𝑜𝑐𝑘

𝑑𝑥
〉 =

1

vrock
∑ vmineral,j 〈

𝑑𝐸𝑚𝑖𝑛𝑒𝑟𝑎𝑙,𝑗

𝑑𝑥
〉𝑗  .  (B20) 

If one sets 𝜑𝑗 =  𝑣𝑚𝑖𝑛𝑒𝑟𝑎𝑙,𝑗 𝑣𝑟𝑜𝑐𝑘⁄  , the volumetric fraction of the j-th mineral within the rock, Eq. (B20) transforms into the 

compound equation for rocks 

〈
𝑑𝐸𝑟𝑜𝑐𝑘

𝑑𝑥
〉 = ∑ 𝜑j 〈

𝑑𝐸𝑚𝑖𝑛𝑒𝑟𝑎𝑙,𝑗

𝑑𝑥
〉𝑗 .  (B21) 375 

Analogue to the mineral case we can now define new average energy loss parameters for the rock, beginning with its overall 

density 

{𝜌𝑟𝑜𝑐𝑘}𝜌𝑟𝑜𝑐𝑘 =  ∑ 𝜑𝑗 𝜌𝑚𝑖𝑛𝑒𝑟𝑎𝑙,𝑗𝑗  .  (B22) 

The average {𝑍 𝐴⁄ } is given by 

{
𝑍

𝐴
} = ∑

𝜌𝑚𝑖𝑛𝑒𝑟𝑎𝑙,𝑗

𝜌𝑟𝑜𝑐𝑘
𝜑𝑗 〈

𝑍

𝐴
〉𝑗𝑗    (B23) 380 
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and similarly, the average {𝑍2 𝐴⁄ } can be calculated according to 

{
𝑍2

𝐴
} = ∑

𝜌𝑚𝑖𝑛𝑒𝑟𝑎𝑙,𝑗

𝜌𝑟𝑜𝑐𝑘
𝜑𝑗 〈

𝑍2

𝐴
〉𝑗𝑗  .  (B24) 

 

The rock’s mean excitation energy is 

ln{𝐼} =  
∑

𝜌𝑚𝑖𝑛𝑒𝑟𝑎𝑙,𝑗

𝜌𝑟𝑜𝑐𝑘
𝜑𝑗〈

𝑍

A
〉𝑗𝑗 ln〈𝐼〉𝑗

∑
𝜌𝑚𝑖𝑛𝑒𝑟𝑎𝑙,𝑙

𝜌𝑟𝑜𝑐𝑘
𝜑𝑙〈

𝑍

A
〉𝑙𝑙

 .  (B25) 385 

The only difference between the rock calculation and the mineral calculation enters in the calculation of the plasma energy. 

While in the mineral case we were advised to use Eq. (B11) instead of what would naturally follow from the weighted 

average in Eq. (B5), we prefer to use the weighted average, Eq. (B21), 

ln{ℏ𝜔𝑝} =  
∑

𝜌𝑚𝑖𝑛𝑒𝑟𝑎𝑙,𝑗

𝜌𝑟𝑜𝑐𝑘
 𝜑𝑗 〈

𝑍

A
〉𝑗𝑗 ln〈ℏ𝜔𝑝〉𝑗

∑
𝜌𝑚𝑖𝑛𝑒𝑟𝑎𝑙,𝑙

𝜌𝑟𝑜𝑐𝑘
 𝜑𝑙 〈

𝑍

A
〉𝑙𝑙

   (B26) 

for the case of rocks. The reason for this lies in the fact that the density effect operates on a nanometric scale, whereas 390 

minerals, in general have generally sizes between several micrometres and a few centimetres. In the case of a mineral 

compound, the molecular structure is comprises  also on a nanometric scale. 

These parameters can then be rearranged into an ionisation loss term for a rock 

{𝑎(𝐸, 𝜌𝑟𝑜𝑐𝑘 , 𝐴, 𝑍)} = 𝐾 {
𝑍

𝐴
}

1

𝛽2  [
1

2
 𝑙𝑛 (

2𝑚𝑒𝑐2𝛽2𝛾2𝑄𝑚𝑎𝑥(E)

{𝐼(𝑍)}2 ) − 𝛽2 −
𝛿(𝜌𝑟𝑜𝑐𝑘,{

𝑍

𝐴
})

2
+

1

8

𝑄𝑚𝑎𝑥
2 (E)

(γmμ𝑐2)
2] + 𝛥 |

𝑑𝐸

𝑑𝑋
| ({

𝑍

𝐴
}) .  
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Like Eq. (B14) the radiative losses can be rewritten as a weighted average of the mineral radiative losses 

{𝑏} = ∑
𝜌𝑚𝑖𝑛𝑒𝑟𝑎𝑙,𝑗

 𝜌𝑟𝑜𝑐𝑘
 𝜑𝑗〈𝑏〉𝑗𝑗  .  (B28) 

Equations. (B27) and (B28) can then be joined together to form again a similar term to Eqs. (B1) and (B15), 

− {
𝑑𝐸𝑟𝑜𝑐𝑘

𝑑𝑥
} = ρrock ∗ ({𝑎} +  𝐸 ∗ {𝑏}) ,  (B29) 

the energy loss equation for rocks. 400 

We want to stress that the starting point of the derivation of the energy loss equation for rocks is a mass averaging of mineral 

energy losses. Therefore, the mass averaging approach is inherently included in this approach. In fact, mass averaging and 
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volumetric averaging are two equivalent descriptions of the same problem. For the mass averaged formulae we refer to the 

supplementary material to this manuscript. 

  405 
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Appendix C 

Uncertainty propagation 

The first step in our uncertainty treatment includes a propagation of the interaction cross section errors ( 𝜎𝑎 =

±6 %, 𝜎𝑏𝑏𝑟𝑒𝑚𝑠
= ±1 %, 𝜎𝑏𝑝𝑎𝑖𝑟

=  ±5 %, 𝜎𝑏𝑝ℎ𝑜𝑡𝑜𝑛𝑢𝑐𝑙
=  ±30 %) to the cut-off energy, i.e. by solving the differential equation 

Eq. (5). Generally, a higher cross section yields a higher cut-off energy, as the muon needs more initial kinetic energy, which 410 

it then loses on the way and vice-versa. In order to estimate a lower and an upper error bound on the cut-off energy, 𝐸𝑐𝑢𝑡 , we 

use a conservative approach. This means that the lower cut-off energy error bound is calculated by setting all cross sections 

to their lower 1 𝜎  bound and running the simulation with these modified values. The upper error bound is calculated 

accordingly. Of course, this overestimates the effective error, however if our calculations remain valid within this 

conservative error, then they can also be trusted with a conventional error. 415 

 

The second step is the estimation of the error regarding the integrated flux. Here we need to propagate the errors through Eq. 

(1) to the simulated flux. There are two different errors present at this stage. The first one includes the error on the lower 

integration boundary, i.e. 𝐸𝑐𝑢𝑡 , which has just been calculated above. The second error addresses the integrand, i.e. the flux 

model. Figure C1 visualises the concept behind the propagation of these two errors. The simulated flux error is equivalent to 420 

the error, which is made by calculating the area under the graphs. We estimate the lower error bound on the simulated flux 

(i.e. smallest area), by taking the upper error bound on 𝐸𝑐𝑢𝑡  and the lower error bound on 𝑑𝐹 𝑑𝐸⁄ . Similarly, the upper error 

bound on the simulated flux (i.e. largest area) is calculated by setting 𝐸𝑐𝑢𝑡  to its lower error bound and 𝑑𝐹 𝑑𝐸⁄  to its upper 

error bound. Again, this is a conservative approach, which we justify with the same rationale as above. 

 425 

The last step addresses the propagation of the simulated flux errors to the flux ratio in Eq. (6). Here we can make use of the 

fact that the errors in both simulations are perfectly correlated. In other words, if we knew the errors on all affected 

quantities in one simulation, we would instantaneously know the corresponding values for any other simulation. This allows 

us, for example, to calculate the upper error bound on the flux ratio by dividing the upper error bound of the simulated flux 

in the numerator by the upper error bound of the simulated flux in the denominator. The same is valid for any other 430 

constellation of errors, including the lower error bound and the mean. 
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Figure 1: Thin-sections of two representative types of rock in crossed polarised light: (a) Granite, (b) Limestone. The crystal sizes 

are generally below 14 mm - 5 mm and a few orders of magnitude smaller in the limestone. 590 

 

Figure 2: Simulated muon intensity vs thickness of the four igneous, six sedimentary rocks from Table 1 and standard rock. 

Simulated muon intensity vs. thickness of the four igneous rocks from Table 1 and standard rock. The mean flux is indicated by a 

bold line and 1 σ bounds are indicated by the shaded area.  
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 595 

Figure 3: Ratio of the calculated rock fluxes to a standard rock muon flux for all the rocks reported in Table 1 as a function of 

rock thickness. Simulated muon intensity vs. thickness of the four sedimentary rocks from Table 1 and standard rock. The mean 

flux is indicated by a bold line and 1 σ bounds are indicated by the shaded area.  

 

Figure 4: Ratio of the calculated rock fluxes to a standard rock (𝝆𝑺𝑹 = 𝟐. 𝟔𝟓𝟎 𝒈 𝒄𝒎−𝟑) muon flux for the rocks reported in Table 1 600 
as a function of rock thickness. 
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Figure 5: Ratio of the calculated rock fluxes to a standard rock muon flux with the same density as the rock (𝝆𝑺𝑹 = 𝝆𝑹𝒐𝒄𝒌)  for all 

the lithologies reported in Table 1 as a function of rock thickness. Simulated muon intensity vs. thickness of the four igneous rocks 605 
from Table 1 and a density modified standard rock. The mean flux is indicated by a bold line and 1 σ bounds are indicated by the 

shaded area.  

 

Figure 6: Simulated muon intensity vs. thickness of the four sedimentary rocks from Table 1 and a density modified standard 

rock. The mean flux is indicated by a bold line and 1 σ bounds are indicated by the shaded area. 610 
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Figure 7: Ratio of the simulated rock fluxes to a standard rock muon flux with the same density as the rock (𝝆𝑺𝑹 = 𝝆𝑹𝒐𝒄𝒌) for all 615 
the lithologies in Table 1 as a function of rock thickness. 

 

Figure 8: Relative error, which is made in the thickness estimation of a block of rock by assuming a density modified standard 

rock versus the actual rock thickness. 

 620 
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Figure C1: Differential muon flux as a function of muon kinetic energy. Blue lines indicate the simulated cut-off energy for 300 m 

of Andesite and its respective propagated error bounds. Red lines show the flux model and its 1 𝝈 error bounds. 

  



28 

 

Table 1: Physical parameters of the ten studied rock types and of standard rock. 625 

Rock 
Density 

[𝑔 𝑐𝑚−3] 
{Z/A} {Z2/A} {Z2/A}/{Z/A} 

{I} 
[𝑒𝑉] 

Standard rock 2.650 0.5000 5.500 11.0 136.40 

Igneous rocks      

Granite/Rhyolite 2.650 0.4968 5.615 11.30 145.09 

Andesite/Diorite 2.812 0.4960 5.803 11.70 147.77 

Gabbro/Basalt 3.156 0.4945 6.258 12.66 154.91 

Peridotite 3.340 0.4955 5.788 11.68 149.98 

Sedimentary rocks      

Arkose 2.347 0.4980 5.563 11.17 143.73 

Arenite (Sandstone) 2.357 0.4993 5.392 10.80 141.04 

Shale 2.512 0.4993 5.384 10.78 139.09 

Limestone 2.711 0.4996 6.275 12.56 136.40 

Dolomite 2.859 0.4989 5.423 10.87 127.65 

Aragonite 2.939 0.4996 6.275 12.56 136.40 

 

 
Table A1: Volumetric percentages of the rock forming minerals within six sedimentary rocks. Qtz: Quartz, Or: Orthoclase, Ab: 

Albite, An: Anorthite, Cal: Calcite, Dol: Dolomite, Kln: Kaolonite, Mnt: Montmorillonite, Ill: Illite, Clc: Clinochlore 

Mineral Arkose Arenite Shale Limestone Dolomite Aragonite 

Qtz 56.0 89.0 17.0    

Or 34.0  2.5    

Ab   1.8    

An   0.7    

Cal    100.0  100.0 

Dol     100.0  

Kln   1.7    

Mnt   52.7    

Ill   22.2    

Clc   1.4    

Air 10.0 11.0     

 630 
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Table A2: Volumetric percentages of the rock forming minerals within four igneous rocks. Qtz: Quartz, Or: Orthoclase, Ab: 

Albite, An: Anorthite, Phl: Phlogopite, Ann: Annite, Mg-Hbl: Magnesium hornblende, Fe-Hbl: Iron hornblende, Aug: Augite, En: 

Enstatite, Fs: Ferrosilite, Fo: Forsterite, Fa: Fayalite, Jd: Jadeite, Hd: Hedenbergite, Di: Diopside, Spl: Spinel, Hc: Hercynite 635 

Mineral Granite Andesite Basalt Peridotite 

Qtz 36.1 11.7   

Or 28.2    

Ab 27.3 37.7 17.7  

An  25.3 24.6  

Phl 2.95 4.5   

Ann 2.95 2.1   

Mg-Hbl 2.25 4.2   

Fe-Hbl 2.25 6.4   

Aug  8.1 33.8  

En   11.4 18.4 

Fs   11.1 2.0 

Fo   0.6 60.4 

Fa   0.8 7.9 

Jd    1.8 

Hd    0.3 

Di    8.0 

Spl    0.9 

Hc    0.3 
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